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Abstract

We show that polarized endomorphisms of rationally connected threefolds with at
worst terminal singularities are equivariantly built up from those on Q-Fano threefolds,
Gorenstein log del Pezzo surfaces and P1. Similar results are obtained for polarized
endomorphisms of uniruled threefolds and fourfolds. As a consequence, we show that
every smooth Fano threefold with a polarized endomorphism of degree greater than one
is rational.

1. Introduction

We work over the field C of complex numbers. We study polarized endomorphisms f :X →X
of varieties X, i.e., those f with f∗H ∼ qH for some q > 0 and some ample line bundle H.
Every surjective endomorphism of a projective variety of Picard number one is polarized. If
f = [F0 : F1 : · · · : Fn] : Pn→ Pn is a surjective morphism and X ⊂ Pn a f -stable subvariety, then
f∗H ∼ qH and hence f |X :X →X is polarized; here H ⊂X is a hyperplane and q = deg(Fi).
If A is an abelian variety and mA :A→A the multiplication map by an integer m 6= 0, then
m∗AH ∼m2H and hence mA is polarized; here H = L+ (−1)∗L with L an ample divisor, or H
is any ample divisor with (−1)∗H ∼H. One can also construct polarized endomorphisms on
quotients of Pn or A. So there are many examples of polarized endomorphisms f . See [Zha06]
for the many conjectures on such f .

From the arithmetical point of view, given a polarized endomorphism f :X →X of degree
qdimX and defined over Q, one can define a unique height function hf :X(Q)→ R such that
hf (f(x)) = qf(x). Further, x is f -preperiodic if and only if hf (x) = 0; see [Zha06, § 4] for more
details.

In [NZ07b], it is proved that a normal variety X with a non-isomorphic polarized
endomorphism f either has only canonical singularities with KX ∼Q 0 (and further is a quotient
of an abelian variety when dimX 6 3), or is uniruled so that f descends to a polarized
endomorphism fY of the non-uniruled base variety Y (so KY ∼Q 0) of a specially chosen maximal
rationally connected fibration X ···→ Y . By the induction on dimension and since Y has a
dense set of fY -periodic points y0, y1, . . . (cf. [Fak03, Theorem 5.1]), the study of polarized
endomorphisms is then reduced to that of rationally connected varieties Γyi as fibres of the
graph Γ = Γ(X/Y ) (cf. [NZ07b, Remark 4.3]).
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The study of non-isomorphic endomorphisms of singular varieties (like Γyi above) is very
important from the dynamics point of view, but is very hard even in dimension two and especially
for rational surfaces; see [Fav], [Nak08] (about 150 pages).

In this paper, we consider polarized endomorphisms of rationally connected varieties (or more
generally of uniruled varieties) of dimension greater than or equal to three. Theorems 1.1–1.4
below and Theorems 3.2–3.4 in § 3, are our main results.

Theorem 1.1. Let X be a Q-factorial n-fold, with n ∈ {3, 4}, having only log terminal
singularities and a polarized endomorphism f of degree qn > 1. Let X =X0 ···→X1 · · · ···→Xr

be a composite of divisorial contractions and flips. Replacing f by its positive power, we have
the following.

(1) The dominant rational maps gi :Xi ···→Xi (0 6 i 6 r) (with g0 = f) induced from f , are
all holomorphic.

(2) Let π :Xr→ Y be an extremal contraction with dim Y 6 2. Then gr is polarized and it
descends to a polarized endomorphism h : Y → Y of degree qdim Y with π ◦ gr = h ◦ π.

The result above reduces the study of (X, f) to (Xr, gr) where the latter is easier to be
dealt with since Xr has a fibration structure preserved by gr. The existence of such a fibration
π :Xr→ Y is guaranteed when X is uniruled by the recent development in MMP (Minimal Model
Program). The relation between the two pairs is very close because f−1, as seen in Theorem 3.2,
preserves the maximal subset of X where the birational map X ···→Xr is not holomorphic.

Theorem 1.2. Let X be a Q-factorial threefold having only terminal singularities and a
polarized endomorphism of degree q3 > 1. Suppose that X is rationally connected. Then we
have the following.

(1) There is an s > 0 such that (fs)∗|N1(X) = qs id. We then call such fs cohomologically a
scalar.

(2) Either X is rational or −KX is big.

(3) There are only finitely many irreducible divisors Mi ⊂X with the Iitaka D-dimension
κ(X,Mi) = 0.

Theorem 1.2(3) above apparently does not hold for X = S × P1, where S is any rational
surface with infinitely many (−1)-curves and hence S has no endomorphisms of degree greater
than one by [Nak02, Proposition 10]; the blowup of nine general points of P2 is such S as observed
by Nagata.

Theorem 1.2(1) above strengthens (in our situation) Serre’s result [Ser60] on a conjecture of
Weil (in the projective case): (Serre) if f is a polarized endomorphism of degree qdimX > 1 of a
smooth variety X then every eigenvalue of f∗|N1(X) has the same modulus q.

The proof of Theorem 1.3 below is done without using the classification of smooth Fano
threefolds. This result has been reproved in [Zha08a] where f is assumed to be only of degree
greater than one but not necessarily polarized.

Theorem 1.3. Let X be a smooth Fano threefold with a polarized endomorphism f of degree
greater than one. Then X is rational.

A klt (Kawamata log terminal) Q-Fano variety has only finitely many extremal rays. A similar
phenomenon occurs in the quasi-polarized case (cf. 2.1).

146

https://doi.org/10.1112/S0010437X09004278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004278


Polarized endomorphisms of uniruled varieties

Theorem 1.4. Let X be a Q-factorial rationally connected threefold having only Gorenstein
terminal singularities and a quasi-polarized endomorphism of degree greater than one. Then X
has only finitely many KX -negative extremal rays.

As explained in Remark 1.5 below, the building blocks of polarized endomorphisms on
rationally connected varieties should be those on Q-Fano varieties of Picard number one.

Remark 1.5. (1) The Y in Theorem 1.1 is Q-factorial and has at worst log terminal singularities;
see [Nak04].

(2) Suppose that the X in Theorem 1.1 is rationally connected. Then Y is also rationally
connected. Suppose further that X has at worst terminal singularities and (dimX, dim Y ) =
(3, 2). Then Y has at worst Du Val singularities by [MP08, Theorem 1.2.7]. So there is a
composition Y → Ŷ of divisorial contractions and an extremal contraction Ŷ →B such that
either dimB = 0 and Ŷ is a Gorenstein log del Pezzo surface of Picard number one, or
dimB = 1 and Ŷ →B ∼= P1 is a P1-fibration with all fibres irreducible. After replacing f by
its power, h descends to polarized endomorphisms ĥ : Ŷ → Ŷ , and k :B→B (of degree qdimB);
see Theorems 2.7.

(3) By [Fak03, Theorem 5.1], there are dense subsets Y0 ⊂ Y (for the Y in Theorem 1.1)
and B0 ⊂B (when dimB = 1) such that for every y ∈ Y0 (respectively b ∈B0) and for some
r(y)> 0 (respectively r(b)> 0), gr(y)|(Xr)y (respectively ĥr(b)|Ŷb) is a well-defined polarized
endomorphism of the Fano fibre.

The difficulty 1.6. In Theorem 1.1, if X →X1 is a divisorial contraction, one can descend a
polarized endomorphism f on X to an endomorphism on X1, but the latter may not be polarized
any more because the pushforward of a nef divisor may not be nef in dimension greater than
or equal to three (the first difficulty). If X ···→X1 is a flip, then in order to descend f on X
to some holomorphic f1 on X1, one has to show that a power of f preserves the center of the
flipping contraction (the second difficulty). The second difficulty is taken care by Lemma 2.10
where the polarizedness is essentially used.

A key argument in the proof of Theorem 1.1(2) is to show that a power of f is cohomologically
a scalar unless Y is a surface with torsion KY (this case will not happen when X is rationally
connected); see Lemma 3.11.

The question below is the generalization of Theorem 1.3 and the famous conjecture: every
smooth Fano n-fold of Picard number one with a non-isomorphic surjective endomorphism, is Pn
(for its affirmative solution when n= 3, see Amerik–Rovinsky–Van de Ven [ARV99] and Hwang–
Mok [HM03]).

Question 1.7. Let X be a smooth Fano n-fold with a non-isomorphic polarized endomorphism.
Is X rational?

Remark 1.8. A recent preprint of Kollár and Xu [KX] showed that one can descend the
endomorphism Pn→ Pn ([X0, . . . , Xn]→ [Xm

0 , . . . , X
m
n ]; m > 2) to some quotient X := Pn/G

(with G finite) so that X has only terminal singularities but X is irrational, invoking a famous
prime power order group action of David Saltman on Noether’s problem. Thus one cannot remove
the smoothness assumption in Theorem 1.3 and Question 1.7.

However, we will show in Theorem 3.3 that every rationally connected Q-factorial threefold X
with only terminal singularities, is rational, provided that X has a non-isomorphic polarized
endomorphism and an extremal contractionX → Y with dim Y ∈ {1, 2}. The terminal singularity
assumption there is used to deduce the Gorenstein-ness of Y (when dim Y = 2), making use
of [MP08, Theorem 1.2.7].
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It would be interesting if one could determine whether the ‘terminal singularity’ assumption
can further be weakened to the ‘log canonical singularity’ in order to deduce the rationality as
above.

See also [Zha08a] for the generalization of Theorem 3.3 to non-polarized endomorphisms.

For the recent development on endomorphisms of algebraic varieties, we refer to Amerik–
Rovinsky–Van de Ven [ARV99], Fujimoto–Nakayama [FN08], Hwang–Mok [HM03], Hwang–
Nakayama [HN08], Zhang [Zha06], as well as [NZ07a, Zha].

2. Preliminary results

2.1 Conventions
Every endomorphism in this paper is assumed to be surjective.

For a projective variety X, an endomorphism f :X →X is polarized or polarized by H
(respectively quasi-polarized or quasi-polarized by H) if f∗H ∼Q qH for some q > 0 and some
ample (respectively nef and big) line bundle H. If f is polarized or quasi-polarized then so is its
induced endomorphism on the normalization of X.

On a projective variety X, denote by N1(X) (respectively N1(X)) the usual R-vector
space of R-Cartier R-divisors (respectively 1-cycles with coefficients in R) modulo numerical
equivalence, in terms of the perfect pairing N1(X)×N1(X)→ R. The Picard number ρ(X)
equals dimR N1(X) = dimR N1(X). The nef cone Nef(X) is the closure in N1(X) of the ample
cone, and is dual to the closed cone NE(X)⊂N1(X) generated by effective 1-cycles (Kleiman’s
ampleness criterion).

Denote by S(X) the set of Q-Cartier prime divisors D with D|D non-pseudo-effective;
see [Nak04, ch. II, § 5] for the relevant material.

For a normal projective surface S, a Weil divisor is numerically equivalent to zero if so is its
Mumford pullback to a smooth model of S. Denote by Weil(S) the set of R-divisors (divisor =
Weil divisor) modulo this numerical equivalence. We can also define the intersection of two Weil
divisors by Mumford pulling back them to a smooth model and then taking the usual intersection.

A Weil divisor is nef if its intersection with every curve is non-negative. A Weil divisor D on
a normal projective variety is big if D =A+ E for an ample line bundle A and an effective Weil
R-divisor E (see [Nak04, ch. II, 3.15, 3.16]).

Let f :X →X be an endomorphism and σV : V →X and σY :X → Y morphisms. We say
that f lifts to an endomorphism fV : V → V if f ◦ σV = σV ◦ fV ; f descends to an endomorphism
fY if σY ◦ f = fY ◦ σY .

A normal projective variety X is Q-abelian in the sense of [NZ07b] if X =A/G with A
an abelian variety and G a finite group acting freely in codimension one, or equivalently X
has an abelian variety as an étale in codimension-one cover.

For a normal projective variety X, we refer to [KMM87] or [KM98] for the definition of
Q-factoriality and terminal singularity or log terminal singularity. An extremal contraction
X → Y is always assumed to be KX -negative.

We do not distinguish a Cartier divisor with its corresponding line bundle.

Lemma 2.2. Let X be a normal projective n-fold and f :X →X an endomorphism such that
f∗H ≡ qH for some q > 0 and a nef and big line bundle H. Then we have the following.

(1) The above q is an integer. There is a nef and big line bundle H ′ such that H ′ ≡H and
f∗H ′ ∼Q qH ′. Hence f is quasi-polarized. Furthermore, deg(f) = qn.

(2) Every eigenvalue of f∗|N1(X) has modulus q.
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(3) Suppose that σ :X → Y is a fibred space (with connected fibres) and f descends to an
endomorphism h : Y → Y . Then deg(h) = qdim Y . Every eigenvalue of h∗|N1(Y ) has
modulus q.

Proof. Parts (1) and (2) are just [NZ07b, Lemmas 2.1 and 2.3].
Set d := deg(h) and dim Y = k. Then f∗Xy ≡ dXy for a general fibre Xy over y ∈ Y . Now

part (3) follows from the fact that σ∗N1(Y ) is a f∗-stable subspace of N1(X) and the calculation,

qnHn−k.Xy = f∗Hn−k.f∗Xy = qn−kdHn−k.Xy > 0. 2

2.3 Pullback of cycles
We will consider pullbacks of cycles by finite surjective morphisms. Let X be a normal projective
variety. We now define a numerical equivalence, ≡, for cycles in the Chow group CHr(X) of
r-cycles modulo rational equivalence. An r-cycle is called numerically equivalent to zero, denoted
as C ≡ 0, if H1 . . . Hr.C = 0 for all Cartier divisors Hi.

If C is a non-zero effective r-cycle then C is not numerically equivalent to zero since Hr.C > 0
for an ample line bundle H. Denote by [C] the equivalence class of all r-cycles numerically
equivalent to C. Denote by Nr(X) the set {[C] | C is an r-cycle with coefficients in R}. The
usual product of an r-cycle with s line bundles naturally extends to

N1(X)× · · · ×N1(X)×Nr(X)−→Nr−s(X).

Let f :X →X be a surjective endomorphism of degree d, so f is a finite morphism. For an
r-dimensional subvariety C, write f−1C =

⋃
i Ci and define f∗[C] :=

∑
i ei[Ci] with ei > 0 chosen

such that
∑

i eiδi = d for δi := deg(Ci/C). Then

f∗f
∗[C] = d[C].

If C, Ci are not in SingX, then for the usual f∗-pullback f∗C of the cycle C, we have
[f∗C] = f∗[C] by having the right choice of ei. By the linearity of the intersection form, we
can linearly extend the definition to f∗[C] for an arbitrary r-cycle C. Then the usual projection
formula gives

f∗L1 . . . f
∗Lr.f

∗[C] = d (L1 . . . Lr.C).

Note that f∗ :N1(X)→N1(X) is an isomorphism. With this, [C]→ f∗[C] (or simply f∗C by
the abuse of notation) gives a well defined map

f∗ :Nr(X)−→Nr(X).

The projection formula above implies the following in Nr−s(X)

f∗(L1 . . . Ls.C)≡ f∗L1 . . . f
∗Ls.f

∗C.

Lemma 2.4. Let X be a normal projective n-fold and f :X →X an endomorphism of degree qn

for some q > 0. Suppose that every eigenvalue of f∗|N1(X) has modulus q. Then we have the
following.

(1) If D is an r-cycle such that 0 6= [D] ∈Nr(X) and f∗D ≡ aD then |a|= qn−r.

(2) Suppose that S is a k-dimensional subvariety of X with f−1(S) = S as set. Then f∗S ≡
qn−kS and deg(f : S→ S) = qk.

(3) For the S in part (2), there is a Cartier R-divisor M on X such that MS :=M|S is a non-zero

element in Nef(S) and f∗|SMS ≡ qMS in N1(S).

(4) If ρ(X) 6 2, then (f2)∗|N1(X) = q2 id.
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Proof. To prove part (4), we may assume that (f2)∗Ei ≡ aiEi for the extremal rays Ei (1 6 i 6
ρ(X)) in Nef(X). Thus ai = |ai|= q2 by the assumption, done!

Part (2) follows from part (1) and our definition of pullback.
To prove part (1), choose a basis L1, . . . , Lρ with ρ= ρ(X) such that f∗|N1(X) is lower

triangular. Hence f∗Li = qu(i)Li + lower term with |u(i)|= 1. Since [D] 6= 0, for some s > 0, the
cycle Ls.D is not numerically equivalent to zero. We choose s to be minimal. Now

f∗(Ls.D)≡ f∗Ls.f∗D = (qu(s)Ls + lower term).aD = aqu(s)(Ls.D).

Similarly, we can find C := Ls.Ls1 . . . Lsr−2 .D ∈N1(X) which is not numerically equivalent to
zero, such that f∗C ≡ bC with

b= aqr−1
r−2∏
i=0

u(si), (s0 := s).

Since N1(X) is dual to N1(X), the eigenvalue b of f∗|N1(X) satisfies |b|= qn−1. So |a|= qn−r

as claimed.
To prove part (3), let N1(X)|S ⊆N1(S) (respectively Nef(X)|S ⊆Nef(S)) be the image of

ι∗ :N1(X)→N1(S) (respectively of the restriction of this ι∗ to Nef(X)) with ι : S→X the
closed embedding. Let N be the closure of Nef(X)|S in N1(S). Then N spans the subspace
N1(X)|S of N1(S). Let λ be the spectral radius of f∗|N . By the generalized Perron–Frobenius
theorem in [Bir67], f∗(MS)≡ λ(MS) for a non-zero nef divisor MS :=M|S in N (with M a
Cartier R-divisor on X). Write M |S = atLt|S + lower term, with t the smallest (and at 6= 0).
Then

λatLt|S + lower term = λM |S = f∗(M |S) = atqu(t)Lt|S + lower term.

By the minimality of t, we have λat = atqu(t) and λ= |λ|= q. 2

Lemma 2.5. Let X be a normal projective surface and f :X →X an endomorphism of degree
q2 > 1. Suppose that f∗M ≡ qM for a non-zero nef Weil divisor. Then every eigenvalue of
f∗|Weil(X) has modulus q.

Proof. Let λ be the spectral radius of f∗|Weil(X). Then f∗L≡ λL for a non-zero nef R-divisor L.
Now q2L.M = f∗L.f∗M = λqL.M . Hence either L.M > 0 and λ= q, or L.M = 0. In the latter
case, M ≡ cL by the Hodge index theorem (on a resolution of X) and again we have λ= q.

Similarly, let µ be the spectral radius of (f∗)−1|Weil(X) so that (f∗)−1H ≡ µH for a non-
zero nef R-divisor H. Then f∗H ≡ µ−1H. By the argument above, we have µ−1 = q. The lemma
follows. 2

Here is an easy polarizedness criterion for ruled normal surfaces.

Lemma 2.6. Let X be a normal projective surface and X →B a P1-fibration. Suppose that
f :X →X is an endomorphism of degree q2 and f∗H ≡ qH for a non-zero nef R-divisor H and
an integer q > 1. Then there is an s > 0 such that (fs)∗|Weil(X) = qsid. Hence f is polarized.

Proof. Note that a basis of Weil(X) consists of some negative curves C1, . . . , Cr in fibres,
a general fibre and a multiple section. Contract Ci’s to get a Moishezon normal surface Y
with Weil(Y ) = RE1 + RE2 for two extremal rays R>0Ei of the cone NE(X). By [Nak02,
Proposition 10] or as in the proof of Lemma 2.9, replacing f by its power, we may assume
that f−1(Ci) = Ci for all i.
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So f descends to an endomorphism fY : Y → Y and we may assume that f∗Ei ≡ eiEi for
some ei > 0 after replacing f by f2.

Write f∗Ci = aiCi with ai > 0. Then f∗|Weil(X) = diag[a1, . . . , ar, e1, e2] with respect to the
basis: C1, . . . , Cr and the pullbacks of E1, E2. Now the first assertion follows from Lemma 2.5
while the second follows from the first as in Note 1 of Theorem 2.7. This proves the lemma. 2

Nakayama’s [Nak08, Example 4.8] (Version of January 2008) produces many examples of
polarized f on abelian surfaces with non-scalar f∗|N1(X). The result below shows that this
happens only on abelian surfaces and their quotients.

Theorem 2.7. Let X be a normal projective surface. Suppose that f :X →X is an
endomorphism such that f∗P ≡ qP for some q > 1 and some big Weil Q-divisor P . Then we
have the following.

(1) The above f is polarized of degree q2.

(2) There is an s > 0 such that (fs)∗|Weil(X) = qs id unless X is Q-abelian with rankWeil(X) ∈
{3, 4}.

Proof. Let P = P ′ +N ′ be the Zariski decomposition. Then P ′ is a nef and big Weil Q-divisor.
The uniqueness of such decomposition and f∗P ≡ qP imply f∗P ′ ≡ qP ′ and f∗N ′ ≡ qN ′.
Replacing P by P ′, we may assume that P is already a nef and big Weil R-divisor. So
deg(f) = (f∗P )2/P 2 = q2.

Note 1. If (f s)∗H ′ ≡ qsH ′ for an ample line bundle H ′ on X then f is polarized. Indeed, If we set
H :=

∑s−1
i=0 (f i)∗H/qi, then H is an ample Q-divisor with f∗H ≡ qH, and we apply Lemma 2.2.

Claim 1.

(1) Every eigenvalue of f∗|Weil(X) has modulus q.
(2) If (fs)∗|Weil(X) is scalar for some s > 0, then it is qs id.

Claim 1(1) follows from Lemma 2.5 while Claim 1(2) follows from (1).
Claim 2 below is from Claim 1 and the proof of Lemma 2.4(4).

Claim 2. If ρ := dimR Weil(X) 6 2, then (f2)∗|Weil(X) = q2 id.

By [Nak02, Proposition 10] or as in the proof of Lemma 2.9, the set S′(X) of negative
curves on X is finite and f−1 induces a bijection of S′(X). We may assume that f |S′(X) = id
after replacing f by its power. Let X → Y be the composition of contractions of negative curves
C1, . . . , Cr (with r maximum) intersecting the canonical divisor negatively. Then Y is a relatively
minimal Moishezon normal surface in the sense of [Sa87]. Further f descends to an endomorphism
fY : Y → Y .

Case 1. KY is not pseudo-effective. Then either rankWeil(Y ) = 2 and there is a P1-fibration
Y →B, or Weil(Y ) = R[−KY ] with −KY numerically ample; see [Sa87, Theorem 3.2]. With f
replaced by its square, we may assume that f∗Y |Weil(Y ) = q id (use Claim 1, and see the proof of
Lemma 2.4(4)). Thus f∗|Weil(X) = q id with respect to the basis consisting of C1, . . . , Cr and
the pullback of a basis of Weil(Y ); see Claim 1. So the theorem is true in this case.

Case 2. KY is pseudo-effective (and hence nef by the minimality). So KX is also pseudo-effective.
It is well known then that the ramification divisor Rf = 0 and hence f is étale in codimension
one. Further, KX = f∗KX and hence K2

X = 0 since deg(f)> 1. If C ∈ S′(X) is a negative curve
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on X then f∗C = qC by Claim 1, and because of the extra assumption f |S′(X) = id; f is ramified
along C. Thus S′(X) = ∅. So X = Y and KX is nef. Also P is numerically ample. The proof is
completed by the following claim.

Claim 3. X is Q-abelian. So rankWeil(X) 6 4, X is Q-factorial, and f is polarized by P which
is Q-Cartier.

Since q2P.KX = f∗P.f∗KX = qP.KX , we have P.KX = 0. The Hodge index theorem (applied
to a resolution of X) implies that KX ≡ 0 in Weil(X). Thus the claim follows from [Nak08,
Theorem 7.1.1]. 2

Lemma 2.8. Let X be a normal projective n-fold and f :X →X a quasi-polarized
endomorphism of degree qn > 0. Then we have the following.

(1) Suppose that V →X is a birational morphism and f lifts to an endomorphism fV : V → V .
Then fV is also quasi-polarized.

(2) LetX ···→W be a birational map withW being Q-factorial, such that the dominant rational
map fW :W ···→W induced from f , is holomorphic. Then f∗WHW ∼Q qHW for some big
line bundle HW and every eigenvalue of f∗W |N1(W ) has modulus q.

Proof. By the definition, there is a nef and big line bundle H on X such that f∗H ∼Q qH.
Part (1) holds because fV is quasi-polarized by the pullback HV of H.

To prove part (2), let V be the normalization of the graph ΓX/W . Then f lifts to a quasi-
polarized endomorphism fV of V . For the first assertion, we take HW to be (a multiple of) the
direct image of HV (consider pullback to V of HW and use Lemma 2.2(2) and the argument in
Note 1 of Theorem 2.7). The second follows from Lemma 2.2, since N1(W ) can be regarded as
a subspace of N1(V ) with the action f∗W and f∗V compatible. 2

Lemma 2.9. Let V and X be normal projective n-folds with X being Q-factorial, and τ :
V ···→X a birational map. Suppose an endomorphism f :X →X of degree greater than one,
lifts to a quasi-polarized endomorphism fV : V → V . Then the set S(X) of prime divisors D
on X with D|D not pseudo-effective, is a finite set. Further, f−1(S(X)) = S(X), so f r|S(X) = id
for some r > 0.

Proof. Replacing V by the normalization of the graph of τ : V ···→X and using Lemma 2.8,
we may assume that τ is already holomorphic. By the assumption, there is a nef and big
line bundle H such that f∗VH ∼ qH and hence deg(f) = deg(fV ) = qn > 1. Note that f∗ and
f∗ = qn(f∗)−1 are automorphisms on both N1(X) and N1(X).

Step 1. If D ∈ S(X) then D′ := f(D) ∈ S(X). Indeed, f∗D′ ≡ cD with c > 0 because f∗(f∗D′) is
parallel to f∗D. Since f∗(D′|D′)≡ cD|D is not pseudo-effective, D′ ∈ S(X).

Step 2. If D′ := f(D) ∈ S(X) then D ∈ S(X). This is because f∗D′ ≡ cD as in Step 1 and hence
cD|D ≡ f∗(D′|D′) is not pseudo-effective.

Step 3. If f(D1) =D′ = f(D2) for D1 ∈ S(X), then D1 =D2. Indeed, f∗D1 ≡ ef∗D2 for some
e > 0. So D1 ≡ eD2. Since eD2|D1

≡D1|D1
is not pseudo-effective, D1 =D2.

Step 4. It follows then that f−1(S(X)) = S(X), and f and f−1 act bijectively on S(X).
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Step 5. Let (Hn−1)⊥ be the set of prime divisors F with F.Hn−1 = 0. Then it is a finite set. Indeed,
writing H =A+ E with A an ample Cartier Q-divisor and E an effective Cartier Q-divisor, then
the set above is contained in the support of E.

Step 6. There is a finite set Σ, such that f i(D)(D) ∈ Σ with some i(D) > 0 for every D ∈ S(X).
This will imply the lemma (see [Nak02, Proposition 10]). We take Σ to be the union of the set
of prime divisors in SingX and the ramification divisor Rf of f , and the set of prime divisors
on X whose strict transform on V is in (Hn−1)⊥.

To finish Step 6, we only need to consider those D ∈ S(X) where Di := f i−1(D) is not in Σ
for all i > 1. Write f∗Di+1 = aiDi with ai ∈ Z>0. Let D′i ⊂ V be the strict transform of Di. Then
f∗VD

′
i+1 ≡ aiD′i in Nn−1(V ). Hence

qnHn−1.D′i+1 = f∗VH
n−1.f∗VD

′
i+1 = qn−1aiH

n−1.D′i,

1 6Hn−1.D′i+1 =
ai
q
· · · a1

q
Hn−1.D′1.

Thus ai0 > q for infinitely many i0. Hence Di0 is in Rf and hence in Σ. This completes Step 6
and also the proof of the lemma. 2

Lemma 2.10. Let V and X be projective n-folds, τ : V →X a birational morphism, ∆ =
∆X ⊂ X a Zariski-closed subset and f :X →X an endomorphism of degree qn > 1. Assume
the four conditions below.

(1) The above f lifts to an endomorphism fV : V → V quasi-polarized by a nef and big line
bundle H so that f∗H ∼ qH.

(2) We have f−1(∆(i)) = ∆(i) for every irreducible component ∆(i) of ∆ (but we only need
f−1(∆) = ∆ in the proof).

(3) The above τ : V →X is isomorphic over X\∆.

(4) For every subvariety Z ⊂ V not contained in τ−1(∆), the restriction H|Z is nef and big (and

hence deg(f |Z : Z→ Z) = qdim Z).

Let A⊂X be a positive-dimensional subvariety such that f−jf j(A) =A for all j > 0. Then either
M(A) := {f i(A) | i > 0} is a finite set, or f i0(A)⊆∆ for some i0 (and hence for all i > i0).

Proof. We shall prove by induction on the codimension of A in X.
Set k := dimA, A1 :=A and Ai := f i−1(A) (i > 1). Denote by Σ or Σ(V, X,∆, f) the set of

prime divisors in ∆, SingX and the ramification divisor Rf of f . This Σ is a finite set.

Claim 1. Ai is contained in the union U(Σ) of prime divisors in Σ for infinitely many i; so if
dimA= dimX − 1, our M(A) is finite and the lemma holds.

Suppose the contrary that Claim 1 is false. Replacing A by some Ai0 , we may assume that Aj
is not contained in U(Σ) for all j > 1. Set bj := deg(f :Aj →Aj+1). Write f∗Aj+1 = ajAj as cycles
with aj = qn/bj ∈ Z>0 now. Let A′j ⊂ V be the strict transform of Aj . Now f∗VA

′
j+1 = ajA

′
j as

cycles, and

qnHk.A′j+1 = f∗VH
k.f∗VA

′
j+1 = qkajH

k.A′j ,

1 6Hk.A′j+1 =
aj
qn−k

· · · a1

qn−k
Hk.A′1.

Thus aj0 > qn−k for infinitely many j0. So Aj0 is contained in Rf and hence also in U(Σ) for
infinitely many j0. Thus Claim 1 is true.
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We may assume that |M(A)|=∞ and k 6 n− 2. Let B be the Zariski-closure of the
union of those Ai0 contained in U(Σ). Then dimB ∈ {k + 1, . . . , n− 1}, and f−jf j(B) =B
for all j > 0. Choose r > 1 such that B′ := f r(B), f(B′), f2(B′), . . . all have the same number
of irreducible components. Let X1 be an irreducible component of B′ of maximal dimension.
Then dimX1 ∈ {k + 1, . . . , n− 1} and f−jf j(X1) =X1 for all j > 0. Note also that X1 contains
infinitely many Ai1 . If f j(X1)⊆∆ for some j > 0, then Ai1+j ⊆∆ and we are done. Thus we
may assume that ∆ ∩ f j(X1)⊂ f j(X1) for all j > 0 and hence M(X1)<∞ by the inductive
assumption with codimension. We may assume that f−1(X1) =X1, after replacing f with its
power and X1 with its image of some f j .

Let V1 ⊂ V be the strict transform of X1. Then all four conditions in the lemma are satisfied
by (V1, H|V1, X1,∆|X1, f |X1, Ai1). Since the codimension of Ai1 in X1 is smaller than that of A
in X, by the induction, either M(Ai1) and hence M(A) are finite or Aj0 ⊆∆|X1 ⊆∆ for some j0.
This completes the proof of the lemma. 2

Lemma 2.11. Let X be a projective variety and f :X →X a surjective endomorphism. Let
RC := R>0[C]⊂NE(X) be an extremal ray (not necessarily KX -negative). Then we have the
following.

(1) The ray Rf(C) is an extremal ray.

(2) If f(C1) = C, then RC1 is an extremal ray.

(3) Denote by ΣC the set of curves whose classes are in RC . Then f(ΣC) = Σf(C).

(4) If RC1 is extremal then ΣC1 = f−1(Σf(C1)) := {D | f(D) ∈ Σf(C1)}.

Proof. Note that f∗ :N1(X)→N1(X) and f∗ :N1(X)→N1(X) are isomorphisms.
To prove part (1), suppose z1 + z2 ≡ f∗C for zi ∈NE(X). Write zi = f∗z

′
i for z′i ∈NE(X).

Then f∗(z′1 + z′2 − C)≡ 0 and hence z′1 + z′2 ≡ C. Thus z′i ≡ aiC for some ai > 0 by the
assumption on C, whence zi = f∗z

′
i ≡ aif∗C ∈Rf(C).

The proofs of parts (2) to (4) are also easy. 2

Lemma 2.12. Let X be a normal projective variety with at worst log terminal singularities, and
f :X →X a surjective endomorphism. Suppose that RCi = R>0[Ci] (i= 1, 2), with C2 = f(C1),
are KX -negative extremal rays and πi :X → Yi the corresponding contractions. Then there is a
finite surjective morphism h : Y1→ Y2 such that π2 ◦ f = h ◦ π1.

Proof. Let X → Y
h→ Y2 be the Stein factorization of π2 ◦ f :X →X → Y2. By Lemma 2.11, the

map X → Y is just π1 :X → Y1. 2

The result below is crucial and used in proving Theorem 3.2. It was first proved by the author
when dim Y 6 2 or ρ(Y ) 6 2, and has been extended and simplified by Fujimoto and Nakayama
to the current form below. See appendix for its proof.

Theorem 2.13. Let X be a normal projective variety defined over an algebraically closed field
of characteristic zero such that X has only log-terminal singularities. Let R⊂NE(X) be an
extremal ray such that KXR< 0 and the associated contraction morphism contR is a fibration
to a lower-dimensional variety. Then, for any surjective endomorphism f : X →X, there exists a
positive integer k such that (fk)∗(R) =R for the automorphism (fk)∗ : N1(X) '−→ N1(X) induced
from the iteration fk = f ◦ · · · ◦ f .
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3. Proof of theorems

In this section we prove the theorems in the Introduction and three theorems below. Theorem 3.2
below includes Theorem 1.1 as a special case, while Theorem 3.4 implies 1.4 because a result of
Benveniste says that a Gorenstein terminal threefold has no flips.

Remark 3.1. All Xi, Y in Theorem 3.2 are again Q-factorial and have at worst log terminal
singularities by MMP (see e.g. [Nak04]).

Theorem 3.2. Let X be a Q-factorial n-fold, with n ∈ {3, 4}, having only log terminal
singularities and a polarized endomorphism f of degree qn > 1. Let X =X0 ···→X1 · · · ···→Xr

be a composite of K-negative divisorial contractions and flips. Replacing f by its positive power,
(I) and (II) hold.

(I) The dominant rational maps gi :Xi ···→Xi (0 6 i 6 r) (with g0 = f) induced from f , are
all holomorphic. Further, g−1

i preserves each irreducible component of the exceptional
locus of Xi→Xi+1 (when it is divisorial) or of the flipping contraction Xi→ Zi (when
Xi ···→Xi+1 =X+

i is a flip).

(II) Let π :W =Xr→ Y be the contraction of a KW -negative extremal ray R>0[C], with
dim Y 6 n− 1. Then g := gr descends to a surjective endomorphism h : Y → Y of degree
qdim Y such that

π ◦ g = h ◦ π.

For all 0 6 i 6 r, all eigenvalues of g∗i |N1(Xi) and h∗|N1(Y ) are of modulus q; there are big
line bundles HXi and HY satisfying

g∗iHXi ∼ qHXi , h∗HY ∼ qHY .

Suppose further that either dim Y 6 2 or ρ(Y ) = 1. Then HW and HY can be chosen to be
ample and g and h are polarized.

The contraction π below exists by the MMP for threefolds.

Theorem 3.3. Let X be a Q-factorial rationally connected threefold having at worst terminal
singularities and a polarized endomorphism of degree greater than one. Let X ···→W be a
composite of K-negative divisorial contractions and flips, and π :W → Y an extremal contraction
of non-birational type. Suppose either dim Y > 1, or dim Y = 0 and W is smooth. Then X is
rational.

Theorem 3.4. Let X be a Q-factorial rationally connected threefold having only terminal
singularities. Suppose either X has a quasi-polarized endomorphism of degree greater than one,
or the set S(X) as in 2.1 is finite. Then X has only finitely many KX -negative extremal rays
which are not of flip type.

We start with some preparations for the proof of Theorem 3.2.

Proposition 3.5. Let X be a Q-factorial n-fold with n ∈ {3, 4}, having at worst log
terminal singularities and a polarized endomorphism f :X →X of degree qn > 1. Let X =
X0 ···→X1 · · · ···→Xr be a composite of K-negative divisorial contractions and flips. Suppose
that for each 0 6 j 6 r, the dominant rational map fj :Xj ···→Xj induced from f , is holomorphic
and f−1

j preserves each irreducible component of the exceptional locus of Xj →Xj+1 (when it is

divisorial) or of the flipping contraction Xj → Yj (when Xj ···→Xj+1 =X+
j is a flip). Let S′ be
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a surface on some Xi with (fiv)(S′) = S′ for some v > 0. Then the endomorphism fS : S→ S
induced from fi

v|S′, is polarized of degree q2v. Here S is the normalization of S′.

Proof. We may assume that v = 1 after replacing f by its power; see Note 1 of Theorem 2.7. By
the assumption, f∗HX ∼ qHX for a very ample line bundle HX , and deg(f) = qn. By Lemmas 2.8
and 2.4, deg(fS : S→ S) = q2. To show the polarizedness of fS , we only need to show the assertion
of the existence of a big Weil divisor as an eigenvector of f∗S ; see Theorem 2.7.

We shall prove this assertion by ascending induction on the index i of Xi. When Xi =X, S
is polarized by the pullback of HX via the morphism S→ S′ ⊂X.

If Xi−1→Xi is birational over S′ with S′i−1 ⊂Xi−1 the strict transform of S′ and Si−1 the
normalization of S′i−1, then the polarizedness of Si−1 (by the inductive assumption) gives rise to
a big Weil divisor PS on S with f∗SPS ≡ qPS (using Lemma 2.5 and the proof of Lemma 2.8).
We are done.

Thus, we have only to consider the two cases below (where n= 4).

Case 1. Xi−1→Xi is a divisorial contraction so that S′ is the image of a prime divisor Z ′

on Xi−1 (being necessarily the support of the whole exceptional divisor Xi−1→Xi). By the
assumption, f−1

i−1(Z ′) = Z ′ and hence f−1(Z ′X) = Z ′X where Z ′X ⊂X is the (birational) strict
transform of Z ′. The normalization Z of Z ′X has an endomorphism fZ (induced from f |Z ′X)
polarized by HZ (the pullback of HX) so that f∗ZHZ ∼ qHZ . Z ′→ S′ induces σ : Z→ S (with
general fibre P1) so that fS is the descent of fZ . By [Nak07, the proof of Proposition 4.17],
the intersection sheaf HS := IZ/S(HZ , HZ) is an integral Weil divisor satisfying f∗SHS ∼ qHS .
Further, HS = (σ|HZ)∗(HZ|HZ

) and hence is big by the ampleness of HZ . We are done again.

Case 2. Xi−1 ···→Xi =X+
i−1 is a flip and S′ is an irreducible component of the exceptional

locus of the flipping contraction Xi→ Yi−1. We have f−1
i (S′) = S′ by the assumption on the

flipping contraction Xi−1→ Yi−1. Note that the assumption of Lemma 2.4 is satisfied by (Xi, fi)
(see Lemma 2.8). In particular, f∗iM |S′ ≡ qM |S′ for a non-zero nef Cartier R-divisor M |S′ in
N1(Xi)|S′ ⊂N1(S′). We divide into two subcases.

Case 2a. S′ is mapped to a curve B′ on Yi−1. Then we have an induced map S→B with general
fibre P1. Here B the normalization of B′. Thus fS is polarized by Lemmas 2.6 and 2.4.

Case 2b. S′ is mapped to a point on Yi−1. Note that ρ(Xi/Yi−1) = 1 since ρ(Xi−1/Yi−1) = 1 and
ρ(Xi−1) = ρ(Xi). So for any ample Cartier divisor A on Xi, there is a b 6= 0 such that A− bM is
the pullback of some divisor by Xi→ Yi−1. Thus A|S′ ≡ bM |S′ in N1(S′). Hence f∗i A|S′ ≡ qA|S′
in N1(S′). Thus fS is polarized by an ample line bundle AS (the pullback of A|S′). 2

Lemma 3.6. Let X be a Q-factorial projective variety with at worst log terminal singularities,
f :X →X a surjective endomorphism, and X ···→X+ a flip with π :X → Y the corresponding
flipping contraction of an extremal ray RC := R>0[C]. Suppose that Rf(C) =RC . Then the
dominant rational map f+ :X+ ···→X+ induced from f , is holomorphic. Both f and f+ descend
to one and the same endomorphism of Y .

Proof. We note that

X = Proj
⊕
m>0

OY (−mKY ), X+ = Proj
⊕
m>0

OY (mKY )
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and there is a natural birational morphism π+ :X+→ Y . By the assumption and Lemma 2.12,
f :X1 =X →X2 =X descends to an endomorphism h : Y1 = Y → Y2 = Y with π2 ◦ f = h ◦ π1.
Here πi :Xi→ Yi are identical to π :X → Y . Set Z :=X+

2 ×Y2 Y1. Then the projection Z→ Y1

is a small birational morphism with ρ(Z/Y1) = 1, and it is identical to either X1→ Y1 or
X+

1 =X+→ Y1, noting that −KX and KX+ are relatively ample over Y . Now we have only
to consider and rule out the case Z =X1. Set W :=X+

2 ×Y2 X2. Since the composite X1 = Z→
X+

2 → Y2 is identical to that of Z→ Y1→ Y2 and hence to that of X1→X2→ Y2, there is a
morphism σ :X1→W such that X1 = Z→X+

2 factors as X1→W →X+
2 , and X1→X2 factors

as X1→W →X2. So the projection W →X2 is birational (because so is X+
2 → Y2) and finite

(because so is X1→X2), whence it is an isomorphism. Thus the birational map X2→X+
2 is a

well defined morphism as the composite X2→W →X+
2 . This is absurd. Therefore, Z =X+

1 and
the lemma is true. 2

Lemma 3.7. With the hypotheses and notation in Lemma 2.10, assume further that X is
Q-factorial with at worst log terminal singularities and σ :X →X1 is a divisorial contraction of
an extremal ray R>0[`] with E the exceptional locus (necessarily an irreducible divisor). Then
we have the following.

(1) There is an s > 0 such that (fs)−1(E) = E.

(2) The dominant rational map g :X1 ···→X1 induced from fs, is holomorphic, after s is
replaced by a larger one.

(3) Let ∆1 ⊂X1 be the image of ∆ ∪ E. Then g−1(∆1) = ∆1.

(4) Let V1 be the normalization of the graph of V ···→X1, and H1 ⊂ V1 the pullback of H on V .
Then g lifts to an endomorphism g1 : V1→ V1 such that (V1 ⊃H1, g1, X1 ⊃∆1, g) satisfies
all four conditions in Lemma 2.10.

Proof. Part (1) follows from Lemma 2.9 since E ∈ S(X), while parts (3) and (4) follow from (2).
Now part (2) follows from the proof of Theorem 2.13 applied to N1(X)|E ⊂N1(E) and the
extremal curve ` in the closed cone of curves on E (dual to the cone Nef(X)|E). 2

Lemma 3.8. With the hypotheses and notation in Lemma 2.10, assume further the following.

(1) If T ′ ⊂X is a surface with f t(T ′) = T ′ for some t > 0, then the endomorphism of the
normalization T of T ′ induced from f t|T ′ , is polarized.

(2) We have dim ∆ 6 2.

(3) The X has at worst log terminal singularities and X ···→X+ is a flip with π :X → Y the
corresponding flipping contraction of an extremal ray RC := R>0[C].

(4) The union UC of curves in the set ΣC in Lemma 2.11 is of dimension less than or equal
to two.

Then we have the following assertions.

(1) There is an s > 0 such that Rfs(C) =RC and (fs)−1(UC(i)) = UC(i) for every irreducible
component UC(i) of UC .

(2) The dominant rational map g :X+ ···→X+ induced from fs is holomorphic.

(3) Let ∆+ = ∆(X+)⊂X+ be the set consisting of the exceptional locus of the flipping
contraction π+ :X+→ Y (i.e., (π+)−1(π(UC))) and the total transform of ∆⊂X. Then
g−1(∆+(i)) = ∆+(i) for every irreducible component ∆+(i) of ∆+.
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(4) Let V + be the normalization of the graph of V ···→X+, and H+ ⊂ V + the pullback of H
on V . Then g lifts to an endomorphism gV + : V +→ V + such that (V + ⊃H+, gV + , X+ ⊃
∆+, g) satisfies all four conditions in Lemma 2.10.

Proof. Note that the assertion (2) follows from assertion (1) and Lemma 3.6, while assertions (3)
and (4) follow from assertions (1) and (2). It remains to prove assertion (1). By Lemma 2.11,
we have only to show that fu(C) and fv(C) (and hence fu−v(C) and C) are parallel for some
u > v.

By Lemma 2.11, f−jf j(UC) = UC for all j > 0. Choose r′ > 0 such that U ′ :=
f r
′
(UC), f(U ′), f2(U ′), . . . all have the same number of irreducible components. Then

f−jf j(U ′(k)) = U ′(k) for every irreducible component U ′(k) of U ′. By Lemma 2.10, either
M(U ′(k)) is finite and S′ := f j1(U ′(k)) = f j2(U ′(k)) for some j2 > j1 > 1, or f j1(U ′(k)) is
contained in an irreducible component ∆(1) of ∆ for infinitely many j1. We divide into two
cases.

Case 1. dim U ′(k) = 2. Since dim ∆(1) 6 2 we may assume that M(U ′(k)) is always finite
and (fm)−1(S′) = S′ for m= j2 − j1. Take a two-dimensional irreducible component S of UC
such that f r(S) = S′, where r := r′ + j1. Note that f−m permutes irreducible components of
f−r(S′). Hence some f−t with t ∈mN stabilizes all of these components. Especially, f±t(S) = S.
Replacing f by f t, we may assume that f±(S) = S. We may also assume that C ⊂ S. If the
flipping contraction π :X → Y maps S to a point P , then f(C) is parallel to C because
π(f(C)) = P , so assertion (1) is true. Suppose π induces a (necessarily P1) fibration S→B
onto a curve. Let S̃→ S be the normalization. Then f induces a finite morphism f̃ : S̃→ S̃
which is polarized by our assumption, so f̃∗|Weil(S̃) = q id after replacing f by its power (see
Lemmas 2.6, 2.4 and 2.8). Thus f(C) is parallel to C. Hence assertion (1) is true in Case(1).

Case 2. dim U ′(k) = 1. We may assume that U ′(k) = f r
′
(C). We only need to consider the

situation where f j1(U ′(k))⊂∆(1) and dim ∆(1) = 2. Relabel f r
′+j1(C) as C, we have C ⊂

S := ∆(1). By the hypotheses, f±(S) = S. Set Cv := fv(C) (v > 0). By the choice of r′, we
have f−jf j(Cv) = Cv for all j > 0. Let S̃→ S be the normalization and Θ⊂ S̃ the union of
the conductor and the ramification divisor Rh of the finite morphism h : S̃→ S̃ induced from f .
If Cv has preimage in Θ for infinitely many v then Cv and Cv′ (and hence Cv−v′ and C) are
parallel for some v > v′ because Θ has only finitely many components, so assertion (1) is true.
Thus we may assume that no Cv is contained in Θ for all v > 0. Let Dv ⊂ S̃ be the (birational)
preimage of Cv. Then h−jhj(Dv) =Dv for all j > 0. The extra assumption implies h∗Dv+1 =Dv.
By Lemmas 2.4 and 2.8, we have deg(h) = q2. Now q2Dv+1.Dw+1 = h∗Dv+1.h

∗Dw+1 and

Dv+1.Dw+1 =
1
q2
Dv.Dw = · · ·= 1

q2b
Dv+1−b.Dw+1−b.

On the other hand, Di.Dj ∈ (1/d)Z with d the determinant of the intersection matrix for the
exceptional divisor of a resolution of S. Thus Di.Di+1 =D2

i = 0 for i >> 0. This and the Hodge
index theorem applied to the resolution of S, imply that Di and Di+1 are parallel. So Ci and Ci+1

(and hence C and f(C)) are parallel. Therefore, assertion (1) is true in Case(2). This completes
the proof of the lemma. 2

3.9 Proof of Theorem 3.2(I)
By the assumption, f∗HX ∼ qHX for an ample line bundle HX . We will inductively define
∆i ⊂Xi, τi : Vi→Xi, gVi : Vi→ Vi, gi :Xi→Xi, and big and semi-ample line bundle HVi with
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g∗Vi
HVi ∼ qHVi . Define HXi to be (a large multiple of) the direct image of HVi , so g∗iHXi ∼ qHXi

using Lemma 2.8. Since Xi is Q-factorial by MMP, HXi is a big line bundle. Consider the
following.

Property(i): Theorem 3.2(I) holds for X0 ···→ · · · ···→Xi. The quadruple (Vi, gVi , Xi ⊃
∆i, gi) satisfies the four conditions in Lemma 2.10. The divisor HVi is big and semi-ample. We
have dim ∆i 6 2.

The last inequality follows from the fact that for a divisorial contraction σ :W → Z between
n-folds with exceptional divisor EW/Z , one has dim σ(EW/Z) 6 n− 2, and for a flip W ···→W+

with W → Z and W+→ Z the flipping contractions, one has dim EW ′/Z 6 n− 2 for both
W ′ =W,W+.

We prove Property(i) (0 6 i 6 r) by induction. Set

V0 =X0, ∆0 = ∅, HV0 :=HX , gV0 = g0 = f.

Then Property(0) holds. Suppose Property(i) holds for i 6 t. If Xt→Xt+1 is a divisorial
contraction, then we just apply Lemma 3.7.

When Xt ···→Xt+1 =X+
t is a flip, we apply Lemma 3.8 and set ∆t+1 := ∆(X+

t ) so
that Property(t+1) holds. Indeed, the first condition in Lemma 3.8 is satisfied, thanks to
Proposition 3.5. This proves Theorem 3.2(I).

3.10 Proof of Theorem 3.2(II)
By Theorem 2.13, replacing f by its power, we may assume that g(C) is parallel to C in N1(W )
so that g :W →W descends to a finite morphism h : Y → Y ; see Lemma 2.12. Set HW :=HXr ,
a big effective line bundle with g∗HW ∼ qHW . Now Theorem 3.2 follows from the following
lemma.

Lemma 3.11.

(1) We have deg h= qdim Y .

(2) All eigenvalues of g∗i |N1(Xi) and h∗|N1(Y ) are of modulus q; the intersection sheaf
HY := IVr/Y (Hs

Vr
) (with s= 1 + dim Vr − dim Y ) is a big Q-Cartier integral divisor such

that h∗HY ∼Q qHY ; so h is polarized when dim Y 6 2.

(3) If h is polarized, then g :W →W is polarized of degree qdimW .

(4) Suppose that h∗|N1(Y ) = q id. Replacing f by its power, we have

g∗i |N1(Xi) = q id (0 6 i 6 r).

Hence h and gi are all polarized (see Lemma 2.2).

Proof. (1) Assertion (1) follows from Lemma 2.2 and the proof of Lemma 2.8.
(2) The first part follows from Lemmas 2.2 and 2.8. We use the birational morphism

Vr→Xr =W and the big and semi-ample line bundle HVr in Theorem 3.2(I). Replacing HVr

by its large multiple, we may assume that Bs|HVr |= ∅. Thus the second part is true as in
Proposition 3.5, since IVr/Y (Hs

Vr
) = τ∗(HVr |V ′), where τ is the restriction to V ′ :=H1 ∩ · · · ∩

Hs−1 of the composite Vr→W → Y , with Hi general members in |HVr |. The last part follows
from Theorem 2.7.

(3) We may assume h∗L∼ qL for an ample line bundle L on Y (using part (1)). The big
divisor HW is π-ample since N1(W/Y ) is generated by the class [C]. Thus H :=HW + tπ∗L is
ample for t >> 0 (see [KM98, Proposition 1.45]) and g∗H ∼ qH, so g is polarized.
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(4) Assertion (4) is true because N1(Xi) is spanned by the pullbacks of the big divisor HW

in 3.2(I), the divisors (lying below those divisors in S(Vj), j > i) contracted by Xj ···→W and
the divisors in π∗N1(Y ), noting that a flip Xk ···→Xk+1 induces an isomorphism N1(Xk)∼=
N1(Xk+1) (see Lemmas 2.9, 2.8 and 2.2). This proves Lemma 3.11 and also Theorem 3.2. 2

3.12 Proof of Theorem 3.3

By Theorem 3.2, f (replaced by its power) induces a polarized endomorphism g :W →W of
degree q3 > 1. Note that W is also rationally connected and Q-factorial with at worst terminal
singularities. So KW is not nef. If the Picard number ρ(W ) = 1, then −KW is ample, and
hence W ∼= P3 (so X is rational) provided that W is smooth, because every smooth Fano
threefold of Picard number one having an endomorphism of degree greater than one, is P3;
see [ARV99, HM03].

Thus, we only need to consider the extremal contraction π :W → Y with dim Y = 1, 2. Our Y
is rational. Note that SingW and hence its image in Y are finite sets, so a general fibre Wy ⊂W
over y ∈ Y is smooth.

We apply Theorem 3.2. Hence each U ∈ {X,W, Y } has an endomorphism fU : U → U
polarized by an ample line bundle HU and with deg(fU ) = qdim U > 1. Here fW = g and fY = h
in notation of Theorem 3.2.

A polarized endomorphism of degree greater than one has a dense set of periodic points
[Fak03, Theorem 5.1]. Let y0 be a general point with h(y0) = y0 (after replacing f by its
power). Then the fibre W0 :=Wy0 ⊂W over y0 ∈ Y has an endomorphism g0 := g|W0 :W0→W0

polarized by the ample line bundle H0 :=HW |W0 so that g∗0H0 ∼ qH0 and deg g0 = qdimW0 > 1.
Our W0 is a smooth Fano variety with dimW0 = dimW − dim Y .

Suppose that dim Y = 1. Then W0 is a del Pezzo surface with a polarized endomorphism
of degree q2 > 1. Thus K2

W0
= 6, 8, 9 (see [FN08, Theorem 1.1] or [Zha02, Theorem 3]; [Miy83,

p. 73]). The case K2
W0

= 7 does not occur because ρ(W/Y ) = 1. Thus, W (and hence X) are
rational (see, e.g., [Isk97, § 2.2]).

Therefore, we may assume that dim Y = 2. Then π :W → Y is a conic bundle. Further, π is
dominated by another conic bundle π′ :W ′→ Y ′ with W ′, Y ′ smooth, with ρ(W ′/Y ′) = 1 and
with birational morphisms σw :W ′→W and σy : Y ′→ Y satisfying π ◦ σw = σy ◦ π′ (cf. [Miy83,
the proof of Theorem 4.8]).

Let D′ be the discriminant of π′. If D′ = ∅, then π′ is a P1-bundle in the Zariski topology
which is locally trivial for the Brauer group Br(Y ′) = 0 with Y ′ being a smooth projective rational
surface, so W ′ and X are rational. Thus we may assume that D′ 6= ∅ and π′ is a standard conic
bundle; see [Miy83, § 4.9 and Lemma 4.7] for the relevant material.

Let D be the one-dimensional part of the discriminant of π. Note that σy∗(D′) =D because
every reducible fibre over some d ∈D should be underneath only reducible fibres over some d′ ∈D′
and note that σy : Y ′→ Y is the blowup over the discriminant D(W/Y ); see the construction
in [Miy83, Theorem 4.8]; note also that (π′)∗E is irreducible for every prime divisor E ⊂X ′ (and
especially for those in D′).

Our h : Y → Y satisfies h−1(D)⊆D since the reducibility of a fibreWd over d ∈D implies that
of Wd′ for d′ ∈ h−1(d). So D ⊇ h−1(D)⊇ h−2(D)⊇ · · · . Considering the number of components,
we have h−s(D) = h−s−1(D) for some s > 1. Since h is surjective and applying hs and hs+1, we
have h±(D) =D. Replacing f by its power, we may assume h±(Di) =Di for every irreducible
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component Di of D. Therefore, h∗Di = qDi by Lemma 2.5. Hence

KY +D = h∗(KY +D) +G

with G an effective Weil divisor. Noting that h∗HY = (deg(h)/q)HY = qHY and by the projection
formula,

HY .(KY +D) = h∗HY .(KY +D) +HY .G, (1− q)HY .(KY +D) =HY .G > 0.

This proves the second assertion below. For the first, see [KM98, Proposition 3.36] and [MP08,
Theorem 1.2.7]. For the third, see [Miy83, Lemma 4.1 and Remark 4.2]. The fifth is due to
Iskovskikh in his 1987 paper in the Duke Mathematical Journal (see, e.g., his survey [Isk97,
Theorem 8]).

Claim 3.13.

(1) The surface Y is Q-factorial with at worst Du Val singularities.

(2) If KY +D is pseudo-effective, then KY +D ≡ 0 in N1(Y ).

(3) The divisor D′ is of normal crossing. Every smooth rational component of D′ meets at least
two points of other components.

(4) We have σy∗(D′) =D.

(5) If π′ is a standard conic bundle, D′ is connected and D′.F 6 3 for a free pencil |F | of rational
curves, then W ′ and hence W and X are rational.

We factor Y ′→ Y as Y ′→ Ỹ → Y with Ỹ → Y the minimal resolution. Let D̃ ⊂ Ỹ be the
image of D′. Since D′ 6= ∅ and by Claim 3.13(3) and the Riemann–Roch theorem, we have |KY ′ +
D′| 6= ∅; the latter impliesK

Ỹ
+ D̃ ∼ E for some effective divisor. HenceKY +D ∼ Ê with Ê ⊂ Y

the image of E. By Claim 3.13(2), Ê = 0 and KY +D ∼ 0. Thus Supp E =
⋃
i Ei is supported

on the exceptional locus of Ỹ → Y , so each Ei is a (−2)-curve. Now h0(Ỹ , K
Ỹ

+ D̃) = 1.
Our D̃ is connected and is either a smooth elliptic curve, or a nodal rational curve, or a simple
loop of smooth rational curves; in fact, one may use Claim 3.13(3) and [CCZ05, the proof of
Lemma 2.3].

We assert that E = 0. Indeed, since E is negative definite, we may assume that E.E1 < 0.
Then 0>E1.(KỸ

+ D̃) = E1.D̃ and hence E1 6 D̃. If D̃ is irreducible then E1 = D̃ and K
Ỹ
∼

E − E1 > 0, contradicting the fact that Ỹ is a smooth rational surface. Hence D̃ is a simple
loop of smooth rational curves and contains E1. Thus 0>E1.E1 + E1.(D̃ − E1) >−2 + 2 by
Claim 3.13(3). This is absurd. So our assertion is true and K

Ỹ
+ D̃ ∼ 0.

If Ỹ is ruled with a general fibre F then D̃.F =−K
Ỹ
.F = 2; if Ỹ = P2, then for a line F we

have F.D̃ = 3. Denoting by the same F its total transform on Y ′, we have F.D′ 6 3. Thus W ′

and hence X are rational by Claim 3.13. This proves Theorem 3.3. 2

3.14 Proof of Theorem 1.2

We apply Theorem 3.2. By MMP, we may assume that W has no extremal contraction of
birational type. Since X is rationally connected, both KX and KW are non-nef, so there is a
contraction W → Y of an extremal ray. We have dim Y 6 2. Now Theorem 1.2(1) follows from
Theorems 2.7 and 3.2 and Lemma 3.11(4) and (2). Indeed, when dim Y = 2, Y is rational with
only Du Val singularities by [MP08, Theorem 1.2.7] and hence KY is not trivial in N1(Y ).
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Theorem 1.2(3) follows from the following claim.

Claim 3.15. Replace f by its power so that f∗|N1(X) = q id. We have the following assertions.

(1) If M ⊂X is an irreducible divisor with κ(X,M) = 0 then f∗M = qM .

(2) There are only finitely many f−1-periodic irreducible divisors Mi. Hence there is a v > 0
such that (fv)∗Mi = qvMi for all i. The ramification divisor Rfv equals (qv − 1)

∑
iMi + ∆,

where ∆ is an effective integral divisor containing no Mi.

(3) We have −KX ∼Q
∑

iMi + ∆/(qv − 1) > 0 and κ(X,−KX) = κ(X,
∑
Mi −KX) > 0.

Proof. Since q(X) = 0, we have f∗M ∼Q qM for every irreducible integral divisor M . Hence
f−1(M) =M when κ(X,M) = 0. Thus assertion (1) follows.

Suppose that Mi (1 6 i 6N) are f−1-periodic, so a power hN = fs(N) of f satisfies h−1
N (Mi) =

Mi for all 1 6 i 6N . Then h∗NMi = qs(N)Mi and KX +
∑
Mi = h∗N (KX +

∑
Mi) + ∆N ∼Q

qs(N)(KX +
∑
Mi) + ∆N , where ∆N is an effective integral divisor containing no any Mi.

Thus −KX ∼Q
∑N

i=1 Mi + ∆/(qs(N) − 1) > 0, which also implies (3). Multiplying the above
equivalence by two copies of an ample divisor H, we see that N is bounded. This proves
assertion (2). 2

We now prove Theorem 1.2(2). By Theorem 3.3, we may assume that the end product of
MMP for X is of Picard number one, i.e., there is a composite X =X0 ···→X1 · · · ···→Xr

of divisorial contractions and flips such that ρ(Xr) = 1, so −KXr is ample because all Xi are
rationally connected with only Q-factorial terminal singularities by MMP. Let gi :Xi ···→Xi be
the dominant rational map induced from f :X →X (with g0 = f).

Claim 3.16. Replacing f by its positive power, we have the following assertions.

(1) For all 0 6 t 6 r, our gt is holomorphic with g∗t |N1(Xt) = q id. Let E′t ⊂Xt be
zero (respectively the (irreducible) exceptional divisor) when Xt ···→Xt+1 is a flip
(respectively Xt→Xt+1 is divisorial). Then the strict transform Et ⊂X of E′t satisfies
f−1(Et) = Et.

(2) The space N1(X) is spanned by KX and those Et in assertion (1). Let E =
∑
Et.

Proof. Assertion (1) can be proved by ascending induction on the index t of Xt. Suppose
assertion (1) is true for t. Since g∗t is scalar, we may assume that both g±t preserve the extremal
ray corresponding to the birational map Xt ···→Xt+1, so gt descends to the holomorphic gt+1

as in the proof of Theorem 3.2, and also the last part of assertion (1) is true. The scalarity of g∗t
implies that of g∗t+1 because N1(Xt+1) is isomorphic to (respectively regarded as a subspace
of) N1(Xt) via the pullback when Xt ···→Xt+1 is a flip (respectively Xt→Xt+1 is divisorial);
see [KM98, the proof of Proposition 3.37].

Assertion (2) is true because N1(Xr) is generated by KXr , N1(Xt) is isomorphic to
N1(Xt+1) (respectively spanned by E′t and the pullback of N1(Xt+1)) when Xt ···→Xt+1 is
a flip (respectively divisorial). 2

To conclude Theorem 1.2(2), take an ample divisor H ⊂X. By Claim 3.16, we can write
H ∼Q

∑
atEt + b(−KX). So H 6m(E −KX) for some m > 1, since κ(X,−KX) > 0. This and

Claim 3.15(3) and Claim 3.16(1) imply κ(X,−KX) = κ(X, E −KX) > κ(X, H) = dimX. Thus,
−KX is big. Theorem 1.2(2) is proved. 2
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3.17 Proof of Theorem 1.3

Since X is Fano, X is rationally connected (by Campana and Kollár–Miyaoka–Mori), and NE(X)
has only finitely many extremal rays all of which are KX -negative (cf. [KM98, Theorem 3.7]).
Let X →X1 be the smooth blowdown such that X1 is a primitive (smooth) Fano threefold in
the sense of [MM81]. If ρ(X) > 2, by [MM81, Theorem 5], X1 has an extremal contraction of
conic bundle type. Now Theorem 1.3 follows from Theorem 3.3. 2

3.18 Proof of Theorem 3.4

By Lemma 2.9, we may assume that S(X) is a finite set. We may also assume ρ(X) > 3. Suppose
that Ri := R>0[Ci] (i > 1) are pairwise distinct KX -negative extremal rays with πi :X → Yi the
corresponding contraction each of which is either divisorial or of Fano type (i.e., dim Yi 6 2). We
can take the generator Ci to be an irreducible curve in the fibre of πi. Since 3 6 ρ(X) = ρ(Yi) + 1,
we have ρ(Yi) > 2 and hence dim Yi ∈ {2, 3}.

If πi is divisorial, we let Ei be the exceptional divisor of πi; then Ei is necessarily irreducible
and is in the finite set S(X). If πi is of Fano type (and hence onto a surface Yi), then Yi
is a rational surface with at worst Du Val singularities (cf. [MP08, Theorem 1.2.7]); for each
G ∈ S(Yi), the divisor π∗iG is irreducible and in S(X).

The claim below follows from the fact that ρ(X/Yi) = 1.

Claim 3.19. Suppose that either D is the exceptional divisor Ei for a divisorial contraction
πi :X → Yi, or D = π∗iG for a Fano contraction πi :X → Yi to a surface with G⊂ Yi an irreducible
curve. Then N1(X)|D, as a subspace of N1(X), is of rank less than or equal to two and contains
the extremal ray Ri of NE(X).

Suppose, after replacing with an infinite subsequence, that each πi is either divisorial and we
let Di := Ei, or is of Fano type with S(Yi) 6= ∅ and we let Di = π∗iG for some G ∈ S(Yi). Since
Di ∈ S(X) and S(X) is finite, we may assume that D1 =D2 = · · · after replacing with an infinite
subsequence. If N1(X)|Di ⊂N1(X) contains only one extremal ray, i.e., Ri, then R1 =R2, which
contradicts the hypothesis. If N1(X)|Di has two extremal rays Ri, R′i, then either Ri =Rj for
some i 6= j, which contradicts the hypothesis; or R2 =R′1 =R3, which again contradicts the
hypothesis.

Thus, replacing {πi} with an infinite subsequence, we may assume that for every i > 1, πi is
of Fano type and S(Yi) = ∅. Hence Yi is relatively minimal, ρ(Yi) = 2 and there is a P1-fibration
Yi→Bi ∼= P1 with every fibre irreducible, noting that KYi is not pseudo-effective (cf. [Sa87,
Theorem 3.2]). Take a general fibre Xbi of the composite X → Yi→Bi which is a smooth ruled
surface, noting that SingX and hence its image in Bi are finite sets. Then Ri.Xbi = 0.

Now ρ(X) = ρ(Yi) + 1 = 3. Any three of Ci are linearly independent in N1(X) and hence
form a basis; otherwise, C3 = a1C1 + a2C2, say, with a1 > 0, a2 > 0 and hence R1 =R3, since R3

is extremal. This is impossible.

Suppose that R1.Xbi = 0, i.e., π1(Xbi) 6= Y1, for i= 2, 3, 4. Then Xbi = π∗1Mi for an irreducible
curve Mi ⊂ Y1 since ρ(X/Y1) = 1. Since ρ(Y1) = 2 and q(Y1) = 0, we may assume that
M4 ∼Q a2M2 + a3M3 and hence Xb4 ∼Q a2Xb2 + a3Xb3 . Note that 0 =X2

b4
= 2a2a3Xb2Xb3 . After

relabeling, we may assume that Xb3 and Xb4 are parallel in N1(X). Then Xb3 = π∗1M3 is
perpendicular to all of C1, C3, C4, a basis of N1(X). Hence Xb3 = 0 in N1(X). This contradicts
the hypothesis.
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Therefore, we may assume that π1(Xbi) = Y1 for all i > 2, after replacing with a subsequence.
Since S(Y1) = ∅ and ρ(Y1) = 2, our NE(Y1) is generated by two extremal pseudo-effective
divisors L1k with L2

1k = 0. We may assume that L11 is a fibre of Y1→B1. Let Mik := π∗1L1k|Xbi .
Then M2

ik = 0 and Mik’s span the (only) two extremal rays of (N1(X) |Xbi ∩NE(Xbi). We may
assume that Ci is a fibre of πi|Xbi and hence is extremal and parallel to Mi1 or Mi2. If Ci is
parallel to Mi1 for i= r, s, t, then by Claim 3.19 applied to N1(X)|π∗1L11, two of the (extremal)
Ci are parallel to each other in N1(X), contradicting the fact that the Ri are all distinct. If Ci
is parallel to Mi2 for i= u, v, w, then (π1|Xbi)∗Ci is parallel to L12 and we may assume that
L12 is an irreducible curve. Applying Claim 3.19 to N1(X)|π∗1L12, we get a similar contradiction.
This proves Theorem 3.4. 2
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Appendix. Termination of extremal rays of fibration

type for the iteration of surjective endomorphisms

Yoshio Fujimoto and Noboru Nakayama

The purpose of this note is to prove the following.

Theorem A.1. Let X be a normal projective variety defined over an algebraically closed field
of characteristic zero such that X has only log-terminal singularities. Let R⊂NE(X) be an
extremal ray such that KXR< 0 and the associated contraction morphism contR is a fibration
to a lower-dimensional variety. Then, for any surjective endomorphism f : X →X, there exists a
positive integer k such that (fk)∗(R) =R for the automorphism (fk)∗ : N1(X) '−→ N1(X) induced
from the iteration fk = f ◦ · · · ◦ f .

A special case is proved in Theorem 2.13 of a recent paper [Zha08b] of D.-Q. Zhang. We
extend and simplify the idea of Zhang. The authors express their gratitude to Professor De-Qi
Zhang for informing them of his paper [Zha08b].

Notation A.2. For a normal projective variety X, let N1(X) denote the vector space NS(X)⊗ R
for the Néron–Severi group NS(X). The dimension of N1(X) is called the Picard number and
is denoted by ρ(X). The numerical equivalence class cl(D) of a Cartier divisor D on X is
regarded as an element of N1(X). The dual vector space of N1(X) is denoted by N1(X), i.e.,
N1(X) = Hom(NS(X), R). An element u ∈ N1(X) is regarded as a linear function on N1(X).
We denote by u⊥ the kernel of u : N1(X)→ R. The cone NE(X) of the numerical equivalence
classes cl(Z) of the effective 1-cycles Z on X is defined in N1(X), by the intersection pairing
D 7→DZ ∈ Z for Cartier divisors D on X.
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The closure of NE(X) in N1(X) is denoted by NE(X), which is a strictly convex cone,
i.e., NE(X) + NE(X)⊂NE(X) and NE(X) ∩ (−NE(X)) = {0}. An extremal ray R of NE(X) is
by definition a one-dimensional face of the cone NE(X), i.e., R= R>0v = u⊥ ∩NE(X) for some
0 6= v ∈NE(X) and for some u ∈ N1(X) which is non-negative on NE(X) as a function on N1(X).
For a Cartier divisor D on X, DR> 0 means that the functional cl(D) on N1(X) is positive on
R\{0}. The meanings of DR= 0 and DR< 0 are similar.

Fact A.3 [Kaw84]. Let X be a normal projective variety with only log-terminal singularities,
i.e., (X, 0) has only log-terminal singularities in the sense of [Kaw84]. For an extremal ray R of
NE(X) with KXR< 0, there exist a proper surjective morphism contR : X → Y onto a normal
projective variety Y satisfying the following two conditions.

(1) Every fiber of contR is connected.

(2) For an irreducible closed curve C on X, contR(C) is a point if and only if cl(C) ∈R.

The morphism contR is uniquely determined by the conditions (1) and (2), and is called the
contraction morphism associated with R. The following property holds by [Kaw84, Corollary 4.4].

(3) If D is a Cartier divisor on X with DR= 0, then D ∼ cont∗R(E) for a Cartier divisor E
on Y .

Remark A.4. Let f : X → Y be a surjective morphism between normal projective varieties.
Then, we have the pullback homomorphism f∗ : N1(Y )→ N1(X) which is well-defined
by f∗(cl(D)) := cl(f∗(D)) for Cartier divisors D on Y . We have also the push-forward
homomorphism f∗ : N1(X)→ N1(Y ) as the dual of f∗. Here, for any irreducible closed curve C
on X, we have f∗(cl(C)) = cl(f∗(C)) for the 1-cycle

f∗(C) =

{
deg(C/f(C))C if f(C) is not a point,
0 otherwise.

Since f is surjective, f∗ : N1(Y )→ N1(X) is injective and f∗ : N1(X)→ N1(Y ) is surjective.
Assume that ρ(X) = ρ(Y ). Then f∗ and f∗ above are both isomorphisms, since N1(X) and
N1(Y ) have the same dimension. In particular, we have f∗(NE(X)) = NE(Y ) from the obvious
equality f∗(NE(X)) = NE(Y ). Moreover, f is a finite morphism; in fact, f(C) is not a point for
any irreducible closed curve C on X by f∗(cl(C)) 6= 0.

Lemma A.5. In the situation of Theorem A.1, f∗(R) is also an extremal ray of NE(X) such
that KXf∗(R)< 0.

Proof. The push-forward map f∗ : N1(X)→ N1(X) is an automorphism preserving the cone
NE(X). Thus, f∗(R) is extremal. Let Ef be the ramification divisor of f : X →X, i.e.,
KX = f∗(KX) + Ef . Since Ef is effective, the restriction of Ef to a general fiber of contR
is also effective. Hence, Efγ > 0 for a general curve γ contracted to a point by contR. Thus
0>KXγ > (f∗KX)γ =KX(f∗γ). Therefore, KXf∗(R)< 0. 2

Notation A.6. For the extremal ray R in Theorem A.1, let Rk be the extremal ray fk∗ (R) for
k > 0. By Fact A.3 and Lemma A.5, we have the associated contraction morphism contRk

, which is
denoted by πk : X → Yk. Then, πk+1 ◦ f = hk ◦ πk for a finite surjective morphism hk : Yk→ Yk+1

165

https://doi.org/10.1112/S0010437X09004278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004278


D.-Q. Zhang

by the condition (2) in Fact A.3; in particular, we have the following commutative diagram.

X

π

��

X

π0

��

f // X

π1

��

f // · · · f // X

πk

��

f // X

πk+1

��

f // · · ·

Y Y0
h0 // Y1

h1 // · · · // Yk
hk // Yk+1

hk+1 // · · ·

Here, we simply write π = π0 and Y = Y0. We define m := dim Y and ρ := ρ(X)− 1 > 0. Then
m= dim Yk, ρ= ρ(Yk), and h∗k : N1(Yk+1)→ N1(Yk) is an isomorphism for any k > 0.

Lemma A.7. Theorem A.1 is true if ρ 6 1.

Proof. Assume that ρ= ρ(X)− 1 = 0. Then N1(X) is one-dimensional and NE(X) is just a single
ray. Thus Rk =R for any k. Assume next that ρ= ρ(X)− 1 = 1. Then NE(X) has exactly two
extremal rays. Hence, f2

∗ preserves each extremal ray. Therefore, R=R2k for any k. 2

Lemma A.8. Let D be a Cartier divisor on Y such that π∗(D)Rk = 0 for some k > 1. If the
self-intersection number Dm 6= 0, then R=Rk.

Proof. By the property (3) in Fact A.3 of the contraction morphism of an extremal ray, we have
a Cartier divisor Dk on Yk such that π∗(D)∼ π∗k(Dk). Let A be an ample divisor on X. Then the
product π∗(D)mAn−m−1 in the Chow ring of X is numerically equivalent to δZ for a non-zero
effective 1-cycle Z and for δ :=Dm 6= 0. Thus,

π∗(L)Z = δ−1π∗(LDm)An−m−1 = 0 and π∗k(Lk)Z = δ−1π∗k(LkD
m
k )An−m−1 = 0

for any Cartier divisor L on Y and any Cartier divisor Lk on Yk. In particular, the numerical
equivalence class cl(Z) is contained in R ∩Rk. Therefore, R=Rk. 2

Proof of Theorem A.1. We shall derive a contradiction from the converse assumption that R 6=Rk
for any k > 1. Then, Rk 6=Rj for any j 6= k, since f∗ : N1(X)→ N1(X) is an automorphism by
Remark A.4. We have ρ > 2 by Lemma A.7. In particular, dim Y =m > 2. Let {H1, . . . , Hρ}
be a set of ample divisors of Y such that {cl(H1), . . . , cl(Hρ)} is a basis of N1(X). We have
(π∗Hi)Rk > 0 for any 1 6 i 6 ρ and k > 1 by the property (3) in Fact A.3, since R 6=Rk. Hence,
we can define a positive rational number a(j)

k for 2 6 j 6 ρ and k > 1 by the equation:

π∗(Hj − a(j)
k H1) ·Rk = 0. (A1)

Then (Hj − a(j)
k H1)m = 0 for any j and k by Lemma A.8. On the other hand, for each 2 6 j 6 ρ,

there exist at most m solutions for x ∈ C of the equation: (Hj − xH1)m = 0. Then, there exist
rational numbers α2, . . . , αρ such that, for infinitely many integers k, the equalities αj = a

(j)
k

hold for any 2 6 j 6 ρ. In fact, we can find a rational number α2 such that the set S2 of positive
integers k with α2 = a

(2)
k is infinite. Next, we can find a rational number α3 such that the set S3

of integers k ∈ S2 with α3 = a
(3)
k is infinite. If the rational numbers αj with the sets Sj up to

l < ρ are selected, then we can find a rational number αl+1 such that the set Sl+1 of integers
k ∈ Sl with αl+1 = a

(l+1)
k is infinite. In this way, we can find α2, α3, . . . , αρ satisfying the required

property.
The real vector subspace

F := π∗(cl(H2 − α2H1))⊥ ∩ · · · ∩ π∗(cl(Hρ − αρH1))⊥ ⊂ N1(X)
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is two-dimensional, since π∗(cl(H2 − α2H1)), . . . , π∗(cl(Hρ − αρH1)) are linearly independent.
We have Rk ⊂ F for infinitely many k by the choice of α2, . . . , αρ and by (A1). This is a
contradiction, since there exist at most two extremal rays of NE(X) contained in the two-
dimensional vector subspace F . Thus, we are done. 2

Remark A.9. In Theorem A.1, we can not allow the case where contR is a birational morphism.
In fact, there exist a smooth projective surface X with an automorphism f and a (−1)-curve γ
on X such that {fk(γ) | k > 0} is infinite. Here, R= R>0 cl(γ) is an extremal ray with KXR< 0
and fk∗ (R) = R>0 cl(fk(γ)) for the (−1)-curve fk(γ). Thus fk∗ (R) 6=R for any k. One of such a
surface X is given as a blown-up surface of P2 whose center is the intersection of two sufficiently
general cubic curves. In fact, X is a rational elliptic surface and any exceptional curve of the
blowing up is a section of the elliptic fibration. Let Γ0 and Γ1 be two exceptional curves. Let XK

be the generic fiber of the elliptic fibration and Pi the point Γi|XK
defined over the function

field K of the base curve. We give a group structure of the elliptic curve XK such that P0 is
the zero element. Then, P1 is not torsion by the choice of cubic curves. The translation mapping
XK →XK by P1 gives rise to a birational automorphism f : X →X, which is in fact regular, since
the elliptic surface X is relatively minimal over the base curve. Therefore, f is an automorphism
of infinite order and fk(Γ1) 6= Γ1 for any k. Thus, the conclusion of Theorem A.1 does not hold
for X, f , and R= R>0 cl(Γ1).
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