4

ON THE DISTRIBUTION OF PRIMES IN SHORT INTERVALS

P. X. GALLAGHER

One of the formulations of the prime number theorem is the statement that the number of primes in an interval (n, n + h], averaged over $n \leq N$, tends to the limit λ , when N and h tend to infinity in such a way that $h \sim \lambda \log N$, with λ a positive constant.

In this note we study the distribution of values of $\pi(n + h) - \pi(n)$, for $n \leq N$ and $h \sim \lambda \log N$. We show that, assuming a certain uniform version of the (unproved) prime *r*-tuple conjecture of Hardy and Littlewood [3], the distribution tends to the Poisson distribution with parameter λ as $N \to \infty$. Using a sieve upper bound for the *r*-tuple problem, we also get an unconditional exponential upper bound for the tail of the distribution.

Our method has many features in common with the argument by which Hooley [4] has studied the distribution of values of the differences between consecutive integers prime to n, for $n/\phi(n)$ large. An analogous result for primes has been announced by Hooley in [5].

Explicitly, the r-tuple conjecture is an asymptotic formula for the number $\pi_d(N)$ of positive integers $n \leq N$ for which $n + d_1, ..., n + d_r$ are all prime. Here $d_1, ..., d_r$ are distinct integers. The formula is

$$\pi_{\mathbf{d}}(N) \sim \mathscr{S}_{\mathbf{d}} \frac{N}{\log^r N} \qquad (N \to \infty), \tag{1}$$

provided $\mathscr{S}_{\mathbf{d}} \neq 0$, where

$$\mathscr{S}_{\mathbf{d}} = \prod_{p} \frac{p^{r-1}(p - v_{\mathbf{d}}(p))}{(p-1)^{r}},$$

and where $v_d(p)$ is the number of distinct residue classes mod p occupied by d_1, \ldots, d_r .

Formula (1) is the prime number theorem, for r = 1. For $r \ge 2$, it has not been proved for any d; the source of (1) in these cases is a heuristic application of the circle method, and a summation of the corresponding (multiple) singular series [3]. Lavrik [8] has proved that (1) holds in mean over cubes $1 \le d_1, ..., d_r \le H$, in the range $N/\log^c N \le H \le N$; a similar mean result for the (small) cubes of side h would suffice for our purpose.

THEOREM 1. Denote by $P_k(h, N)$ the number of integers $n \leq N$ for which the interval (n, n + h] contains exactly k primes. Then

$$P_k(h,N) \sim N \frac{e^{-\lambda} \lambda^k}{k!}$$
⁽²⁾

for $N \to \infty$, $h \sim \lambda \log N$, provided, for each r, (1) holds, uniformly for $1 \leq d_1, ..., d_r \leq h$, with $d_1, ..., d_r$ distinct and $\mathcal{S}_d \neq 0$.

[MATHEMATIKA 23 (1976), 4-9]

Our argument for (2) goes through a computation of the moments of $\pi(n+h) - \pi(n)$, and depends on the fact that, for each r, \mathcal{S}_d averages to 1 over cubes:

$$\sum_{\substack{1 \leq d_1, \dots, d_r \leq h \\ \text{distinct}}} \mathscr{S}_{\mathbf{d}} \sim h^r \qquad (h \to \infty). \tag{3}$$

For r = 2, a smoothed variant of this was used by Hardy and Littlewood to refute earlier asymptotic Goldbach conjectures. A simple proof of (3) for r = 2, starting with the singular series representation for \mathcal{S}_d , was given by Bombieri and Davenport in [1]. Our proof of (3) starts with the product definition of \mathcal{S}_d , and is closer to an argument of Hooley in [5].

Using Selberg's sieve, Klimov [7] obtained for each r the upper bound^{\dagger}

$$\pi_{\mathbf{d}}(N) \lesssim 2^{\mathbf{r}} r! \mathscr{S}_{\mathbf{d}} \frac{N}{\log^{\mathbf{r}} N} \tag{4}$$

for $N \to \infty$, uniformly for **d** in small cubes. For this, see Halberstam and Richert [2], Theorem 5.7. Using (4) instead of (1), we get upper bounds for the kth moments of $\pi(n + h) - \pi(n)$ for $n \le N$, as Bombieri and Davenport did for k = 2. For large k, these bounds give

THEOREM 2. For positive constants $\mu \ge \lambda \ge 1$, the number of $n \le N$ for which $\pi(n + \lambda \log N) - \pi(n) > \mu$ is $\le N e^{-C\mu/\lambda}$, where C is an absolute constant.

1. Reduction to (3). For each positive integer k,

$$\sum_{n \leq N} (\pi(n+h) - \pi(n))^k = \sum_{n \leq N} \sum_{n < p_1, \dots, p_k \leq n+h} 1$$
$$= \sum_{r=1}^k \sigma(k, r) \sum_{n < 1} \pi_{d_1, \dots, d_r}(N),$$

where the inner sum is over all *r*-tuples $d_1, ..., d_r$ satisfying $1 \le d_1 < ... < d_r \le h$, and $\sigma(k, r)$ is the number of maps from the set $\{1, ..., k\}$ onto $\{1, ..., r\}$. For the **d** with $\mathscr{S}_d \neq 0$, we use (1); for the others, $d_1, ..., d_r$ occupy all residue classes modulo some prime, so $\pi_d(N) \le r$. Using (3), it follows that

$$\sum \pi_{d_1, \ldots, d_r}(N) \sim \frac{h^r}{r!} \frac{N}{\log^r N},$$

and hence

$$\frac{1}{N}\sum_{n=1}^{N} \left(\pi(n+h) - \pi(n)\right)^k \to m_k(\lambda), \tag{5}$$

with

$$m_k(\lambda) = \sum_{r=1}^k \sigma(k, r) \frac{\lambda^r}{r!}$$

In §3, it is shown that $m_k(\lambda)$ is the kth moment of the Poisson distribution with

[†] The notation $F \leq G$ stands for $\lim F/G \leq 1$.

P. X. GALLAGHER

parameter λ , and that the corresponding moment generating function is entire. The result (2) now follows from general theorems on moments [6, Chapter 4].

Putting $h = \lambda \log N$, and using (4) instead of (1), we get

$$\sum \pi_{d_1, \ldots, d_r}(N) \lesssim (2\lambda)^r N,$$

from which it follows that

$$\frac{1}{N}\sum_{n=1}^{N} \left(\pi(n+h) - \pi(n)\right)^{k} \lesssim \sum_{r=1}^{k} \sigma(k,r)(2\lambda)^{r}$$
$$\leqslant k(2\lambda k)^{k}.$$

Hence the proportion of $n \leq N$ for which $\pi(n + h) - \pi(n) \geq \mu$ is $\leq k(2k\lambda/\mu)^k$. If $\mu/\lambda \geq 4$, we choose $k = [\frac{1}{4}(\mu/\lambda)]$. Then $k \geq \frac{1}{8}(\mu/\lambda)$, so the proportion is

$$\lesssim k2^{-k} \leqslant e^{-C\mu/\lambda}$$

If $\mu/\lambda < 4$, the result is trivial.

2. Proof of (3). Let

$$D_{\mathbf{d}} = \prod_{i < j} (d_i - d_j).$$

Then $1 \leq v_d(p) \leq r$, with equality at the right, unless $p \mid D_d$. The *p*th factor in \mathcal{S}_d is

$$1 + \frac{p^{r} - v_{d}(p)p^{r-1} - (p-1)^{r}}{(p-1)^{r}} = 1 + a(p, v_{d}(p)),$$
(6)

where

$$a(p, v) \ll_{r} \begin{cases} (p-1)^{-2}, & v = r; \\ (p-1)^{-1}, & v < r. \end{cases}$$
(7)

It follows that the product for \mathscr{G}_d converges. Defining $a_d(q)$ for squarefree q by

$$a_{\mathbf{d}}(q) = \prod_{p \mid q} a(p, v_{\mathbf{d}}(p)),$$

we get an absolutely convergent series expansion

$$\mathscr{S}_{\mathbf{d}} = \sum_{q} a_{\mathbf{d}}(q), \tag{8}$$

where the sum is over squarefree q.

We need an estimate for the remainder in (8) which is uniform for d in the h-cube. It follows from the bounds on a(p, v) that

$$\sum_{q>x} |a_{\mathbf{d}}(q)| \leq \sum_{q>x} \frac{\mu^2(q)C^{\omega(q)}}{\phi^2(q)} \phi((q, D)),$$

where $\omega(q)$ is the number of prime factors of q, and C is a positive constant depending only on r. Putting q = de with d|D and (e, D) = 1, this is

$$\sum_{d \mid D} \frac{\mu^{2}(d)C^{\omega(d)}}{\phi(d)} \sum_{\substack{e > x/d \\ (e, D) = 1}} \frac{\mu^{2}(e)C^{\omega(e)}}{\phi^{2}(e)} \ll \sum_{d \mid D} \frac{\mu^{2}(d)C^{\omega(d)}}{\phi(d)} \frac{d}{x} \log^{B} x$$
$$\ll (xh)^{e}/x,$$

with a constant depending only on r and ε . It follows that

$$\sum_{\substack{d_1, \dots, d_r \leq h \\ \text{distinct}}} \mathscr{G}_{\mathbf{d}} = \sum_{\substack{q \leq x \\ \text{distinct}}} \sum_{\substack{d_1, \dots, d_r \leq h \\ \text{distinct}}} a_{\mathbf{d}}(q) + O(h^r((xh)^{\varepsilon}/x)), \tag{9}$$

with a constant depending only on r and ε .

The inner sum in (9) is

$$\sum_{v} \prod_{p \mid q} a(p, v(p)) \{ \sum' 1 + O(h^{r-1}) \},\$$

where \sum'_1 stands for the number of *r*-tuples of not necessarily distinct integers $d_1, ..., d_r$ with $1 \leq d_1, ..., d_r \leq h$ which, for each prime $p \mid q$, occupy exactly v(p) residue classes mod p; the outer sum is over all "vectors" = $(..., v(p), ...)_{p \mid q}$ with components satisfying $1 \leq v(p) \leq p$. A simple lattice point argument using the Chinese remainder theorem gives, for $q \leq h$,

$$\sum' 1 = \left\{ \left(\frac{h}{q}\right)^r + O\left(\frac{h}{q}\right)^{r-1} \right\} \prod_{p \neq q} \left(\begin{array}{c} p \\ v(p) \end{array} \right) \sigma(r, v(p));$$

the product representing the number of ways of choosing the residue classes of $d_1, ..., d_r \mod q$ subject to the congruence restrictions in \sum' .

Thus the inner sum in (9) is

$$\left(\frac{h}{q}\right)^{r}A(q) + O\left(\left(\frac{h}{q}\right)^{r-1}B(q)\right) + O(h^{r-1}C(q)), \tag{10}$$

with

$$A(q) = \sum_{v} \prod_{p \mid q} a(p, v(p)) {p \choose v(p)} \sigma(r, v(p)),$$

$$B(q) = \sum_{v} \prod_{p \mid q} |a(p, v(p))| {p \choose v(p)} \sigma(r, v(p)),$$

$$C(q) = \sum_{v} \prod_{p \mid q} |a(p, v(p))|.$$

We have

$$A(q) = \prod_{p \mid q} \left\{ \sum_{\nu=1}^{p} a(p, \nu) {p \choose \nu} \sigma(r, \nu) \right\},$$

$$B(q) = \prod_{p \mid q} \left\{ \sum_{\nu=1}^{p} |a(p, \nu)| {p \choose \nu} \sigma(r, \nu) \right\},$$

$$C(q) = \prod_{p \mid q} \left\{ \sum_{\nu=1}^{p} |a(p, \nu)| \right\}.$$

We show first that A(q) = 0 for q > 1. Using (6), the pth factor in A(q) is

$$(p-1)^{-r}\left\{\left(p^{r}-(p-1)^{r}\right)\sum_{\nu=1}^{p}\binom{p}{\nu}\sigma(r,\nu)-p^{r-1}\sum_{\nu=1}^{p}\nu\binom{p}{\nu}\sigma(r,\nu)\right\}.$$

By formulae (i) and (ii) of §3, the two sums here are p^r and $p^{r+1} - (p-1)^r p$ respectively, and the factor vanishes.

Using the bounds (7) for a(p, v), we may estimate B(q) and C(q). By (i) of §3, the pth factor in B(q) is $\ll p'/(p-1)$, so

$$B(q) \leqslant C^{\omega(q)} \frac{q^r}{\phi(q)}$$

More simply, the *p*th factor in C(q) is $\ll p/(p-1)$, so

$$C(q) \leqslant C^{\omega(q)} \frac{q}{\phi(q)}$$
.

Returning to (9) and (10), it follows that (9) is h^r plus a remainder term which is

$$\leqslant h^{r-1} \sum_{q \leqslant x} C^{\omega(q)} \frac{q}{\phi(q)} + h^{r} (xh)^{\epsilon} / x$$
$$\leqslant h^{r-1} x^{1+\epsilon} + h^{r} (hx)^{\epsilon} / x$$
$$\leqslant h^{r-\frac{1}{2}+\epsilon},$$

choosing $x = h^{\frac{1}{2}}$. Since $x \leq h$, the conditions $q \leq h$, assumed earlier, are satisfied.

3. Combinatorial identities. We prove here the standard identities for the "Stirling numbers of the second kind" $\sigma(k, r)/r!$ which have been used above. These are

(i) $\sum_{\nu=1}^{p} {p \choose \nu} \sigma(r, \nu) = p^{r}$, (ii) $\sum_{\nu=1}^{p} \nu {p \choose \nu} \sigma(r, \nu) = p^{r+1} - (p-1)^{r} p$,

(iii)
$$\sum_{\nu=1}^{r} \sigma(r, \nu) \frac{\lambda^{\nu}}{\nu!} = \sum_{p=0}^{\infty} p^{r} \frac{e^{-\lambda} \lambda^{p}}{p!}$$

(iv)
$$\sum_{r=0}^{\infty} \frac{m_r(\lambda)z^r}{r!} = e^{-\lambda} e^{\lambda e^z};$$

the last two identities show that $m_r(\lambda)$, the left side of (iii), is the *r*th moment of the Poisson distribution with parameter λ , and that the corresponding moment generating function (iv) is entire.

To prove (i), classify the maps from $\{1, ..., r\}$ to $\{1, ..., p\}$ by the size of the image. There are $\binom{p}{v}$ subsets of size v in $\{1, ..., p\}$; for each such subset, the number of maps with this image is $\sigma(r, v)$. To prove (ii), write

$$\binom{p}{v} = p\binom{p-1}{v-1} = p\binom{p}{v} - p\binom{p-1}{v},$$

and use (i). To prove (iii), multiply (i) by $\lambda^{p}/p!$ and sum over p:

$$\sum_{\nu=1}^{r} \sigma(r,\nu) \sum_{p=0}^{\infty} {p \choose \nu} \frac{\lambda^{p}}{p!} = \sum_{p=0}^{\infty} p^{r} \frac{\lambda^{p}}{p!}.$$

From this and

$$\sum_{p=0}^{\infty} {p \choose v} \frac{\lambda^p}{p!} = \frac{\lambda^v}{v!} e^{\lambda},$$

the identity (iii) follows. To prove (iv), multiply (iii) by $z^r/r!$ and sum over r.

References

- 1. E. Bombieri and H. Davenport. "Small differences between prime numbers", Proc. Roy. Soc. Ser. A. 293 (1966), 1-18.
- 2. H. Halberstam and E. Richert. Sieve Methods (Academic Press, 1974).
- 3. G. H. Hardy and J. E. Littlewood. "Some problems of 'Partitio Numerorum': III. On the expression of a number as a sum of primes", *Acta Mathematica*, 44 (1922), 1-70.
- 4. C. Hooley. "On the difference between consecutive numbers prime to n. II", Publ. Math. Debrecen, 12 (1965), 39-49.
- 5. C. Hooley. "On the intervals between consecutive terms of sequences", Proc. Symp. Pure Math., 24 (1973), 129-140.

6. M. G. Kendall and A. Stuart. The Advanced Theory of Statistics, Vol. I (Griffin, 1958).

- 7. N. I. Klimov. "Combination of elementary and analytic methods in the theory of numbers", Uspehi Mat. Nauk, 13 (1958), no. 3 (81), 145-164.
- 8. A. F. Lavrik. "On the theory of distribution of primes, based on I. M. Vinogradov's method of trigonometrical sums", *Trudy Mat. Inst. Steklov.*, 64 (1961), 90-125.

Mathematics Department Columbia University New York, New York 10027 (U.S.A.). 10H15: NUMBER THEORY; Multiplicative Theory; Distribution of primes.

Received on the 10th of October, 1975.