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APPROXIMATION OF A QUASILINEAR ELLIPTIC EQUATION
WITH NONLINEAR BOUNDARY CONDITION

T.R. CRANNY

We consider a quasilinear elliptic partial differential equation with nonlinear bound-
ary condition under assumptions which do not allow the application of standard
degree theory results or techniques such as the method of continuity. An approx-
imation using mollifiers is introduced, allowing the application of Leray-Schauder
degree theory, and homotopy arguments are then used to prove the existence of
solutions to the approximating problems. A subsequent paper will discuss the
question of the convergence of these approximate solutions to a classical solution
of the original problem.

1. INTRODUCTION

We consider the quasilinear partial differential equation with nonlinear boundary
condition

Qu = atj{x,u,Du)DijU + a(x,u,Du) = 0 in fi

Gu = g(x,u,Du) — 0 on 9f2,

for f2 a suitable domain in Kn, and seek conditions which ensure the existence of a
classical solution of (1.1).

Two of the main techniques used to prove the existence of such a classical solution
are the Leray-Schauder degree theory and the nonlinear method of continuity. The de-
gree theory approach is not directly applicable for problems were the boundary operator
G is nonlinear in the gradient term, while the method of continuity relies heavily on
invertibility conditions such as: alj = 0, az ^ 0, Gz < 0 (see [4, 8]).

We describe an approach which has the advantage of dealing with nonlinearities in
the boundary condition while relaxing (in some senses) the smoothness and invertibility
conditions needed for the method of continuity. The boundary dft is assumed to be
C1'", while the regularity conditions imposed upon the domain and differential operator
are similar to those of the best existing results using the method of continuity ( that
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406 T.R. Cranny [2]

is, where the intermediate Schauder estimates of [3, 7] are used). The results do not
require Q to be monotonic in z, however the dependence of G upon z is no better
than that needed for the method of continuity, while the continuity conditions imposed
upon G are stronger than those needed for the method of continuity in the intermediate
Schauder formulation. This is despite the extensive use of the intermediate Schauder
estimates in this paper. The situation may be summarised by saying that in comparison
with the method of continuity, the results presented here constitute a relaxing of the
conditions imposed upon the differential operator and a tightening of those imposed
upon the boundary operator. In [8], Lieberman and Trudinger describe an approach
which makes use of a version of the method of continuity to apply degree theory to
problems in which the boundary operator is nonlinear in the gradient. This technique
removes the need for the strong monotonicity conditions used by both the method of
continuity and the results presented here, but again the use of the method of continuity
requires more smoothness of the boundary than is needed here. Most of the comments
directed at the method of continuity also apply to the techniques used by Lieberman
in [6] and associated papers.

The techniques described herein have as their motivation the approach developed
by Thompson [10, 11], for two point boundary value problems for ODE's, where it was
noted that the existence of a solution of (1.1) is equivalent to the existence of a pair of
functions (u,w) such that

(1.2) Qu = 0 in J7

u = w on dCl

(1.3) g(x,u,Du) = 0 on 90.

In order to allow the application of degree theory under quite general circumstances,

we consider an approximating problem, in which g{x,w,Du) = 0 is replaced with the

equation g[x,w,(Du) 1 = 0, where ( ) is a regularisation operator.

The introduction of the function w above serves to weaken the connection between
the differential equation and the boundary condition, since the boundary condition
(1.3) no longer depends explicitly upon the values of u upon 5f2, but now upon the
function w. (It will still depend upon u through the (Du)v term.) We continue the
'disconnection' of the two facets of the original problem, deriving a Dirichlet problem for
u which makes no reference to w or the boundary operator G, and a condition upon w
unrelated to u, Du, or the differential equation. This disconnection is attained through
a series of homotopies for the Leray-Schauder degree, and produces an existence result
for the approximating mapping under quite mild assumptions.

In a subsequent paper [2], we shall show that standard Cll<7(fj) a priori estimates
ensure the convergence of these 'approximate' solutions to a classical solution of the
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[3] A quasi-linear elliptic equation 407

original problem (1.1), and describe results which give such a priori estimates.

The format of this article is as follows: In Section 2 we establish notation and
construct a number of necessary technical results. In Section 3 we give the statement of
the main results, and combine them to prove the existence result Theorem 3.7. Some
of the longer and more technical proofs have been collected in the Appendix.

2. PRELIMINARIES

Let n be a bounded domain in R n such that dQ E C 1 ' " where 0 < a < 1. We let
n denote the unit inward normal. We consider the problem (1.1) under the assumptions
that a1', a 6 COl l(fi x E x Kn) , and there exist positive constants A, A, x s u c n

(2 1) 0<^\C\^a(x,Z,p)Uj^A\i\<oo foralUelfr \{0}

-gp(x,z,p) n> max{x \gp(x,z,p)\, x}-

REMARK. The above assumption on gp is stronger than the standard obhqueness as-
sumption, requiring also that the angle between — gp and the inward normal be less
than and bounded away from TT/2. Such an assumption follows directly from obhque-
ness for linear boundary conditions, (and for the purposes of this paper, for quasihnear
boundary conditions) and for many nonlinear boundary conditions. It will be shown in
[2] that in many cases one can proceed using only obhqueness.

We assume that the boundary condition can be written in the form

(2.2) g{x,z,p) = z-q{x,p)=0 on 90,

where q, qp £ C1>a(dQ x Rn). Such a form for the boundary condition is possible for
example if g(x,z,p) is sufficiently smooth and gz(x,z,p) ^ 0, conditions which are
roughly similar to those used in the method of continuity, but by utilising intermediate
Schauder estimates the method of continuity can proceed under more general conditions.
(See for example the final section of [8].) A possible improvement in our results is
indicated in the concluding remarks.

We shall always assume that Q satisfies the natural structure conditions

A < A/i(|*|)

|a|<A/iO(N
(2.3)

where fi, [IQ, \i\ are positive non-decreasing functions.
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On a number of occasions we shall need to approximate a given function with a
smooth function. To do so, consider p{) G C°°(Rn,R) where p() ^ 0 and p(x) = 0
if \x\ ^ 1, and J p(-)dx = 1. For / G C°(fi), and r\ > 0, consider the operator <pv*

defined by

(^ */)(*) = ^

provided that dia^ZjSfi) > rj. We call <pv * f the mollification or regularisation of

/ , and ?7 the mollification parameter. The properties of the mollification operator are

described in [4, 9].

The set {(x, z,p) € 80, x R x E" | |z| + |p| < A} is denoted by dCl(A).

We shall say a function a(-) (respectively /3(-)) G C 1 (n )nC 2 (n ) is a lower (upper)

solution of (1.1) if Qa ^ 0 (Q/? ^ 0) in fi. The results which follow make extensive

use of such functions, and we shall require additional geometric properties such as the

following.

DEFINITION 2.1: The lower solution a(-) and the upper solution /3(-) are a bound-

ary diverging pair, or BD pair, if a ( ) = -/?(•) < 0 on fi, &(•) £ C1>Q(n) D C2(n),

ll^lloifT < 1 a n d t h e r e e x i s t c o n s t a n t s Si, T > 0 such that ( S ^ " 1 ^ D/9 • n ^ 5i > 0
and 23/3 • <7P ̂  — T .

These properties will allow us to adapt the boundary condition while keeping es-

sential properties such as obliqueness.

LEMMA 2 . 2 . If Equation 2.1 holds and a(x, z, p) satisfies

(2.4) (sgn z)a(x,z,0) < 0 in fi,

for \z\ ^ Mi some nonnegative constant, then tiere exists a BD pair of upper and

lower solutions f3(-) and <*(•).

PROOF: It is clear that there exists an e > 0 such that

infa(x,-M,0) > e

(2 5) °
v ' ; supa(a:,M,0) < - e ,

n
for M > Mi, so — M is lower solution while M is an upper solution. We show
that these constant functions can be perturbed to give a BD pair. Since dQ G Cl'a,

as in [3] there exists a regularised distance function p(-) G H^ • One can in

fact generalise that result so that for any 6 > 0 one may choose ps(-) such that
Dps(x) • n(x) > (1 — S) \Dps(x)\ on 9f2. There also exists a constant i/o > 0 such that

(2.6) fo ^ Dp6 • n ^ (i/,))"1 o n dn-
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Using (2.1) and the fact that x > 0, we may choose 8 > 0 sufficiently small that

Dp6(x) • gp < - ( x / 2 ) |i?p*(x)| \gp\, and drop the superscript.

We extend the function /?(•) to f2 DD fi, and consider the mollification of p() •

We choose r) > 0 sufficiently small that

KO/2

P9P< - ( x / 4 ) \D<pv * p\ \gp*

and denote the appropriate mollification (restricted to f2) by c(-). Since the alJ(x, z,p)

and a(x,z,p) are continuous, we may choose a > 0 sufficiently small that

aij(i, -M -

(2-7)

e/2 in?)

e/2 in ft

It then follows from (2.5) that /?(•) = M + crc(-) is an upper solution, and by taking

a(-) = — /?(•), the desired result holds for Si = cri/o/2 and T = (7x2i/o/8. D

REMARKS. 1. The condition (2.4) is significantly weaker than the corresponding in-

vertibility condition used in the method of continuity. 2. When discussing a ( ) and

/?(•) a BD pair, we shall assume that both functions are of the form constructed above.

We fix 0 < £o < < 1, and define ac to be infQ a(x) — eo and f3c to be supn /3(x) +

e0-

In order to use degree theory, we first need to define the open sets from which the

functions u(-) and w(-) are to be chosen. Since a ' Du' term appears in the boundary

condition, we assume that u is chosen from an open subset of the Holder space Cll7(f2)

for some 7 6 (0 ,a ) . We therefore assume 0 < 7 < p < a < l and consider the set T

(from which u will be chosen), to be

(2.8) T = T(LT) ¥ {u G C^QR) \ ae < u(x) < f3c, \\u\\ltT$ < Lr},

where we shall always assume L~r < 00. Similarly, we consider the set A, from which
w is chosen, to be

(2.9) A = A(LA) d^f {u G C^'idCl) \ a(x) < w{x) < 0{x),

where L& < 00. We shall also make use of the set

Aoo d= {u, G C^idSl) I a(x) ^ u{x) ^ /3(x)
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We begin the disconnection process by introducing an operator which will ulti-
mately be used to replace the 'Du' term in (1.3). For every w £ A (in other words, for
every candidate for the boundary values of a solution), we assign to each point x £ dfl

a vector $w( i ) . The operator used is constructed so as to facihtate the impending
homotopy arguments.

DEFINITION 2.3: Given the set A, a function * : A,*, -> C°(dQ,,Rn) will be
called strongly inwardly pointing if it satisfies 1-3 below:

1. * : AQO -> CllQ(9fi,Rn) is continuous, and *(A) is bounded in

2. Given an u> £ A and an xi £ dfl such that u>(x\) = a(xi), we have

n(zi) > 0, (*w(a:i) - Dafaf) • gp{xu a(zi),p) ^ 0.

for all p £ Kn such that |p| < + 1.
o;en

3. Given an w £ A and an xj £ dCl such that u>(xi) = (l(xi), we have

for all p £ Kn such that \p\ <
0;8fl

+ 1.

We shall soon need to restrict our attention to those V? which give a bound on
even when a bound on L& is unavailable.

DEFINITION 2.4: For R > 0, let SIP(R) be the set of all strongly inwardly

pointing vector field operators $ such that ^(A) < R for any LA •

Note that if a ( ) and /3(-) are a BD pair, then SIP(R) is non-empty since $ = 0
and perturbations thereof are always in SIP(R).

DEFINITION 2.5: Given a(-), /?(•) a BD pair and R £ (0,oo), we say that the
boundary operator g(x,z,p) is R-compatible if for all Mo > 0 there exists an M > MQ

such that for A = A(M)

2. The Leray-Schauder degree d(g(z,w, *wV A , o W 0

for all $ £ SIP{R) .

Note that if g is .R-compatible with a and /?, then dlg(x,u, $wJ, A,OJ is inde-

pendent of the \P £ SIP(R) chosen, by virtue of homotopy invariance.
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DEFINITION 2.6: Given a ( ) and /?(•) a BD pair, we say that the boundary op-
erator g(x,z,p) is BD compatible if for all RQ > 0 there exists an R > Ro such that
g(x,z,p) is .R-compatible with a and /?.

LEMMA 2 . 7 . If the assumptions of Lemma. 2.2 apply, and g(x, z, p) is of the form

z - q{x,p) where q 6 ^'"(dCl x Rn) t h e n there exists a BD pair a(-), /3() such that

g(x,z,p) is BD compatible with a(-) and /?(•)•

PROOF: See Appendix.

The boundary operator is now in a suitable form for the use of a homotopy argu-
ment for the degree, but we have yet to phrase (1.2) in an appropriate form. Before we
establish the notation and results required for re-writing the differential operator, we
adapt it in a way which will simplify comparison with upper or lower solutions, without
disturbing the search for solutions. This is done by leaving the differential operator
unchanged between o(-) and /3(-) (the region in which we shall guarantee the existence
of solutions), while adapting the operator outside the 'envelope' of a(-) and f3(-) . We
establish here the desired notation and results.

DEFINITION 2.8: Let n(z,c,d) denote the middle operator given by

7r(z,c, d) = min{d,max{z,c}}.

Consider an function K, G Cl{R x (0,oo); [-1,1]) such that £(-,e) is odd, K(t,e) =

0 if and only if < = 0, and K(t,e) = 1 for aU O e. We denote H/C^e)^ by Mi(e).

DEFINITION 2.9: Taking 0 < e < eo and K the above function, we define the
operator T(-;e) by:

T(y;e)(x) = IC(y(x) - n(y(x),a(x),l3(x)),e).

Note that for any /? £ [0,1], y G C^(n) implies T{y; e) G C^(p) and \\T(y; e)\\0 „.„

< 2M1(e) | | y | | M i i J .

DEFINITION 2.10: Let K be the differential operator defined by

Ku{x) = aii{x,n{u{x),a(x),fi{x)),Du{x))Diju{x)

(2.10) +{l-\T{u>e){x)\)a{x,K{u{x),a{x),(3{x)),Du{x))

-T(u;e){x){\a{x,K{u{x),a{x),(3{x)),Du{x))\ + £).

LEMMA 2 . 1 1 . If u\gn G AOO , then Ku — 0 implies that Qu-0.

PROOF: Assume u is such that U|an G Aoo and Ku — 0. To show that Qu = 0,
it suffices to show that u lies between a and f3. Assume there exists a point x\ where
(u — a)(x) has a negative minimum. Clearly x\ £ ft, so

(2.11) a* '(zi ,a , i7a)i7iju(«i) ^ cLii(x1,a,Da)Dija{x1).
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Now Ku = 0, Du(xi) = £>a(a:i), Tr(u(x1),a(x1),(3(x1)) = a(xi) and T(u\e)(xx) < 0.
Therefore

a?'(xi,a,Da)Diju(xi) = - a{xx,a,Da) +eT(u;e)(ii)

+ T{u-e){xx)[\a{xua,Da)\ - a{xuet,Da)}

< — a(xi,a,Da) ^ al'(xi,

contradicting (2.11). Therefore u() ^ a ( ) on ft . That u ( ) < /?(•) follows similarly. D

Note that ae is a lower solution of Ku = 0, and 0C is an upper solution. The
use of K rather than Q will lead to some simplification in later techniques. The above
result shows that the change in differential operator will not introduce solutions other
than those we seek. This is sufficient, since solutions to Ku — 0 on Q will be shown to
exist.

We now simplify the notation by writing Ku = bXJ(x,u, Du)Diju + b(x,u,Du),

and consider the adapted problem

Ku = 0 in 0
(2.12)

u(x) = u[x) on dCl,

where

(2.13) u(x)-q(x,Du(x)) = 0 on 90.

As promised, we return now to the task of re-writing (2.12) in a form suitable for
the application of degree theory methods. To do so we apply the standard approach,
in which for a given (u,w) £ T x A, T(u,v) is defined to be the function v such that

bij(x,u(x),Du(x))DijV + b(x,u(x),Du(x)) = 0 in 0,

v(x) = w(s) on Oil.

REMARKS. 1. It is easy to check via Intermediate Schauder estimates that for any
(u,w) G T x A, T(u,u) e C2-T(fi) n ^•"(Tl) (see [3]). 2. While this approach of
defining an operator by 'freezing' coefficients is standard (see for example [4, Chapter
11]), we require the explicit dependence of the operator upon the boundary data w,
since we cannot restrict our attention to a single known boundary function.

Equation 2.12 can thus be written in the form u — T(u,w) , allowing the full problem
to be written as

v - «
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where it is assumed that (u,u) £ T x A. Unfortunately, it is not possible to choose
7, p such that the operator K is compact (see [1]).

We find ourselves in the well-known position of being unable to apply degree theory
directly because the problem cannot be written in a suitable form. The conventional
approach at this point is to impose conditions which allow the use of degree theory, or to
abandon degree theory and derive existence results by alternative methods such as the
method of continuity. We investigate an indirect route by which the Leray-Schauder
degree can be applied to equations which in some sense approximate (2.15). This
approximation is achieved by using moUifiers to replace the Du term in the boundary
condition with a smoother approximation.

We therefore consider the case in which the Du term in the equation for q is

replaced to give the approximating problem

(216) w
where the notation (( )) is used to indicate a mollifier of a yet-unspecified nature. It is

assumed that the mollifier parameter 77 > 0, and (u,u) 6 T x A where T C C1'7(J7) ,

A C C1'p(dCl), and p > 7. T and A are not assumed to be independent of 77.

We now adapt the mollification operator in order to allow arguments which make

use of the strongly inwardly pointing nature of the vector valued argument of q. The

gradient function is extended outside fi before mollification to allow evaluation on 9f2.

The details for such a process can be found in [9].

THEOREM 2 . 1 2 . Assume that ct(-), j3{-) are a BD pair. Given T , there exists

a mollification operator, denoted by ( ) v , and parameterised by 77 6 (0,770) (where 770
is some constant independent of Ly ) , with the following properties:

1. For any x £ dil such that u(x) = <x{x), if Du(x) — Da(x) = an{x) where
a ^ 0, then

((Du)v{x) - Da{x)y n > 0 and ((!>«),(«) - Da(x)) • 9p{x,a(x),p) ^ 0,

for all p 6 Rn such that \p\ < \Du\0.gn + 1.
2. For any x 6 9fi such that u(x) = (3(x), if Du(x) - Df3{x) = -an(x)

where a ^ 0, then

({Du)v{x)-Df){x))n<Q and ( ( D u ) » - D0(x)) • gp{x,0{x),p) > 0,

for all p G Kn such that \p\ < \Du\0.gn +1.
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414 T.R. Cranny [10]

3. (-Du) _ is bounded by Cv, a constant determined by r\ alone, in-
II ^lll,ajfl
dependent of Ly.

4. For any u£ C6(n) (where 1 ̂  6 < 1 + a), {Du)v -> Du in C 6 " 1 ^

PROOF: See Appendix.

LEMMA 2 . 1 3 . 1/ <*(•),/?(•) are aBDpair, and 7 < p, (w,w) G T x A, then t ie
operator

/u\ /u-T(u,w)
(217) (J-^)l I = [

is 0/ t i e form 'Identity - compact 'on T x A for all 0 < 77 < 770 •

PROOF: The compactness of the 'first component' of the equation, u — T(u,w) = 0,

follows from standard theory since p > 7. To show that u; — gf x,(Du)v) is of the

correct form, note that by construction if u 6 T is bounded, we have an a priori bound

on (X)tt) . We therefore have that for each nonzero 77 < 770 , q[x,(Du)T 1 is
II 111 tct]BCt \ /

bounded in C1>a(dQ) for any u G T. The precompactness then follows as above.
The mappings can be shown to be continuous from standard linear theory and the
construction of the molhfier. 0

The above mollification operator has the highly desirable feature that for solutions

of (2.17), the approximation to Du can be embedded in a strongly inwardly pointing

operator * £ SIP(R) for some R > 0.

LEMMA 2 . 1 4 . For any 0 < 77 < 770 and (uo,wo) G T x A ^ a solution of (2.17),

there exists a strongly inwardly pointing operator $0,77 and a positive constant R

depending on 77 aione suci t iat

2. ^OtVwo = {Duo)v on dQ,.

PROOF: For any 0 < 77 < t]0 define the operator $ 0 ) , : A^, -> Clia(dfi,Rn) by

*o,,«(*)d= (2>T(tt0>«))„(*) on 50,

noting that for w = UQ , (2.17) implies

Let v(w) = T(uo,w). By applying Theorem 2.12 to Dv and comparing with the re-

quirements of Definition 2.3, we see that the operator \I?o,»7 is strongly inwardly pointing.

That ^0,7; G SIP(R) with R determined by 77 also follows from the properties of the

( ) operator, since for any (u,w) G T X A, T(u,u) is bounded in C°(O) by 2/?e. D
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[11] A quasi-linear elliptic equation 415

3. EXISTENCE OF APPROXIMATE SOLUTION

Having modified the problem to allow the application of degree theory, we prove
the existence of solutions to the modified problem by continuing the disconnection of
the two facets of the problem, ultimately making the 'Dirichlet half independent of w
and the 'boundary condition half independent of u and Du. For clarity of exposition,
this disconnection is done in three sections, with each stage using a homotopy for
the Leray-Schauder degree to simplify the problem. The existence of solutions to the
approximating equation (I — Kv)(u,w) = 0 is then proven using degree theory and the
properties of strongly inwardly pointing operators.

The first simplifying homotopy replaces the gradient term with a strongly inwardly
pointing operator depending upon w.

THEOREM 3 . 1 . Let (2.1)-(2.4) hold. If a() and /?(•) are a BD pair, and

g(x,z,p) is BD compatible with Q(-) and /?(•), t hen tor each rj £ (0,7/o)> we may

choose the constants J,LY,LA and the strongly inwardly pointing operator \P such

that there is a homotopy for the Leray-Schauder degree on T x A between the equa-

tions

(3-D

PROOF: See Appendix.

DEFINITION 3.2: Given u 6 A, we denote by W(w) the function u £ C l l P (n ) D
C2'Q(fi) which satisfies

Au = 0 in Cl

u() = w() on a n .

THEOREM 3 . 3 . Let (2.1)-(2.4) hold, and let a ( ) and /?(•) be a BD pair, and

g(x,z,p) be BD compatible with a(-) and /?(•). Then for each r\ £ (0,770), one may

choose the constants 7 , £ T > &nd L& such that there is a homotopy for the Leray-

Schauder degree on T X A between the equations

0.2) f )

PROOF: See Appendix.

We continue the simplification and disconnection process by simplifying the dif-
ferential equation from Laplace's equation to an equation of the form 'Identity - Wo',
where WD is a constant function which lies strictly between info a(x) and supn /3(x).
Note that Wo £ T for all choices of LT > 0.
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THEOREM 3 . 4 . Let (2.1)-(2.4) hold, and let a ( ) and /?(•) be a BD pair such

that g(x,z,p) is BD compatible with a ( ) and /?(•). T h e n for each rj G (0,770), we may

choose 7 , Ly and L& such that there is a homotopy for the Leray-Schauder degree on

T x A between the equations

(3.3) f ^ 0 ( W
\ ( t f ( ) ) / W V -

PROOF: See Appendix.

REMARK. It should be noted that one can easily choose ^,7,L& , and Lr in such
a manner that all of the above homotopy arguments hold for the same choice of the
\P,7, -LA , and Lr , giving the following result.

THEOREM 3 . 5 . Let (2.1)-(2.4) hold. If a(-) and /3(-) are a BD pair, and

g(x,z,p) is BD compatible with a(-) and /?(•), then for any 77 6 (0,770), we may choose
the constants -y,Ly,LA and the strongly inwardly pointing operator $ such that there
is a homotopy for the Leray-Schauder degree on T x A between the equations

1 - f l and ( \ = (
u,-q(x,(DxL)n{-))) W 3 n \u>-q(x,*u,(z))j W

To derive an existence result for solutions of (2.17), we have the following result:

LEMMA 3 . 6 . Assume that a and /3 are a BD pair. Then, for any r\ £ (0,»7o),
the constants 7 , Z T > £ A may be chosen so as to ensure that

(3.5) d[( } ' x j . T x A . O =

PROOF: The result follows from the preceding theorem and a degree reduction
argument. The details can be found in [1].

THEOREM 3 . 7 . If Q, G satisfy (2.1)-(2.4), then for each r) £ (0,770), tie con-
stants 7, L~[, ZA and the strongly inwardly pointing operator $ may be chosen so that
there exists at least one u £ T such that

Qu = 0 in n
(3.6) / \

g[x,u,(Du)v] =0 on 90.

PROOF: Using BD compatibility, one may choose suitably large L&. and Ly so

that d(g(x,w,if!u>), A,0j ^ 0. The previous result then gives existence. D
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This solution we denote by uv, since there is an obvious dependence upon the
mollification parameter. By the standard 'boot-strapping' arguments it can be shown

that ue c2'a{n)nc1-a(JT).
Our ultimate aim is naturally to obtain a classical solution of the original problem

by means of a limiting process. The following result, taken from [2], describes one
approach.

THEOREM 3 . 8 . Assume for some sequence of t]i \ 0 there exist uVi solving

(3.6). It there exists constants 0 < a, C < oo such thai

then there exists a classical solution u of Equation (1.1).

The proof of this result, and a discussion of how to achieve it, can be found in [2].

4. APPENDIX: PROOF OF MAIN RESULTS

PROOF OF LEMMA 2.7. The existence of a BD pair is guaranteed by Lemma 2.2. By
Definition 2.6, we must show that for any RQ > 0 there exists an R > Ro such that
g(x,z,p) is ii-compatible with a(-) and /?(•). We therefore consider fixed Ro and take
R > Ro • We must show that for all LQ > 0 there exists an L > Lo such that for
A = A(£) we have

1. 0 (-,«;(•), #w( ) ) =£0 on 90 if u £ 9A

2.

for all * € SIP(R). We therefore consider a specific * £ SIP{R).

Since g(x,±M,0) = ± M — q(x,0), we may take M from (2.5) sufficiently large
that

( 9(x,M,0)> £ l

ff(as,-Af,O)<-ei,

where £i is some positive constant. We impose the additional requirement that in the
construction of a(-) and /3(-) in Lemma 2.2, a is sufficiently small that

g{x,-M-ac{x),-aDc{x))<-e1l2

g{x,M + *c{x),*Dc{x))> £ l/2.

We begin by showing that one may choose LA sufficiently large that for any u> £

dA, (where A = A(Z,A)), one has g(-,u(),^!w()\ ^ 0 on dtt. The function w(-)
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may be in the boundary of A because there exists an xi £ dfl such that v(xi) — ct(

(or /3(x\)), and/or because \\v\\y p.an = £ A •

To deal with the case where w 'touches' the lower solution, note that this implies

that (J&w - Da)(xi) • n(x!) > 0 and (i&u - Da)(xi) • gp ^ 0, so

= g(xu a(x1) ,*w(x1)) <J g(x1,a(x1),Da(Xl)) < -

so g(-,b>{-),Vw(-j) ^ 0 on dfi.

The possibility that H^Hj p.an = i ^ can be simply ruled out by choosing

(4.3) ^ > IK '
which is possible since q 6 Clta(dQ x I " ) is given and *o> < R independent

II lll,a;fifi
of LA •

To show that d( g( x,w,if>uj), A,0) ^ 0, it suffices to evaluate the degree for $ s O .

From basic degree theory we have d(g(x,u>, \PwJ, A, 0J — d(I — q(x,0), A,0) = 1 since

q(x,0) € A by (4.3) and (4.1). The boundary operator g is therefore BD compatible

with a and /?. Q

PROOF OF THEOREM 2.12..- We construct such an approximator. We assume a ( ) and
/?(•) are a BD pair such that D(3 • n > Si, D/3 • gp < -T < 0 on dQ., and a ( ) = -&{•).

The distinguishing feature of this situation is the simplicity with which one can
obtain the desired properties by use of a 'scaling down' of the standard mollification.
We accordingly consider a mollifier of the form (Du) = S (pv * Du, where 5 is a
constant determined by rj and Du. A suitable choice of such a constant is given here.

Let SI(T),DU), S2(T),DU) be defined for 77 > 0 by

, n , def, \\(<PV*DU-DU)\\ n

(4.4) " V 2

s2(V, Du) d^ sup{ t E [0,1] I (1 - t)r > t \\Vv * Du - Du\\0.^ | |5 P | | 0 . e n ( A ) } ,

where A = \\Du\\0.en +/3e + 1. Note that S2(TJ,Du) is well defined since t = 0 is in the
set. We shall take as the scaling constant

(4.5) S = S(r),Du) = (1 — 77) max{0,min{si(T7,£)u), S2{T),DU)}},

(so S{-q,Du) G [0,1]) and consider the operator ( )v : C{dQ.) -> C1'Q(5n) defined

by

(4.6) (Du) d= S(ti,Du)Vv*Du.
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We show that the above operator satisfies the required conditions. We accordingly

consider a point x\ £ dCl and function u such that DU(X-L) — Da(xi) = o n ( i i )

where a ^ 0. The claim that S(rj,Du)tpv * Du(xi) • n(xi) > Da(xi) • n(xi) follows

from routine calculations once one notes that we can assume without loss of generality

that tpv * Du(x\) • n ^ 0, since otherwise the desired result holds with any nonnegative

constant. We can similarly assume that ||y>, * Du — Z)U||0,JJ ^ S\/2, since S(rj,Du) = 0

otherwise, leading trivially to the desired result.

To show that (S(r),Du)<pv * Du(xi) — Da(xi)) • gp ^ 0, note that 5 ^ •92(T/)Du).

Since Du(x\) — Da(xi) + afi(xi) where a ^ 0, it follows that (S(pv * Du — Da)(xi) =
(S - l){Da + on)(ii) - S{Du - <pv * £>M)(ZI) + an(an), so

(S<pv *Du- £»a)(xi) gp = (S- l)Da • gp + aSn{Xl) • gp - S{Du - ipv * Du){Xl) • gp

< (S - 1 ) T + 5 ||Dtt - ipr, * I>«||0.n \\9P\\0.,A < °-

The constructed approximation therefore satisfies the first two conditions required.

The third condition follows trivially from the corresponding result for the original molli-

fier, since S(T), DU) £ [0,1] is constant. We now need only show that the last condition,

the convergence result, holds. This follows since for any continuous Du, as 77 goes to

zero, \\<fiv * Du — Du\\0 ^ also goes to zero, so from (4.4) it follows that S{TJ,DU) —> 1

as 1/ -» 0 (since T > 0 is constant) giving the convergence result from the equivalent

result for the standard mollifier. D

P R O O F OF THEOREM 3.1. We consider the problem

(4 7) / u-T(u,u)

and obtain the desired homotopy by showing first that for some choice of if!,~f,L& and

L-[, there are no solutions of (4.7) on the boundary of T x A for any 0 £ [0,1]. We

then show that the above transformation is sufficiently smooth in 6. This is sufficient

since the above equation is clearly of the form 'Identity - compact' for all 9 £ [0,1].

Clearly (u,w) £ 9(T x A) implies w £ dA while u £ T , or u £ 9T while w £ A.

We begin by considering the former of the two possibilities.

We therefore wish to choose \ P , 7 , £ A a n d Ly in such a way that there can-

not exist a solution (uo,u>o) to (4.7) where wo £ dA and ug £ T . We can there-

fore assume that ac ^ uo(x) ^ Pe a n d lluo||j .Q ^ I T , and that either there

exists an x\ £ dfi such that wo(xi) = OL{X\) or /3(zi), while ||wo||j p . e n ^ I 4 ,

or ||wo||j p.gn = LA while a(x) ^ wo(x) ^ P{x) o n dQ.. To consider the first of

these subcases, we therefore assume that there exists a point X\ £ dCl such that
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o»o(xi) = a(xi) while ||OJOHi,p;en ^ -̂ A • We recall that Lemma 2.14 allows us to

embed (Duo)v in the strongly inwardly pointing operator $o,»), where \P0 £ SIP(R)

for all R > i?! > 0. Let § £ SIP(Ro). Therefore (1 - 0)V0 + 8Vu0 £ SIP(R) for

R > max{Ro,Ri}. Since the boundary operator g(x,z,p) is BD compatible with a

and /3, we may choose R suitably large while preserving the property that g(x,z,p) is

incompatible with a and /?. By Definition 2.5, we may therefore choose an arbitrarily

large LA such that u>0 - q(x,(l - 0)*owo + 0*wo) ^ 0, since u0 £ dA. Therefore

0.

We now consider the other subcase. As before, we choose *? £ SIP(R) for some

suitably large R. For notational convenience, we denote such a suitable R by C-$ , and

recall that Cv is the constant specified in Theorem 2.12. We shall also use the notation

n(A) d= {(x,P) £ an x Rn | \P\ ̂  A}.

From (4.7)

" O)(Duo)v

where C, is a constant determined by q() and Cv + C^. By the BD compatibility of

the boundary operator with a and j3 , one may choose LA ^ C,(l + Cv + C^,), while

preserving the results of the preceding subcase.

We now turn to the task of preventing solutions on that portion of d(T x A) which

corresponds to UQ £ dT, while WQ £ A.

As with dA, uo £ dT implies either the existence of a point xo £ fl such that

uo(xo) = o.c or /3e, while ||wo||1|7;n ^ ^ T , or alternatively | |uo|| l7.n = Ly while

ct-c ^ wo (a;) ^ /3e on $7. The first option is ruled out by the proof of Lemma 4.7, so we

consider the second subcase. The established bound on L& gives a Cltp(dQ) bound on

solutions, so a result for the Dirichlet problem by Krylov in [5] (see also [12]) gives (for

some 0 < (3 < p) a bound on Huollj Q.Q in terms of L&. L-c is chosen to be greater

than this bound, and 7 is chosen to be f3.

It has now been shown that there are no solutions of (4.7) on the boundary of

T X A for any 6 £ [0,1]. There is a homotopy for the Leray-Schauder degree since the

transformation (4.7) can easily be shown to be sufficiently continuous as a function of

6. D
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PROOF OF THEOREM 3.3. We recall the definition of T(u,w) from (2.14), and define
Tg(-, •) on T x A by taking Tg(u, w) to be the solution v of the linear partial differential
equation

\0bij{x,u,Du) + (1 - 6)6ij] Dijv + Ob{x,u,Du) = 0 in Q
(4.9)

v(x) = u>(x) on dfi,

and consider solutions to the problem

u -

It is clear that Ti(i4,u>) = T(u,u), and To(u,u>) = W(u>). We show the homotopy
independence of Tg(-,-) for a suitable choice of 7 , £ A and Ly. The first step is again
to show that for some choice of 7, LA , and Ly , there are no solutions on the boundary
of T x A for any 6 G [0,1]. By choosing the strongly inwardly pointing operator $ as
in the previous homotopy, we exclude the possibihty of solutions where u>0 G dA.

If Mo G dT while wo G A, either there exists a point xo G fi such that uo(xo) — ac

or 0C, while ||«o||i7in ^ ^T 1 or Iluo|li)7;n — Ly while ac ^ uo(x) < /3e on Q. This
first case is ruled out by a result given separately after the current proof.

Using the same choice of JDA as used in Theorem 3.1, we now rule out the second
possibihty by choosing suitable values of Ly and 7. We again do this by an application
of the Krylov result for the Dirichlet problem to obtain IM^ g.jj < C, where the
constants C, 7 are independent of 6. We choose Ly ^ C and 7 ^ /?.

We have now shown that there are no solutions on the boundary of T X A for any
0 G [0,1], and it remains to show that (4.10) is sufficiently continuous in 9. We write
the equation in the form (I — Kg)(u,w) = (0,0) and show that given an e > 0 and T>

a bounded subset of T x A, there exists a 6(e,V) > 0 such that

II^Ku,) - K.(u,w)\\ = \\Tt(u,w) - T.(u,u)\\ln.n ^ e,

f o r a n y ( u , w ) G V i f \t — s \ < S . L e t v ( ) d e n o t e T t ( u , u > ) , a n d w ( ) d e n o t e T , ( u , u ) .
We see that q = v — w satisfies

b\i{x)Dijq = (s- t)c(x) in fi

g = 0 on dQ,

where c{x) d= b{x,u,Du) + [bij(x,u, Du) - S^} D{jw, and b\j(x) d= tb^(x,u, Du) +

(1 - 1)6". We note that for {u,w) G V, b\j() G C ^ f i ) .
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To derive the desired a priori bound one may apply the Intermediate Schauder
estimates of [3, Theorem 6.2] to obtain

as desired.

We therefore have the desired homotopy for the Leray-Schauder degree. D

LEMMA 4 . 1 . Let (u,u) be such that u = Tg{u,w) and w £ A. Then ac <
u(x) < 0e(x) for any 8 £ [0,1].

PROOF: The result holds for 8 = 1 by the proof of Lemma 4.7, and for 8 = 0 by
the maximum principle. We therefore assume that 8 £ (0,1) , and consider u = Tg(u,u)
such that there exists a point xi 6 il where (u — ac){x) has a non-positive minimum.
Since u(-) = w(-) on c?fl, xi £ f2. Therefore Du(xi) — 0, and Au(xj) ^ 0. By the
nature of the tfi and b (recalling the construction of the differential operator A"), we
have
(4.12)

b{xuu,Du) = al3{xua{x1),O)Diju{x1) + |o(xi,a(a:i),0)| + e

JI + e >0.

But since [8bij(x,u,Du) + (1 - 8)Sij] DijU + 8b(x,u,Du) = 0 in fi and Au(xi) ^ 0,

it follows from 8 £ (0,1) that 6*7(xi,U,DU)D{JU + b(xi,u,Du) ^ 0, contradicting

(4.12). The desired result then follows. U

PROOF OF THEOREM 3.4.

We consider the problem

fu - (1 - 0)W(v) - 6Wo
( 4 . 1 3 ) ' V ' ^ '

We again show that the Leray-Schauder degree is independent of 6 by first showing

that there are no solutions on the boundary of the set T x A for a suitable choice of

7, LA and L-r, and by then showing that the above problem is sufficiently continuous

in 8.

As before, we need only consider the case where UQ £ dT, while wo £ A. If for

some 8 £ [0,1] there exists a solution UQ of (4.13) such that uo(xi) = ac, for some

xi £ f2, then

(4.14) uo(zi) = a, = (1 - 9)W(wo)(Xl) + 8W0(Xl),

which is impossible since both Wo and W(u>o) lie strictly between infn a(x) and
supn/3(x).
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Recalling the constant C used as Lr in Theorem 3.3, we redefine Lr to be

Lr
 d= C +\W0\. It is clear that with this choice of Ly, if u0 = (1 - 0)W(wo) + 0W0,

then ||tto|| l i7.n < Lr for any 6 6 [0,1].

We have now shown that there are no solutions on the boundary of T X A for

any 6 £ [0,1]. The uniform continuity with respect to 6 can be shown trivially, so the

desired homotopy has been constructed. D

CONCLUDING REMARKS. It may be possible to relax the regularity conditions imposed
upon G by further use of mollifiers, bringing this aspect of the results more in line with
the results in [8]. This option has not been pursued here since many of the techniques
used would be dramatically complicated.
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