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SYMMETRY ANALYSIS OF ROTATING FLUID
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Abstract

The machinery of Lie theory (groups and algebras) is applied to the unsteady equations of
motion of rotating fluid. A special-function type solution for the steady state is derived. It
is then shown how the solution generates an infinite number of time-dependent solutions
via three arbitrary functions of time. This algebraic structure also provides the mechanism
to search for other solutions since its character is inferred from the basic equations.

1. Introduction

The unsteady flow created by a rotating fluid has attracted the attention of many re-
searchers. Much of this interest is because of the possible implications of this type
of flow for flows in general. However, the solutions of many practical rotating flow
problems hinge on an understanding of the behaviour of the unsteady boundary layers.
Mention should be made of the interesting work of Greenspan and Howard [8], who
initiated the study of the dynamics of spin-up of an incompressible homogeneous
viscous rotating fluid. Following in the footsteps of Greenspan and Howard's ground-
breaking work [8], several researchers such as Holton [10], Walin [16] and Siegmann
[15] have shown that the spin-up mechanism for a stratified fluid is different to and
much more complicated than the corresponding process for a homogeneous fluid. In
order to study the transient motion in the earth's liquid core, Debnath [2-4] examined
a hydromagnetic spin-up mechanism in an electrically conducting rotating viscous
fluid in the presence of an external magnetic field. In another paper, Debnath and
Mukherjee [5] discussed the unsteady multiple boundary layers on a porous plate in a
rotating system.

The basic governing equations describing the rotating fluid phenomenon are non-
linear in nature. The perturbation technique is that which is widely used by physicists
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and engineers to handle these types of nonlinear physical phenomena. We have ob-
tained many interesting and important results by utilising this technique. However, the
perturbation methods have their own limitations such as the fact that all perturbation
techniques are based on small or large parameters so that at least one unknown must
be expressed in a series of small parameters. Unfortunately, not every nonlinear dif-
ferential equation has this kind of structure. Even if such a small parameter exists, the
result given by perturbation methods is valid, in most cases, only for small values of
the parameter. Mostly, the simplified linear equations have different properties from
the original nonlinear differential equation, and sometimes some initial or boundary
conditions are superfluous for the simplified linear equations. As a result, the cor-
responding initial approximations may be far from exact. Clearly, these limitations
of perturbation techniques arise from the small parameter assumption. So it seems
necessary to use another method which does not require these kinds of assumptions.

The Lie symmetry analysis is one such method which does not require small pa-
rameter assumptions at all. The primary objective of the Lie symmetry analysis
advocated by Sophus Lie is to find one- or several-parameter local continuous trans-
formations leaving the equations invariant and then exploit them to obtain the so-called
invariant or similarity solutions, invariants, integrals of motion, etc. [1,11,13], and the
usefulness of this approach has been widely illustrated by several authors in different
contexts [6,7,9,12,17],

In this article, we consider the unsteady motion of the conducting fluid in the
rotating Cartesian coordinate system. Lie group theory is applied to the equations
of motion in search of similarity solutions. The symmetries of the equations are
found. By using these symmetries, a similarity reduction of the equations of motion
to an ordinary differential equation is obtained. The resulting differential equation is
reduced to a Bessel-type equation. An exact solution containing a special function is
constructed. The physical interpretation along with a plot of the solution is presented
at the end.

2. Equations of motion

Consider a semi-infinite expanse of homogeneous, incompressible, electrically
conducting viscous fluid bounded by an infinite non-conducting rigid disk at z = 0 in
the presence of a uniform magnetic field Bo normal to the disk. Both the fluid and the
disk are in the state of a rigid body rotation with constant angular velocity £2 about
the z-axis normal to the disk.

The unsteady motion of the conducting fluid in the rotating Cartesian coordinate
system is governed by the laws of conservation of mass and of momentum which are

— + (V- V)V + 2fi x V= -Vp + — — + /xV2V, (2.1)
dt p
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div V = 0, (2.2)

where V = (u, V, W) is the velocity vector, p is the modified pressure including
the centrifugal term, p is the (constant) density , j is the electric current density,
B is the total magnetic field so that B — Bo + b, b is the induced magnetic field
and fi is (constant) viscosity. We assume that the velocity field depends on x,y
and t with w = 0 so that V = [u(x, y, /), v(x, y, t), 0]. Further, the magnetic
field B is perpendicular to the velocity field. In low magnetic field Reynolds-number
approximations, the induced magnetic field is negligible compared with the imposed
field [14]. Also the electric field is assumed to be zero so only the magnetic field BQ

contributes to the current j = a{ V x B). Consequently, under these assumptions the
electromagnetic body force involved in (2.1) becomes

(2.3)

where a is the electrical conductivity of the fluid and n* = (o/p)Bl has the same
dimension as £2 and plays an important role in the present hydromagnetics analysis.
In view of (2.3), the equations of motion (2.1)-(2-2) in component form become

t dp fd2u 3 2 M\
dx \dx2 dy2)

du du du t dp fdu 3 M \
— + U— + V— - 2Slv + n*u = - J l + /*(—-. + — , (2.4)
dt dx dy d \d2 d2)
dv dv dv „ dp /d2v 32i
^ + U^ + VVy+2Qu + nV = -Ty+>X(-dT

2 + 3y-
2

ox ay

where u and v are the velocity components.

3. Symmetry groups and generators of equations

In order to find invariance transformations, we look for infinitesimal Lie point
transformations of the form

t* = t + erji(t,x,y,u,v,p)+ O(e)2,

x* =x + er]2(t,x, y, u, v,p) + O(e)2,

y* = y + er]j(t,x, y, u, v, p) + O(e)2,

u* = u + er)4(t,x, y, u, v, p) + O(e)2,

v* = v + er)5(t,x, y, u, v, p) + O(e)2,

p' = p + er)(,(t,x, y, u, v, p) + O(e)2,
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which leaves (2.4)-{2.6) invariant.
Following widely used classical methods concerning these arguments [1,11,13]

we find the infinitesimal symmetries r\t, i = 1, . . . , 6, by solving the over determined
linear PDE system, usually called the determining system, obtained by requiring the
invariance of (2.4)-(2.6) with respect to (3.1).

There are many software packages may be used to help obtain the determining
system. But solving the system with arbitrary functions requires analysis. We omit
the determining system from which we are able to obtain the following results for the
form of the infinitesimal symmetries:

r)4 = yv+f'(t), r)5 = -yu + g'(t),

n6=j(t)-x[n*f'(t)+f"(t)-2Qg\t)]

where a and y are arbitrary parameters and; (r), / (t) and g(t) are arbitrary sufficiently
smooth functions of time. The parameter a corresponds to a translation in t and the
parameter y represents rotations of the spatial system. The infinitesimal operator (the
generator of Lie algebra) associated with each parameter is obtained from the operator

3 3 3 3 3 3
G = >7IT- + m— + r)3T- + m-r- + r)S— + V6—.

at ox ay du dv dp
by setting the studied parameter equal to one while other parameters and arbitrary
functions are equated to zero. The operator associated with each of the arbitrary
functions in (3.2) is obtained by setting the other arbitrary functions and all parameters
identically equal to zero. If C,, i = 1, . . . , 5, are the generators associated with the
parameters a and y and the arbitrary functions j (t), f (r) and g(t), then we have

3 3 3 3 3
G\ = — , G2 = y- x— + v- u— ,

dt dx dy du ov

+f(t)l(nx + 2ny)f\t)+xf(t)],
dx du dp

= g(t)^- + g'(t)-?- - [(n*y - 2£2x)*'(r) + yg"{t)]-?- ,
dy dv dp

The generators G\ and Gz generate a finite-dimensional Lie algebra L2 which is a
two-dimensional subalgebra of the infinite-dimensional algebra LM generated by the
generators G,, /' = 1 , . . . . 5.
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4. Solution via subgroup generated by f(t), g(t) and j (t)

In this section, a similarity solution (group invariant solution) corresponding to the
above symmetries will be derived. We first consider translation in the t coordinate
and hence a = 1 is taken. This subgroup has the values

?4 / ( ) . i! g ( ) ,

=j (t)-x[n*f'(t) +f"(t) - 2Qg'(t)] - y[n*g'(t) + g"(t) + 2fi/'(r)]

for its infinitesimal symmetries.
In order to obtain the similarity variable and the similarity transformation associated

with the infinitesimal symmetries rj,, i = 1 , . . . , 6 , given in (4.1), we solve the
Lagrange characteristic equation

dt dx dy du dv

rln
T7 • (4-2)

1 fit) git) fit) g'it)
= dp

jit)-x[n*fit)+f»it)-2ng'it)]-y[n*g'it) + g"i

Solving the characteristic equation (4.2) we obtain the similarity variables

x=x-Fit), y = y-dt), (4.3)

where F(t) = ff it)dt and G(f) = f g(t)dt. Also the corresponding similarity
transformations become

w = u(x,y)+f(t), v =
p = p(x, y) - xf'(t) - yg'(t) - {n*x + 2Qy)f (t) (4.4)

- (n*y - 2Qx)g(t) + k(t),
where

\ \ J[n*\f (t)]2 + n*[g(t)f

Substituting the similarity transformations, (4.4), along with similarity variables (4.3)
in the equations of motion (2.4)-(2.6), we find that (2.4)-(2.6) reduce to a steady state:

-35 _3« „„_ . - dp (d2u d2it\
u—+ v—-2Qv+ ^1* = - ^ + n ( — + — ) , (4.5)

dx dy dx \dx2 dy2 J

_3u 3u •-__M+ (— + —\ (Af,)
dx oy dy \dx* dy* J

3M dv
dx dy
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Therefore any steady-state solution to the equations of motion (4.5)-(4.7) can be
transformed by means of (4.3) and (4.4) into a time-dependent solution involving
three arbitrary functions of the time variable. Since (4.5)-(4.7) involve two indepen-
dent variables, we need to apply another subgroup to reduced them into an ordinary
differential equation system. For this we apply a rotation subgroup generated by the
parameter y.

4.1. Reduction via rotation group To obtain a reduction by rotation group gen-
erated by the parameter y in (3.2), it is best to rewrite (4.5)-(4.7) in terms of the
stream function iff. This function is defined so that the continuity equation, (4.7), is
automatically satisfied, that is, by the relations

JL = v and -?- = -« . (4.8)
ox ay

The following form of equations (4.5)-(4.7) is obtained by differentiating (4.5) with
respect to y and (4.6) with respect to x and then subtracting the resulting equations:

dx 3j>3 dx dx2dy dy dxdy2 ay 3x3

In this setting, the infinitesimal transformations associated with the rotation group are

x* = x + ey + O(e)2, y* = y -ex + O(e)2, ty* = f + O(e)2. (4.10)

The characteristic equations obtained from (4.10),

dx dy dxjf

~f ~ -x ~~ 0 '

give rise to the new similarity variable £ = x2 + y2 and to yjr = f\ (£), where/i is an
arbitrary function of £.

In terms of/i and £, (4.9) becomes the ordinary differential equation

By rearranging and substituting h = d(£{df\ld%))/d% in (4.11), we get

4 / ^ - ^ = 0. (4.12)
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Setting r] = V ( " * / M ) £ . (4-12) reduces to a Bessel equation

^ + 4-^=0. (4.13)

The exact solution of (4.12) is

To get a bounded solution at £ = 0, we take a2 = 0. Therefore the solution is

Here and hereafter /„(*) denotes a modified Bessel function given by

Integration of (4.14) with respect to £ yields

+ =/i(?) = ^ h (J^S) + * ln(?) + c2

or

— I (xi + y'Y + c, ln^t* + y1-) +c2 +
n*

Solution (4.15) in terms of u, v and p is

- 2ci£~' + 2n*ci arctan [ - }

| (2 + J2)c, In2(£) + (2a, + 2J2 + | - c , J i 2 + • • • 1 a,,
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where c\, c2 and c3 are constants to be determined from the boundary conditions
and £ = x1 + y2. Retracing our steps back to the original variables leads us to the
time-dependent solution

«=/(r)-(y-C(O)

f 4«. / r^~\ .i
and0l*/lL)$

- (n*x + 2Siy)f 0) - (n*y - 2Qx)g0)

k(t) + c3 - 2c , r ' + 2n*c, arctan P _ '

(2 + fi)c, In2(^) + ^2a, + 20. + ^ -c ,^ (JC - F(t))2 + • • • 1 a,,F
where f = [JC - F(r)]2 + [y - f

The velocity vector is V = Vo + V, where

V0 = (f0),g0)) and V=(u(jc,y),v(x,y))

with ^ = x — F(t) and y = y — G(t). We observe that for any fixed time t > 0, V
is a rotating vector field around the centre (F(t), G(t)) and Vo is the velocity of the
moving centre along a line x = F(t) and y = G(t). Further the stream function in
term of* and y has the form \jf(x, y) = g(t)x — f (t)y + iA(£), where ^(1) is given
in (4.15). If we choose the integral constant cx = 0 and take V(£) % £ + 0(f)2,
with £ <& 1, then the streamlines are just like circles with a modified centre and can
be observed from Figure 1 (a). For the case when the integral constant C\ ^ 0, there
will be a pool on the centre {F(t), G(t)). This can be seen from Figure 1 (b). For
Figures 1 (a) and (b), the magnetic field is assumed to be weak with a = p = fi = 0.5,
a, = 1 and F(t) = GO) = t.

5. Conclusion

We consider the unsteady motion of a conducting fluid in a rotating Cartesian
coordinate system. Lie group theory is applied to obtain the symmetry groups and
generators of the equations of motion. Then by using the subgroup generated by / (r)>
gO) and j 0) w e transform the original system of partial differential equations into
an ordinary differential equation. An exact solution involving a special function is
obtained. The physical interpretation along with a plot of the solution is also pre-
sented. From the solution (4.17), it may be observed that the effect of electromagnetic
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FIGURE 1. Plots of velocity field.

force is reflected in the unsteady velocity field through n*. Further, the result for
a nonconducting fluid can be obtained by taking Bo to be zero. Finally, it is worth
mentioning that in this article we do not use the so-called small parameter assumption
at all, which is however absolutely necessary for perturbation techniques. Thus the
Lie group theory is shown to be very useful for the theory analysis of rotating fluid.
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