
Journal of Glaciology, Vol. 35, No. 119, 1989
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DEFORMATION: II. VELOCITY-DEPTH PROFILES
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ABSTRACT. Basal motion of a glacier resting on an
unconsolidated bed can arise from sliding between ice and
bed, ploughing of clasts through the upper layer of the
bed, pervasive deformation of the bed, or shearing across
discrete planes in the bed. Theoretical analyses and limited
observations of soft-bedded glaciers not dominated by
supply of channelized melt water from the surface suggest
that sliding will be slow if the bed contains abundant clasts
in the 1-10 mm size range, and that high velocities by
ploughing are unlikely though possible. Pervasive
deformation usually will account for 60-100% of the basal
velocity, and the strain-rate wiII be proportional to the
basal shear stress and inversely proportional to the square or
cube of the effective pressure. These hypotheses are based
on results of part I in this series, and allow modeling of
Ice Stream B, West Antarctica, in part III of this series.

complicated function of size, shape, and arrangement of
bed-roughness elements (Nye, 1969; Weertman, 1969; Kamb,
1970; Fowler, 1987; Lliboutry, 1987a, b; and earlier papers
by most of these authors), but in general I must be large
to allow fast sliding. For a given bed roughness, an increase
in I requires an increase in water pressure so that water
pressure exceeds ice normal stress over a larger fraction of
the bed, as argued in part I.

The interconnected fractional area, I, must increase
with the average water-film thickness, d, in a manner that
depends on bed geometry. For a glacial till, a reasonable
assumption is that the bed contains spherical clasts in
different size classes, with all clasts in any class having the
same size. The clasts with radii R j occupy volume fraction
of the tiII Vj for each of the j size classes, pores occupy
volume fraction VP' and

INTRODUCTION
(1)

In an isotropic medium, areal fraction occupied on a
section plane equals volume fraction for any size class
(Underwood, 1970), and I will assume that this applies at
the ice-till interface. I also wiII assume that each clast
forms a hemispherical bump of radius R j' With these
assumptions, the dependence of I on d can be approximated
for any specified grain-size distribution as

where d is in meters. Equation (2) does not allow for
progressive submergence of individual clasts as d increases,
whereas Equation (3) is a crude attempt to do so. Equation
(3) is useful for calculating examples, and we will argue in
part III that it is a reasonable assumption to use for Ice
Stream B. Of course, the equivalent of Equation (2) or (3)
should be written as accurately as possible for any
subglacial sediment under consideration.

Typical water-film thicknesses beneath a fast-moving
glacier are likely to be 1-10 mm (e.g. Weertman, 1972;

where i is chosen so that d ~ Ri, the clast radius in the
ith size class, but d , Ri + l' The base of the glacier is
chosen as the base of the ice, so the porosity is assumed
ice-free and the water system always occupies Vp'

It commonly is observed that tills contain a wide range
of grain-sizes, from clay to boulders, and that the volume
fractions are similar in size classes with logarithmically
scaled radii (but often with bimodal peaks; Sugden and
John, 1976, p. 228-31). One simple relation that meets these
criteria is to divide clasts into seven size classes with radii
Rj = 10-6, 10-5, 100 m, with one-tenth of the tiII
volume in each of the seven size classes and with 30% of
the volume in pores. This allows Equation (2) to be
approximated continuously as

(2)

(3)

I(d)

Recent glaciological and glacial-geological studies have
shown that improved understanding of glacial systems
requires better knowledge of how ice interacts with
unconsolidated subglacial sediments. The current three-part
series explores ice-sediment interactions in the absence of
channelized surficial melt water reaching the bed and
presents testable hypotheses about this situation; we do not
consider the more difficult case of moulins supplying water
to the bed.

In part I (Alley, 1989), I hypothesized that in the
absence of channelized melt-water supplies, if aquifers
beneath a wet-based glacier on an unconsolidated bed were
inefficient compared to the supply of basal melt water, then
a distributed basal water system with low effective pressure
would develop at the ice-sediment interface. In this paper I
discuss how such a water system will affect partitioning of
basal velocity between sliding, ploughing of clasts, and
pervasive and discrete deformation of subglacial sediments.
Then in part III (Alley and others, 1989) we use the known
and inferred characteristics of Ice Stream B to make
specific hypotheses about that ice stream.

Most wet-based glaciers are restrained mainly by
interaction with the roughness of their beds. An inefficient
aquifer beneath a wet-based glacier wiII cause water to
accumulate at the ice-bed interface until the accumulations
become interconnected and allow drainage along that
interface. Such an interconnected water system wiII have
little effect on sliding velocity if it occupies only a small
fraction, f, of the bed area and thus does not reduce the
bed roughness significantly. Sliding resistance is a
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Brown and others (1987) showed that ploughing occurs
when the ploughing index I' ~ I, where

Weertman and Birchfield, 1982; part III), which from
Equation (3) gives / '" 0.7. From Weertman sliding theory
(e.g. Weertman, 1964, 1969), the sliding velocity us' under
such conditions is approximately

(4)
I*-
J

(5)

(10)

(9)

(11)

(7)

(8)

(6)
2 tan(45 - ,/2)

tan,

l*:
J

The onset of ploughing occurs at Ij = I, i.e. for

or, substituting for 13from equation (22) in part I

(Brown and others (1987) called the ploughing index P*; I
use 1* to avoid confusion here with pressure and stress
terms P.) Brown and others (1987) also showed that

where , is the angle of internal friction in degrees and
cohesion has been assumed to be zero (Brown and others,
1987).

The local effective stress can be approximated by
N Ij = Pbj - P W' where Pbj is the normal stress on the
clast and Pw is the water pressure. Subtracting Pw from
both sides of equation (A3) in part I and remembering that
N = Pi - Pw yields

(Strictly, Pbj measures the vertical stress on a clast but N1j
measures the stress normal to the failure surface of a clast
and adjacent materials. This could be corrected for by
multiplying 13 by a numerical constant in Equation (7).
Brown and others (1987, p.8991) estimated K, the
equivalent of 13 in Equation (7), as between 0.1 and 0.44.
For hydrostatically pressured water in subglacial sediments
of Ice Stream B near the Upstream B camp, we estimate
13'" 0.4 (part III). The extra constant in Equation (7) thus
should be near unity, and we omit it.)

It is convenient to define a new parameter, 'j' as

It is of interest to substitute typical numerical values
into relationship (11). Weertman (1964) estimated that 'j =
1/3-1/2 for controlling obstacles, which will be the first to
plough (Brown and others, 1987). For the till bed
introduced in Equation (3), sL= 0.1, and / = 0.3 for water
occupying pore spaces only. Taking 'j = 1/2 and , = 250

as typical for till (Brown and others, 1987) yields 01 = 2.7
and T ~ 0.2N to allow ploughing.

An increase in shear stress above this mlllimum value
will cause clasts of other sizes to plough and thus will
increase the fraction of the bed ploughing. In the

(, j is the fraction of the average shear force (i.e. the force
on a typical area A) that is supported by clasts in the jth
size class.) Then combining Equations (5), (8), and (9) gives

PLOUGHING

where Tb is the basal shear stress; the pre-factor Ks can be
evaluated from the bed roughness and depends on the
controlling obstacle size, which typically is 1-10 mm (Weert-
man, 1964, 1969). Using Weertman's preferred constants,
including an ice-hardness parameter of 0.17 bar-3 a-I, and
assuming that interference of stress fields around clasts
reduces the effective bed roughness by a factor of 4 below
that expected from the assumed roughness without
interference (Brown and others, 1987), the roughness
assumed in Equation (3) with a basal shear stress of tenths
of a bar (104-105 Pa) and with / = 0.7 (d = 1-10 mm),
gives a sliding velocity of Us = 0 (1-10 m/a).

This calculated sliding velocity is low compared to
similar calculations for typical bedrock beds considered by
Weertman (e.g. Weertman, 1969) and other workers. The
reason is that the spacing between obstacles of near the
controlling size is small on a till bed as compared to a
polished granite, for example.

Limited examples seem to support this contention that
till beds cause glacier sliding to be slow. At
Breidamerkurjokull, Boulton and Hindmarsh (1987) showed
that motion between markers in the base of the ice and the
top of the underlying, deforming till accounts for only
about 10% of the basal velocity of about 30 m/a; because of
the finite size of the markers used, the sliding velocity is
, 3 m/a. Similarly, beneath Blue Glacier, Engelhardt and
others (1978) observed little or no slip between basal ice
and the top of a "mobile sub-sole drift", except during
periods when the basal water was artificially overpressurized
through drilling and the ice was floated off the bed.
Notice, however, that natural water-layer thicknesses at the
ice-bed interface were not measured at Breidamerkurjokull
or at Blue Glacier.

It also is worth noting that clay-rich tills with few
clasts ~I mm do occur naturally. If small clasts in such tills
fail to aggregate into larger units, then Ks and sliding
velocities for such tills could be quite large. It is the
common occurrence of clasts 0(1-10 mm) in radius that
makes a till rough to ice.

In addition to sliding (see above) and pervasive bed
deformation (see part I and below), a complete treatment of
basal processes must consider the possiblity of ploughing.
This is a transitional state between sliding and pervasive
deformation in which individual clasts in contact with
sliding ice are dragged through a till that is deforming
locally but not pervasively. Ploughing was described by
Boulton and others (1974), and was placed within a
theoretical framework by Brown and others (1987). In the
discussion that follows, I briefly summarize the discussion
of ploughing by Brown and others (1987) and relate it to
my treatment of sliding and bed deformation. I find that in
most cases rapid ploughing is likely to lead directly to
pervasive deformation so that ploughing need not be
modeled separately; however, further data on till properties
are needed to strengthen this conclusion.

First, I will simplify the ploughing model of Brown
and others (1987) and recast it in terms of the variables
used in part I. Ploughing is initiated when the shear stress
on a clast exceeds the local sediment strength on the yield
surface for motion of that clast. As before, consider that
the bed is composed of clasts in discrete size classes, with
all clasts in a class having the same size. Let the average
shear stress be Tb' with clasts occupying fractional area s
of the bed and water occupying fractional area / = I - s.
In some arbitrary area A, clasts in the jth size class occupy
area sjA and support shear force TjA, so that the local
shear stress on a clast in the jth size class is T ·A/(s -A) =
Tjls j- Also, let the local effective pressure on {he tailure
surface for motion of a clast be N1j and the local sediment
strength be N1/01' where 01 is a geometric factor.
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mathematical limit of the entire bed ploughing, the average
behavior can be calculated by letting S j = sand t j = 1 in
relationship (11), and remembering that s + / = 1. Then,
from relationship (ll), Tb ~ Njal.

Ploughing of the entire bed is crudely equivalent to
development of a continuous shear plane at the base of the
ploughing clasts (but see below). It differs from pervasive
deformation only in that continuous motion is restricted to
the uppermost layer of clasts; deeper material disturbed by
passage of large clasts returns to a static condition between
disturbances. For , = 25 ° and al = 2.7 in a cohesionless
till, the theory of Brown and others (1987) predicts that
ploughing of the entire bed would occur for Tb ~ OAN. In
comparison, the criterion for pervasive deformation is

(12)

or for, = 25°, Tb ~ 0.5N.
Caution must be used in extending the ploughing

theory of Brown and others (1987) to high ploughing
fraction. For example, the theory does not allow for overlap
of failure surfaces of adjacent ploughing clasts, which
would occur if most clasts were ploughing. Ignoring such
complications, however, the calculations above suggest the
not-so-startling result that a shear plane can be initiated in
a till at a shear stress less than that required for pervasive
deformation. Shear planes are observed in some tills (e.g.
MacClintock and Dreimanis, 1964; Boulton and Hindmarsh,
1987), lending credibility to this result. (It is unknown
whether the processes of 100% ploughing causing a shallow
shear plane in till actually occur.) However, this result
suggests that there is a narrow range of basal shear stress
(OAN ~ Tb < 0.5N) in which ploughing of the entire bed
can occur without pervasive deformation. This range is of
similar width (O.lN to 0.2N) for tan, = 0.2, and narrows
to zero at tan, = 0.75.

Another important complication must be introduced
here. Laboratory experiments and field observations show
that deformation of a till (or any granular material) causes
it to dilate, and that a water-saturated till is weaker in its
dilated state than in its collapsed, lodged state (Boulton and
others, 1974; Boulton and Hindmarsh, 1987). When
deformation ceases, a dilated till tends to collapse back to
its stronger, lodged state (Boulton and Dent, 1974). Brown
and others (1987) used , = 25 ° as a typical value for till
that is not actively deforming and suggested , '" 11 ° (tan,
= 0.2) is a plausible minimum for till; Alley and others
(1987a) suggested that , '" II ° is the most likely value for
the dilated, deforming till postulated beneath Ice Stream B.
If tan, A< 0.2 applies to a deforming till, then Tb > 0.2N
is sufficient to maintain deformation of an already
deforming, non-cohesive till.

Boulton and others (1974) noted that a ploughing clast
will dilate till locally by disturbing other clasts both
adjacent and subjacent to it. If the time required for any
locally dilated region to collapse back to its lodged state is
long compared to the time until that region is disturbed by
another ploughing clast, then that region will remain dilated
and soft. The time between passages of ploughing clasts will
decrease as the ploughing fraction increases with increasing
shear stress. The possibility thus exists that ploughing will
cause a transition to pervasive deformation at Tb < 0.5N,
the strength of lodged, undisturbed till. (It also is possible
that ploughing will reduce the shear stress required to
initiate further ploughing.)

I thus find that T ~ clN will initiate ploughing, where
c1 '" 0.2, that an increased ploughing fraction requires
c1 > 0.2, but that pervasive till deformation will be
sustained for c1 A< 0.2. It is likely that c1 passes through a
maximum at some intermediate level of ploughing on the
way to pervasive deformation, although any maximum must
be less than or equal to 0.5, the value for pervasive
deformation of a lodged till. To calculate the behavior
between the onset of ploughing and pervasive deformation
would require comparison of the disturbance rate from
ploughing to the rate of collapse of dilated till following
disturbance, but the collapse rate is unknown.

However, it is of some interest to calculate the
disturbance rate. Consider the till bed introduced above, and
suppose that ploughing is occurring only for clasts of radius
10 mm, which probably approximates the critical size on Ice

Alley: Sliding and bed de/ormation: II

Stream B. Such clasts occupy about 10% of the surface area
of the ice-bed interface, and have· a mean spacing in any
direction (assuming isotropy) of about 120 mm (Underwood,
1970, p. 83). At a basal velocity of about 500 m a-I (typical
of Ice Stream B), the average delay time between passage
of clasts ploughing at a velocity close to the ice-stream
velocity would be about 2 h at any spot. This delay time
would be reduced slightly if I allowed for the increase in
ploughing area caused by ploughing clasts pushing material
ahead of them. Also, an increase in the fraction of the bed
ploughing would reduce the delay, until there would be
little delay if the entire bed were moving. Thus, if the
time for a dilated till to collapse to a lodged state is long
compared to 2 h for the ice velocity and till bed assumed
here, ploughing would dilate the bed and lead to pervasive
deformation with little or no increase in shear stress;
however, if the collapse time is short compared to 2 h, the
shear stress would need to increase substantially above the
minimum for ploughing to mobilize a large fraction of the
bed before pervasive deformation could begin.
Unfortunately, I know of no available data to estimate the
collapse time.

It is also of interest to ask under what conditions
ploughing can lead to large basal velocities without
pervasive deformation occurring. Brown and others (1987)
have presented indirect evidence for ploughing velocities of
about 500 m a-I without pervasive deformation beneath the
former Vashon glacial lobe, whereas the direct evidence of
Boulton and Hindmarsh (1987) shows pervasive deformation
without significant ploughing beneath Breidamerkurjokull.

As noted above, Brown and others (1987) have
proposed that ploughing clasts support a large fraction of
the basal shear stress, occupy 0(10%) of the bed, and cover
a size range centered on the controlling obstacle size
(0(10-3-10-2 m». Brown and others (1987) implicitly used a
zero-viscosity (or a perfect-plasticity) model in which the
ploughing velocity of a clast approaches the ice velocity if
the shear stress on the clast equals the minimum value
needed to cause motion. Real materials typically exhibit
non-zero viscosity and finite exponent in power-law creep,
such that strain-rate increases with stress; a Bingham model
(velocity increasingly linearly with shear stress above the
yield strength) or some other similar model is usually
assumed (e.g. Boulton and Hindmarsh, 1987). In either case,
a large ploughing velocity without pervasive deformation
would require a viscosity some orders of magnitude less
than that measured at Breidamerkurjllkull (Boulton and
Hindmarsh, 1987) or inferred for Ice Stream B (Alley and
others, 1987b). To see this, consider the case of the UpB
camp on Ice Stream B, where we have inferred that
N '" 50 kPa, and tan, '" 0.2 (Alley and others, 1987a;
Blankenship and others, 1987). The Bingham equation is

(13)

where Te is the effective shear stress causing deformation,
T* is the shear strength, Uo is the velocity at the top of a
deforming layer zl thick, and ILb is the Bingham viscosity
of the layer. For pervasive deformation

(14)
T* N tan,

where cohesion again has been taken to be zero. For
ploughing of the jth size class, from Equations (5)-{9)

tjTb
Tej s·J

(15)

T*' N [ Itj ]- 1 + -- .J al Sj

At UpB, ub '" 500 rna-I, Zl '" 6 m for pervasive
deformation, and zl '" 0.02 m for ploughing of controlling
obstacles. The Bingham viscosity for pervasive deformation
at UpB then is about 120 Pa a. Taking S j = 0.1, / = 0.3, t j
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= 0.5 for ploughing of controlling obstacles only through a
bed with water only in pore spacescl then ILb = 2.0 Pa a for
ploughing through till with , = 25 (lodged till) and ILb =
3.2 Pa a for ,= 110 (dilated till); these values would be
reduced to ILb = 0.67 Pa a and ILb = 2.9 Pa a if f = 0.7.
Even letting N = 0, ILb = 4 Pa a is required to obtain Uo =
500 m a-I by ploughing. If ploughing of controlling clasts is
to yield a velocity similar to that inferred for pervasive
deformation at UpB, then the till viscosity must be reduced
by one to two orders of magnitude. (For comparison,
typical Bingham viscosities for Breidamerkurjokull calculated
from Equation (13) and data from Boulton and Hindmarsh
(1987) are around 3000 Pa a, or an order of magnitude
higher than inferred at UpB, but Fahnestock and Humphrey
(1988) reported a linear viscosity of about 30 Pa a beneath
Columbia Glacier.) If more of the bed is allowed to plough,
s· will increase more rapidly than t j on the ploughing
[faction because the first size class to plough supports the
largest fraction of the shear stress. This will decrease
(Tei - Tj) and thus require a lower Bingham viscosity to
achIeve the same ploughing velocity as calculated from
Equation (13).

This calculation places constraints on possible ploughing
behavior, provided that ploughing obeys a Bingham-type
deformation law. (Similar results to those above are also
obtained using a linear-viscous model or the model
preferred by Boulton and Hindmarsh (1987).) For a given
shear stress and water pressure at the ice-bed interface, the
velocity from pervasive deformation of a till ~O(I m) thick
is likely to be at least 1-2 orders of magnitude faster than
that from ploughing through the same till. High ploughing
velocities without pervasive deformation are likely only if
the shear stress is less than the yield strength for pervasive
deformation but the Bingham viscosity is at least 1-2 orders
of magnitude lower than that measured at Breidamer-
kurjokull or inferred at UpB.

The continuum treatment of granular materials used
here introduces some ambiguity at large ploughing fractions.
If clasts in many size classes are ploughing, the matrix
through which they plough has a grain-size distribution and
properties different from those of the bulk till. However,
these differences are minimized when only one size class is
ploughing. Note also that ploughing as modeled by Brown
and others (1987) occurs through till that is not deforming
pervasively and thus is strong, but that I have used
viscosities from soft, dilated, pervasively deforming till for
comparison. Allowing for this difference would strengthen
the conclusion reached above that high velocities through
ploughing are unlikely.

To summarize, ploughing of clasts through lodged till
will begin for T ~ clN with cl ••• 0.2, and all clasts in
contact with the ice will plough for ci •••0.4. Initiation of
pervasive deformation of an undisturbed till requires
ci •••0.5, but pervasive deformation may be maintained for
ci •••0.2. An interesting, though unproven, hypothesis is that
ploughing will dilate and soften till locally, allowing
initiation of further ploughing and of pervasive deformation
for values of ci somewhat smaller than specified here. High
basal velocities through ploughing without pervasive
deformation require lower Bingham viscosities in the
ploughing layer than have been reported or estimated for
modern tills. Based on these considerations, on our previous
calculations that most velocity at the Upstream B camp in
Ice Stream B arises from pervasive bed deformation (Alley
and others, 1987a), and on the observations of basal motion
dominated by pervasive deformation at Breidamerkurjokull
(Boulton and Hindmarsh, 1987), we will proceed in part III
to model Ice Stream B assuming that ploughing does not
contribute significantly to the basal ice velocity.

I do not have enough data to propose hypotheses for
the differences between the inferred behavior of the Vashon
glacier lobe (ploughing without pervasive deformation;
Brown and others, 1987) and of Ice Stream B (pervasive
deformation; Alley and others, 1987a). Assuming that both
inferences are correct, the difference might lie in till
properties, the (lack of) availability of channelized, clean
water from surface melt, or the (lack of) ice-marginal
effects during glacier retreat. This is an area that clearly
merits further study; the probability that abundant surficial
melt water reached the bed of the Vashon glacier lobe at
discrete points may provide a profitable starting place for
such study.

122

PERVASIVE DEFORMATION

General considerations
A sufficiently large basal shear stress will cause

pervasive deformation in a subglacial sediment. Such
deformation has been observed beneath Breidamerkurjokull
(Boulton and Hindmarsh, 1987) and Columbia Glacier
(Meier, 1989), and inferred elsewhere. The velocity-depth
profile and thickness of a pervasively deforming till layer
are important in determining ice and till fluxes, and may
be used in some cases to constrain the flow law for till;
however, these topics have received little study to date.

Here I calculate velocity-depth profiles for the likely
range of till properties and for both Iithostatic and
hydrostatic water-pressure gradients. The solutions obtained
also apply if water-pressure gradients less than hydrostatic
are specified; however, I do not consider the estimation of
such gradients, which has been modeled by Boulton and
Hindmarsh (1987) and Clarke (1987), among others. I
exclude from consideration extrusion flow of till, which
might occur if till viscosities were reduced to values typical
of surficial debris flows by water pressures essentially equal
to overburden pressures. Such flows could not be steady
unless restricted to channels narrow compared to the ice
thickness, owing to the mechanical instability of extrusion
flow (Nye, 1952). Extrusion flow has been modeled by
Mellors and Whillans (1986) and Mellors (unpublished), and
its geomorphic implications have been discussed by Boulton
and Hindmarsh (1987). There is no direct evidence for the
existence of such flow, however, and measured and inferred
till viscosities at Breidamerkurjokull, Blue Glacier, UpB
(Alley and others, 1987b), and Columbia Glacier (Fahnestock
and Humphrey, 1988) are too high to allow significant
extrusion flow (Alley and others, 1987b; Mellors,
unpubliShed).

For this discussion, I adopt the coordinate axes shown
in Figure I, with the origin at the ice-till interface, Z

positive downward, and x positive in the direction of ice
flow. The system is assumed to be two-dimensional: Boulton
(1979) discussed three-dimensional effects.

.U.
I

Q)
()

Us
0 ~

Uo +X

U

-

Fig. I. Coordinate axes for till-deformation calculations.
with the origin at the ice-till inter face (or the top of the
till if there is a significant water layer). Z positive
downward, and x positive in the direction of flow. The
ice velocity is ui' the sliding velocity is us' the till
velocity is u, the till velocity at Z = 0 is uo' and
ui = Us + Uo if there is no ice deformation. The
pervasively deforming till thickness is zi'
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If a fluid occupies communicating pore spaces in a
material and is not flowing vertically, then the effective
pressure is

Velocity-depth profiles
Most proposed flow laws for shear deformation of

water-saturated sediments have the form

where No is the effective pressure at z = 0 and I1p is the
difference between the bulk density, Pb' and the pore-fluid
density.

In a till that is not deforming, the pore-fluid density
is the density of water, Pw' and the effective pressure
assumes hydrostatic values given by

auaz - 0; Tb' T*

N(z) = No + I1pgz (16)

au
az

(Tb - T*)a
-Kb----

Nb
(21)

It is unknown whether Equation (17), (18), or some inter-
mediate case applies at the strain-rates that occur beneath
glaciers lacking efficient deeper aquifers.

Effective pressure increases more rapidly with depth than
this if downward porous flow occurs to a deeper, efficient
aquifer.

Studies of debris flows suggest that, if the debris
framework is deformed rapidly enough, water and fine
clasts form an effective fluid in which larger clasts float
(Rodine and Johnson, 1976; Hampton, 1979). The fluid
density then approaches the bulk density, and I1p is reduced
toward zero. In the limit of very fast deformation, I1p = 0
and the fluid can be said to exhibit a lithostatic pressure
gradient, giving

(22)

(24)

Ntan ~ + C.

(Tb - T*)a
-Kb----

Nb

T*

au
az

au
az - 0; z > zl'

In addition, I define Zo to be the depth at which the
effective pressure is twice the value at the ice-till interface,

(25)

where "bedrock" is any material under a till with a
significantly higher yield strength. Combining Equations
(20)-(23) gives the general flow law for till as

Zl == z2' depth to bedrock> Z2

Zl == depth to bedrock, zl z2

where u is the velocity in the x direction, Kb is a constant
(strictly speaking, Kb here is twice the value of Kb in
equation (1), part I), and T*, the yield strength, is given
by

(23)

In the thin-till, lithostatic-water case where Tb and N are
independent of z, the velocity varies linearly with depth. If
Tb is constant but N varies with depth, Equation (21)
generates an interesting family of curves.

To investigate this family of curves further, it is
convenient to make some definitions. Above, I defined z2 as
the depth at which the yield strength would equal the shear
stress if the till were homogeneous and at least as thick as
z2' Now I define zl as the thickness of the deforming
layer; that is,

(18)

(19)

(17)

Deforming thickness
The thickness of a pervasively deforming layer can be

limited by three factors: its yield strength, its strain-rate, or
a change to a stronger material. The stronger material is the
most obvious case; if a thin till directly overlies fresh
granite, one would not expect the deforming layer to be
thicker than the till.

Deformation of till causes it to dilate and soften
(Boulton and others, 1974), but if the strain is not
sufficiently rapid the dilated structure will collapse and the
till will stiffen (Boulton and Dent, 1974). Alley and others
(1986, 1987a) proposed that this must place a limit on the
possible deforming thickness; ice continuity limits potential
ice velocity, and the minimum strain-rate for dilatancy then
should limit the deforming thickness. This idea is
speculative, but I will return to it below.

Yield-strength control is better established, and must
figure in any full treatment of till properties. If effective
pressure increases with depth, then yield strength also
increases with depth, typically much more rapidly than does
shear stress. If so, then the yield stress must increase above
the shear stress at some depth in the till, stopping
deformation.

The basal shear stress increases with depth in till
according to

or an appropriate modification if downward water flow
occurs. The variable Zo measures how rapidly effective
pressure increases with depth, zl is the deforming thickness,
and z2 is the depth at which deformation would cease
because of yield strength of the deforming layer.

Returning to Equation (24) with z < zl' Equations (20)
and (25) allow the deformation to be described by

where <Xiand <Xbare the down-stream slopes of the ice-air
and ice-till interfaces, respectively, and Pi and h are the
density and thickness of ice, respectively. For a horizontal
bed (% = 0) and a surface slope <Xi= 0.002, typical of Ice
Stream B, Tb increases downward at about 20 Palm. By
comparison, for hydrostatic water of density Pw =
1000 kg/m3 in till of bulk density Pb = 2000 kg/m3 and
internal friction tan ~ = 0.2, the yield strength increases
downward at about 2000 Palm, or about two orders of
magnitude faster. It is thus a good approximation to assume
that Tb is constant in till; this can be called the thin-till
approximation.

Making this approximation, then the basal shear stress
equals the yield stress at depth z2 given by

(20)

[I + ~r
[I + ~b

(26)

Tb - C
I1pg tan. which integrates to
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z

[[I + Z2] _
[I +:,JrZo

U(z) - Uo -Kb(tan 4l)aN~ - b dz

[I +~r
0

Zo

(27)

where u(O) == uo' At z = z1' u drops to zero. Letting
z = z1 in Equation (27), solving for the constant terms
Kb(tan 4l)aN~ - b, and substituting back into Equation (27)
yields

z

[[I z2 ]
[I ,:Jr+- +

Zo
dz

0 [I + :Jb
u(z) Uo I

['[[I + ::J - [I + :,Jr
dz

[I +
z: r0

(28)

A second integration gives the depth-averaged velocity, ii,
as

(29)

Equation (28) shows that the relative velocity u/uo
occurs in a six-dimensional space defined by the powers a
and b, and the depths z, zo' z1' and z2' I will restrict
further attention to the case a = I, appropriate to the
Bingham and Iinear-viscous cases. Boulton and Hindmarsh
(1987) measured N, uo' and z1' and estimated rb for several
sites beneath Breidamerkurjokull, and fitted the data using
Equation (24) with au/az = UO/z1 and with r* = 0 or r*
determined from their measurements. Their results were
a = 1.33, b = 1.80 for r* = 0, and a = 0.625, b = 1.25
for r* > O. They did not report errors on these
determinations; based on my analysis of their data, I
estimate standard errors of ±0.2-o.3 on a and b. If so, then
a = I is consistent with their data. Also, a = I allows a
good fit to the longitudinal profile of Ice Stream B (see
part III). I wish to emphasize that I choose a = I as the
mathematically simplest expression that is consistent with the
available data, but I do not argue that a = I necessarily is
exactly correct.

Taking a = I, the integrations in Equations (28) and
(29) then can be done for arbitrary values of the
parameters b, zO' z1' and z2' and the variable z. Results are
listed in Tables I and II in terms of dimensionless variables
defined there. The general case is valid for b "# 1,2,3;
logarithmic terms arise in u for b = 1,2 and in Ii for
b = 1,2,3, as shown. In the limit of z1 = z2 (w = I),
deformation occurs to bedrock. In the hmit of z2 •.•••

(w ..• 0), u and Ii are well behaved and give the behavior
for a till with no yield strength.

The behavior for selected values of b and the
dimensionless variables of Table I is plotted in Figures 2
and 3. Rapid velocity decrease with increasing depth near
the top of the till is favored by large values of b and of
X = zo/z1' which lead to relatively low values of Ii and
thus of till flux. The variable w = z1/z2 determines how

TABLE I. EQUATIONS FOR VELOCITY-DEPTH PROFILES IN TILL WITH a

Zo Z z1
X - ,

'"
=~ w ==-,

z1 z1 z2

b "# 1,2:

[ 1 ]
1+-

[I+~l-b] + ~2 - b)
u(z)

b _~ [I ~][I [I
Uo I -

[ 1 ]
1+-

[I + B1 - b) [1+B2-b]b _~ [I - ~][I

b I: u(z)
[I + ~] In [I + ~

[I + ~] In [I + B
'"X
I

X
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w
--+
X+I/I

I
1--

w
--+
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TABLE II. EQUATIONS FOR AVERAGE VELOCITY IN TILL WITH a = I

~ Zl-0 Z
X - , ljJ - - W - -,

Zl Zl Z2

b "I- 1,2,3:

U =

X + W r[l + !.12 - b _ I + !.(b _ 2)]- _X_[[I + !.13
- b _ I + ~b - 3)]

(b - I)~ X X (b - 3) xl X
Uo 1---------------------------------

~ = ~HI+ ~][I - [I + ~l-J [I [I + ~2-b]

X

b I:
[X + ~] [[I + ~ In[I + ~ - ~

[I + ~) In[I + ~

I

2X

b 2: U = Uo
2 + ~ - X [2 + ~ + ~] In [I + ~

I - -------------

__ w + 2- _ In[1 + !.l
X+I ~ xl

b 3:

I
- +
~

2

I
+ -

X

I -

rapidly the velocity decreases to zero near the base of the
deforming layer; large w requires that the deeper velocities
be almost asymptotic to zero, requiring rapid velocity
decrease with depth near the top of the deforming layer
and thus small ii. However, the velocity-depth profile is less
sensitive to w than to b or X.

In principle, if till deformation obeys Equation (24)
with a = I, then one can measure zo' zl' z2 (possibly), and
u(z), and determine band Z2 (if necessary) from comparison
between the data and Figure 2. Although no-one has
measured all of the necessary parameters in a deforming till
and the applicability of Equation (24) is open to Question,
analysis of the seminal data set of G.S. Boulton and
co-workers from Breidamerkurjokull (e.g. Boulton and
others, 1974; Boulton, 1979; Boulton and Hindmarsh, 1987)
suggests that this method is workable but difficult.

In Figure 4, I show the velocity-depth data of Boulton
and Hindmarsh (1987, fig. 2) re-plotted according to the
variables used here. In each case, I have estimated the
velocity at the top of the till, uo' by interpolating linearly
between the velocities of the lowermost marker in the ice
and the uppermost marker in the till in Boulton and
Hindmarsh (1987, fig. 2). I have also assumed that the
thickness of the deforming layer (zl = z2) is the till
thickness above the lowermost marker placed by Boulton
and Hindmarsh (1987), although slow motion across discrete
shear planes is reported to occur below the lowermost
markers.

Comparison of Figures 2 and 4 shows immediately that
the real world is more complicated than assumed in

Equation (24). Some of the "wiggles" in the velocity-depth
profiles in Figure 4 are caused by proximity to large rigid
clasts (e.g. arrays 3 and 4 near zlzl = 0.6, where the shear
strain-rate decreases almost to zero; Boulton and Hindmarsh,
1987). Also, transverse flow may have minor effects on
velocity-depth profiles (Boulton, 1979). However, the rapid
downward decrease in velocity (large shear strain-rate) near
the base of each curve requires a different explanation.

The inflection points (that is, the points where the
shear strain-rates pass through minima, which I term
inflection points for convenience (Fig. 4)) in the velocity-
depth profiles occur at (array 4) or just above (arrays I, 2,
3) the depths where Boulton and Hindmarsh (1987) observed
a downward change in mode of deformation from pervasive
creep to shear on discrete planes. The till porosity is
relatively high and decreases slowly with increasing depth
above the inflection point, but decreases rapidly with depth
from near the inflection point to the bottom of the profile
(Boulton and Hindmarsh, 1987, fig. 4a).

I suggest that these observations demonstrate the
existence of a minimum strain-rate required to maintain
dilation (Alley and others, 1986, 1987a). Remember that till
can be transformed from a compact, strong state to a
dilated, weak state by strain in the presence of excess water
(so that the material remains saturated) and this is reversible
if the pore water can escape during compaction (Boulton
and Dent, 1974). It is reasonable to expect that if the
strain-rate in a dilated material becomes too low, then the
collapse process will be dominant over dilation, causing the
till to lose porosity and gain strength. The feed-back related
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u/uo ufuo u/uo ufuo u/u 0

Fig. 2. Velocity-depth plots. Plots of u/uo (horizontal till velocity normalized by velocity at top of till)
are shown against relative depth . .p (= psi = z/z1' where z1 is the base of pervasive deformation and
z is the depth). The exponent a = 1 in Equation (24), and each column of plots is headed by the
value of the exponent b used in that column; each row uses the value of w shown at the feft
(w = omega = z1/z2' where z2 is the depth at which the shear stress would equal the strength of the
pervasively deforming till). Each plot contains curves for X = 0.01, 1, 10, 100, where X = zO/zl and
Zo is the depth at which the effective pressure, N, in the till is twice the value at the ice-till
interface. No' Curves for b = 0 are independent of x, as shown. For b ~ 1, curves are identified by
X values placed to their lower right. unless otherwise indicated. The limiting case of X = 0, b > a
gives a curve plotting on the top and left coordinate axes (as does b ...•"'); the X = 0.01 curves for
b = 5 are close to this behavior. In the limit of X ...• "', curves with b "#- 0 become identical to the
b = 0 curves; the X = 10 and X = 100 curves for small b are essentially at this limit and plot quite
close together. All curves are monotonic and smooth; slight irregularities in the figure arise from the
computerized plotting package used.

to this (slow strain ...•collapse ...•stronger till ...•slower
strain) should cause the transition zone between soft,
dilated, pervasively deforming till and strong, collapsed till
without pervasive deformation to be relatively thin.
However, discrete shearing is possible under conditions that
suppress pervasive deformation (see discussion on ploughing,
above), and thus might occur in and just below this
transition zone. Calculations by J,S. Walder (personal
communication, 1988) suggest that such slow shearing at the
base of a pervasively deforming tilI is possible over
consolidated rock as well.

The minimum strain-rate hypothesis then predicts that
pervasive deformation wilI cease when the strain-rate falls
to some critical value (or the effective pressure and shear
strength rise to some critical value compared to the shear
stress), that the strain-rate just above this depth will exceed
the expected strain-rate just above the depth where r = r*
(z = Z2) in Equation (24), that the porosity will decrease
rapidly near this depth, and that discrete shearing may
occur near and below this depth. The agreement between
hypotheses and observations suggests strongly that a
minimum strain-rate for dilation does exist and is reached
near the inflection points shown in Figure 4.

This discussion suggests that tan tP (and possibly C and
N) are inverse functions of au/az, and that the true flow
law is likely to be a very complicated entity, as discussed
by Clarke (1987). It remains possible, however, that
Equation (24) (and its solutions in Table I) can be modified
to provide a reasonable approximation of the actual
behavior. Boulton and Hindmarsh (1987) showed that the
porosity decreases downward only slowly in the upper "'70%
of the deforming layer before dropping rapidly into the

zone of discrete shearing, and porosity should be a good
proxy for tilI strength for a given tilI. Suppose we let z :;z, be the depth to the bottom of the relatively
homogeneous upper part of the layer, so that the strain-rate
falls to the minimum value to maintain dilation (I au/ az I =
I au/az Imin) at z = z3' Assume further that tan 4J, C, and
Zo are independent of Z in this upper, pervasively
deforming region. Then Equation (23) can be rewritten as

Z1 - depth to bedrock, z1 < z3
(30)

Z1 - z3' depth to bedrock > z3

and Equation (24) stilI describes pervasive deformation.
Here z1 is the thickness of the pervasively deforming

layer, z2 is the depth at which the yield strength of this
pervasively deforming layer would equal the basal shear
stress, and z3 is the depth at which the pervasive
deformation ceases (or would cease) because of strain-rate
control. This means that z1 ' z3 < z2'

With these assumptions, Figure 2 and Table I still
describe the deformation, but the variable w = zl/z2 cannot
be larger than z3/ z2 and thus is less than 1. Also, the
velocity u must be understood as arising from pervasive
deformation; discrete shear at the base of the pervasively
deforming layer provides an additional velocity just as
discrete shear at the top of the layer provides the additional
sliding velocity.

The data of Boulton and Hindmarsh (1987) show that
the sediment porosity (and by inference, the softness of the
sediment) does decrease slowly downward in the pervasively
deforming layer. Thus, calculations following Equation (24)
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Fig. 4. Measured velocity-depth profiles of till beneath
Breidamerkurjokull (Boulton and Hindmarsh, 1987. fig. 2)
ploued on the scale defined in the captioll to Figure 2.
Numbers 1-4 refer to the arrays 1-4 shown in figure 2
of Boulton and Hindmarsh (1987). The inflection points
that I identify with the base of pervasive deformation are
indicated by arrows.
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Fig. 5. Curves from Figure 4 above the inflection points.
recalculated so that u = 0, l/I = I at the inflection points.
The curve labeled "model" is calculated from Equation
(28) with a = 1. b = 2. X = 7. and w = 0.9.
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Fig. 3. Depth-averaged velocity of pervasive deformation. u,
normalized by uo' ploued against X (= chi). for different
values of w (= omega); all variables are defined in the
caption to Figure 2. Each plot contains curves for
b = 0; 1. 2, 3. and 5 (indicated to the lower right of the
appropriate curve) assuming a = 1. The average velocity
(and thus till flux) decreases with increasing band w
and with decreasing X. The likely values of x. b. and w
discussed in this paper and in part III give
i'i/uo 'll 0.1-0.5.

and using the appropriate values of constants will
underestimate the curvature of measured velocity-depth
profiles. Stated differently, if zo' zl' z2' and Zs are known
and b is chosen to provide the best match between
calculated and observed velocity-depth profiles, then this
value of b will place an upper limit on the true value.

Bearing this in mind, we now can attempt to fit the
velocity-depth profiles for the pervasively deforming layer
at Breidamerkurjilkull, and thus to constrain the flow law
for till. The inflection points in Figure 4, which I argue
are good approximations of zs' occur at l/I = zjzl 'll 0.8
(array I), 0.6 (array 2), 0.75 (array 3), and 0.7 (array 4).
Defining these points to be Zs and the deformational
velocity, u, at these points to be zero yields the curves
shown in Figure 5. From the data and calculations of
Boulton and Hindmarsh (1987), the effective pressure at the
ke-till interface is N 'll 40 kPa, and the effective pressure
would double at Zo 'll 3 m. The pervasively deforming layer
is zl 'll 0.4 m thick, so X = zOjzl 'll 7.

The reader can compare Figures 2 and 5 to estimate
which values of wand b in Figure 2 predict curves similar
to those in Figure 5. I do not try a detailed, statistical

curve-fitting exercise because of the large variability in the
observed profiles and the uncertainties introduced by depth
variation of till properties, the presence of large, rigid
clasts, and the likely occurrence of transverse flow.
However, by inspection, I find that b l\< 2-3, w l\< 0.9
provides a good fit. Reducing w requires an increase in b
to maintain reasonable agreement between model and
observed curves, but the quality of the fit deterioriates
slowly from (w, b) = (0.9, 2) to (0.5, 5), and becomes very
bad for smaller w. It is notable that the values I find that
give a good fit (0.9, 2-3) give b close to what we would
expect based on the between-site fit of Boulton and
Hindmarsh (1987), especially if we reduce b slightly from
2-3 to allow for the effect of slow variation of till
properties with depth in the pervasively deforming layer. I
therefore suggest that a curve-fitting exercise such as this is
not a sensitive test for flow-law constants, but does aid in
constraining these constants.

If we accept (w, b) = (0.9, 2) as a working hypothesis,
two further calculations suggest themselves. First, at z = zl'
the slope of the model curve gives I8uj8z J l\< 5 a-I as an
estimate for I8uj8z I " the minimum stram-rate requiredmm
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discrete surfaces occurs
sediments in a thick
may account for a
"'30%) of the total

possibility of discrete
deforming till and rigid

Deformation by shearing across
beneath pervasively deforming
unconsolidated column, and
significant fraction (perhaps
deformational velocity; the
shearing between a pervasively
bedrock should be considered.

Comparison of measured and calculated velocity-depth
profiles can be used to constrain the flow law for
pervasive deformation, although an exact fit is unlikely;
a model with (T - T*)IN2 seems to fit the
velocity-depth profiles of Boulton and Hindmarsh
(1987) from Breidamerkurjokull.

Till beds contammg abundant clasts in the 1-10 mm
size range will be "rough" to a glacier and will cause
sliding velocities to be low.

to maintain pervasive till dilation and deformation.
Secondly, the estimate III ~ 0.9 can be used to constrain

the yield strength of the dilated till. Because III = Z IIZ 2 and
zl ~ 0.4 m, z2 ~ 0.45 m. At this point, Tb = N tan ~ + C
for the dilated till. Boulton and Hindmarsh (1987) (also see
Boulton and Dent, 1974; Boulton and others, 1974; Boulton,
1979) measured C'" 4 kPa, tan ~ •••0.625, and presented
data that allow us to estimate N(0.45 m) •••46 kPa; however,
the method used to measure tan ~ probably over-estimates
that number (Alley and others, 1987a). If Tb were known
accurately, then we could use N(z2)' C, and Tb to estimate
tan~. Unfortunately, the measurements of Boulton and
Hindmarsh (1987) were made within a few ice thicknesses
of the glacier terminus, where effects of longitudinal
deviatoric stresses (Nye, 1967) or back-pressure from small
push moraines can cause the basal shear stress to deviate
significantly from the usual assumption Tb = PighOf., where
Pi' h, and Of. are the ice density, thickness, and surface
slope, respectively. (Boulton and Hindmarsh (1987) did not
report the method they used to estimate Tb; possible
uncertainties from near-terminus effects probably broaden
the likely errors in their determination of flow-law
exponents beyond the limits I cited above.) Nevertheless, if
we assume as an exercise that the usual basal shear-stress
formula applies, then Tb '" 30 kPa and tan ~ = 0.56. A
similar calculation with III = 0.5, z2 = 0.8 would give
tan ~ = 0.51. These calculations certainly involve large
errors, but in principle calculations such as these can be
used to constrain till strength better.

For a typical till, clast ploughing is initiated at Tb >
0.2N, but usually leads to initiation of pervasive
deformation at O.2N < Tb 'O.5N; pervasive deform-
ation is sustained for Tb > 0.2N.

My discussion of velocity-depth profiles in deforming
tills has covered a number of aspects. More than anything
else, I believe it demonstrates the need for well-designed,
direct studies of subglacial deformation. The studies of
Boulton and co-workers (e.g. Boulton and Dent, 1974;
Boulton and others, 1974; Boulton, 1979; Boulton and
Hindmarsh, 1987) clearly are the standard against which all
other efforts will be judged, but it is equally clear that this
single project does not constrain the full range of possible
behaviors.

Despite our large uncertainties regarding till properties,
the discussion above does provide some information on till
deformation. It also allows me to propose the following
hypotheses, most of which should be testable in future field
programs:
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