n-3 Essential fatty acids decrease weight gain in genetically obese mice

BY STEPHEN C. CUNNANE, KELLY R. MCADOO AND DAVID F. HORROBIN

Efamol Research Institute, PO Box 818, Kentville, Nova Scotia, Canada B4N 4H8

(Received 26 July 1985 – Accepted 18 February 1986)

1. Lean (ln/ln) and obese (ob/ob) mice were given diets containing a fat source of 100 g evening primrose (*Oenothera biennis*) oil (fatty acids 18:2n-6, 18:3n-6; EPO) or 100 g cod liver oil (20:5n-3, 22:6n-3; CLO)/kg diet.

2. Weight gain was lower in the ob/ob mice fed on CLO, an effect unrelated to food intake.

3. In the ob/ob mice fed on CLO, thromboxane synthesis by clotting platelets was reduced compared with that in ob/ob mice fed on EPO.

4. The ob/ob CLO-fed mice had lower arachidonic acid but higher levels of n-3 fatty acids in liver, brown adipose tissue and white adipose tissue.

5. The n-3 fatty acids in CLO therefore replaced the n-6 fatty acids in tissue lipids and reduced synthesis of '2 series' prostaglandins in addition to causing lower weight gain in the CLO-fed ob/ob mice.

The essential fatty acid (EFA) composition of tissues of the obese (ob/ob) mouse has previously been reported (York *et al.* 1982; French *et al.* 1983; Cunnane *et al.* 1985). The consistent observation in these reports has been that, proportionally, liver levels of linoleic acid (18:2n-6) are decreased and arachidonic acid (20:4n-6) is increased. Consistent with the differences in fatty acid composition, synthesis of 20:4n-6 from 18:2n-6 has recently been reported to be increased in the liver microsomes of ob/ob compared with lean (ln/ln)mice (Hughes & York, 1985). In comparison with the increase in 18:2n-6 metabolites in tissues of ob/ob mice, the n-3 EFA were proportionally decreased (Cunnane *et al.* 1985). Comparing the ob/ob mouse and obese Zucker rat, however, it is apparent that the lower 18:2n-6/20:4n-6 value in the *ob/ob* mouse is not a general phenomenon in obese rodents. Whereas the *ob/ob* mouse has higher tissue levels of 20:4n-6, the obese Zucker rat has a higher 18:2n-6/20:4n-6 value suggestive of impaired rather than increased 18:2n-6 metabolism to 20:4n-6 (Wahle & Radcliffe, 1977; Wahle *et al.* 1984).

The observation that diets supplemented with n-6 EFA were associated with significantly increased weight gain in ob/ob mice (Cunnane *et al.* 1985) suggests that the elevated levels of fatty acids derived from 18:2n-6 (dihomo- γ -linolenic acid (20:3n-6) and 20:4n-6) might be associated with obesity in this strain of mice, a possibility supported by the stimulatory effect of 20:4n-6 on blood glucose levels in ob/ob mice (Pratt, 1984). Furthermore, in view of the lower n-3 EFA in the liver of ob/ob mice, it has also been considered possible that supplemental n-6 EFA may have been associated with increased weight gain partly by increasing 20:3n-6 and 20:4n-6, but also by further reducing the n-3 EFA by competitive replacement (Cunnane *et al.* 1985).

20: 3n-6 is the precursor of the '1 series' prostaglandins (PG) and 20: 4n-6 is the precursor of the '2 series' PG. PG have been shown to have bimodal effects on lipolysis; the lower, more physiological concentrations inhibiting lipolysis and the higher concentrations stimulating lipolysis (Kather & Zimmer, 1983). The net effect in vivo is considered to be antilipolytic with PG excess considered to exist in metabolic obesity (Curtis-Prior, 1975). The higher proportions of 20: 3n-6 and 20: 4n-6 in the liver phospholipids (PL) of ob/ob mice suggest a possible origin of excess '2 series' PG which might contribute to obesity in ob/ob mice.

S. C. CUNNANE, K. R. MCADOO AND D. F. HORROBIN

88

In the present study we have therefore addressed the issue of competitive interactions of dietary n-6 and n-3 EFA on the development of obesity in ob/ob mice. The effect of dietary EFA manipulation on PG synthesis was assessed by the generation of thromboxane (TX) A₂ by platelets in freshly clotted blood. In order to control accurately the EFA intake of the ln/ln and ob/ob mice, semi-synthetic diets were given in which the fat component was an oil, the EFA composition of which was primarily n-6 or n-3 fatty acids. These oils were evening primrose (*Oenothera biennis*) oil (720 g 18:2n-6 and 90 g γ -linolenic acid (18:3n-6)/kg oil; EPO), and cod liver oil (80 g eicosapentaenoic acid (20:5n-3) and 80 g docosahexaenoic acid (22:6n-3)/kg oil; CLO).

Our present results support the previous hypothesis that an imbalance in metabolism of n-6 and n-3 EFA exists in ob/ob mice (Cunnane *et al.* 1985). Supplemental n-3 EFA partly offset this abnormality whereas supplemental n-6 EFA contributed to it. Significantly lower production of TXB₂ by platelets in clotting blood from the ob/ob mice fed on supplemental n-3 EFA was also observed.

MATERIALS AND METHODS

Animals and diets

Male ob/ob and ln/ln mice (C57BL/6J) at 6 weeks of age were obtained from Jackson Laboratory, Bar Harbour, ME, USA. They were housed in groups of six in polypropylene cages (Nalgene) and were fed on a semi-synthetic diet (Teklad Test Diets, Madison, WI, USA) and distilled water *ad lib*. The diet contained (g/kg): 200 casein, 600 sucrose, 100 fat source, 55 cellulose, 35 minerals, 10 vitamins in accordance with values recommended by the (US) National Research Council (1978). The fat source was either EPO or CLO. The groups were designated: ln/ln (EPO), ln/ln (CLO), ob/ob (EPO) and ob/ob (CLO).

A small group $(n \ 2)$ of ob/ob and ln/ln mice were fed on a basal diet (Purina rodent chow no. 5001) throughout the study. They were used as a reference for weight gain and liver PL fatty acid analysis since a true 'control' group was not possible in the present study.

The diets were given for 16 weeks. The mice were then anaesthetized with diethyl ether and blood was drawn from the heart. The clotting blood was incubated at 37° for 30 min. Serum was then removed and frozen at -70° . This procedure was designed to maximize TXA₂ synthesis by the clotting platelets. Liver, brown adipose tissue (BAT) and white adipose tissue (epididymal fat; WAT) were dissected, weighed and frozen for analysis.

Analtyical methods

TXB_2

Serum TXB_2 (the stable metabolite of TXA_2) was measured by radioimmunosassay (Soma *et al.* 1985) with antibody purchased from L'Institut Pasteur (Paris).

Total lipids

Serum triacylglycerol (TG) was measured by automated centrifugal analysis using an enzyme assay (Cobas BIO; Roche). Total PL in liver, BAT and WAT were measured by the spectrophotometric method of Stewart (1980) which employs ammonium ferrothiocyanate as the colour reagent. Total TG in liver, BAT and WAT were measured by internal standardization using gas-liquid chromatography. Triheptadecanoin (17:0) was the internal standard and was added to the samples at the stage of total lipid extraction.

Fatty acids

Fatty acid analysis was carried out as previously described (Cunnane et al. 1985). Total lipids of liver, BAT and WAT were extracted with chloroform-methanol and the TG and

Table 1. Final body- and tissue weights, weight gain and food intake of lean (\ln/\ln) and obese (ob/ob) mice fed on diets containing 100 g evening primrose (Oenothera biennis) oil (EPO) or 100 g cod liver oil (CLO)/kg for 16 weeks

(Values are means and standard deviations of six samples. Final body-weight and weight gain values only have been compared with the reference groups (REF) of ln/ln (n 2) and ob/ob (n 2) mice fed on a stock diet)

	EPC)	CLC	DEE	
	Mean	SD	Mean	SD	REF mean
Final body-wt (g)					
ln/ln	36	4	29	5	29
ob/ob	64**	4	56**††	3	65
Change in body-wt (g)					
ln/ln	14	4	7	4	7
ob/ob	28**	4	21**	3	29
Change in body-wt (%)					
In/In	61		29	-	29
ob/ob	76**		55**		77
Liver wt (g)					
ln/ln	1.7	0.3	1.4	0.4	
ob/ob	5.0**	0.6	4.7**	0.8	
Liver (g/kg body-wt)	• •			00	
ln/ln	47	4	48	1	
ob/ob	81**	13	78**	20	
Brown adipose tissue ¹	01	15	70	20	
ln/ln	170	50	130	40	
ob/ob	740**	90	610**	170	
Brown adipose tissue	740	70	010	170	
(g/kg body-wt)					
ln/ln	5	1	4	1	
ob/ob	12**	i	11**	3	
White adipose tissue (g)	12	1	11	5	
ln/ln	0.6	0.2	0.4	0.1	
ob/ob	1.2**	0.4	1.1**	0.3	
White adipose tissue	1 2	04	1.1	0.3	
(g/kg body-wt)					
ln/ln	17	4	17	2	
ob/ob	19	4	20	3 4	
	17	4	20	4	_
Food intake (g/d)	4.0	1.2	27	0.0	4 1
ln/ln	4.0	1.2	3.7	0.8	4.1
ob/ob	5.5	0.7	6.4	1.6	6.5

Mean values were significantly different from those for ln/ln mice (ANOVA): ** P < 0.01.

Mean value was significantly different from that for EPO (Student's t test): $\dagger \dagger P < 0.01$.

‡ Values rounded to nearest 10 mg due to inaccuracy of dissection.

total PL fractions separated by thin-layer chromatography as previously described (Cunnane *et al.* 1985). Fatty acids in these fractions were transmethylated with boron trifluoridemethanol and analysed by gas-liquid chromatography using a Hewlett-Packard 5880 with automated sample delivery and integration of fatty acid peaks.

Statistics

Statistical analyses between groups were done using two-way analysis of variance (ANOVA) and Student's t test where applicable.

https://doi.org/10.1079/BJN19860088 Published online by Cambridge University Press

Table 2. Tissue total phospholipids (PL) and triacylglycerol (TG) in lean (\ln/\ln) and obese (ob/ob) mice fed on diets containing 100 g evening primrose (Oenothera biennis) oil (EPO) or 100 g cod liver oil (CLO)/kg for 16 weeks

	EPC)	CLO		
	Mean	SD	Mean	SD	
Serum					
TG (mg/l)					
ln/ln	1000	280	890	270	
ob/ob	750	140	970	120	
Liver					
PL (mg/g)					
ln/ln	11.8	1.1	12.5	1.2	
ob/ob	11.4	1.9	9.0††	1.9	
TG (mg/g)					
ln/ln	5.0	4.1	5.2	3.4	
ob/ob	25.3**	9.0	17.2**	7.5	
Brown adipose tissue					
PL(mg/g)					
ln/ln	3.1	1.4	4.1	1.1	
ob/ob	0.8**	0.2	1 1**++	0.1	
Total PL (μg)					
ln/ln	470	65	478	83	
ob/ob	470	108	558	112	
TG (mg/g)					
ln/ln	751	91	690	108	
ob/ob	859**	57	825**	60	
White adipose tissue					
PL(mg/g)					
ln/ln	0.8	0.4	1.6	0.9	
ob/ob	0.8	0.1	0.6	0.2	
Total PL (μg)					
ln/ln	480	220	640	330	
ob/ob	960	190	660††	260	
TG (mg/g)					
ln/ln	669	56	619	74	
ob/ob	815**	72	825**	40	

(Values are means and standard deviations for six animals/group)

Mean values were significantly different fom those for ln/ln mice (ANOVA): ** P < 0.01. Mean values were significantly different from those for EPO (Student's t test): $\dagger \uparrow P < 0.01$.

RESULTS

General

Body-weight in the ob/ob (CLO) mice was significantly lower than that in the ob/ob (EPO) group after 10 weeks (P < 0.01) and continued so until the end of the study (difference 14% at 16 weeks, P < 0.01, Table 1). Differences in final body-weight of the ob/ob (CLO) and ob/ob (EPO) mice were reflected by differences in weight gained over the 16-week period (Table 1). Values for the reference groups of ob/ob and ln/ln mice fed on a basal diet are also shown for comparison. The growth curve of the reference ob/ob group was not significantly different from that of the ob/ob (EPO) group but was significantly higher than that of the ob/ob (CLO) group. Growth curves in the ln/ln groups were not significantly different from that of the ob/ob (EPO) mice was significantly less than that gained by the ln/ln (EPO) mice.

Table 3. Proportional composition of fatty acids (mg/g total fatty acids) from liver total
phospholipids of lean (ln/ln) and obese (ob/ob) mice fed on diets containing 100 g evening
primrose (Oenothera biennis) oil (EPO) or 100 g cod liver oil (CLO)/kg for 16 weeks

		EPC)	CLO		DEC	
Fatty acid	Fatty acid		SD	Mean	SD	REF Mean	
16:0	ln/ln	177	37	228††	18	192	
	ob/ob	150**	7	163**†	12	151	
16:1n-7	ln/ln	10	2	21++	4	11	
	ob/ob	28**	2 3	38**++	5	38	
18:0	In'/In	193	11	166††	12	156	
	ob/ob	142**	13	136**	21	130	
18:1n-9	ln/ln	77	22	153††	14	122	
	ob/ob	186**	20	231**††	36	217	
18:2n-6	ln/ln	157	7	37++	7	150	
	ob/ob	141**	10	45**††	7	109	
20:3n-6	ln/ln	22	4	6††	3 2	17	
	ob/ob	18	2	9++	2	26	
20:4n-6	ln/ln	267	11	56††	4	116	
	ob/ob	178**	103	44**††	5	175	
22:5n-6	ln/ln	42	5	nd††		6	
	ob/ob	52	10	nd††		nd	
20:5n-3	ln/ln	nd		69††	10	6	
	ob/ob	nd		101++	21	7	
22:6n-3	ln/ln	21	2	216++	18	148	
	ob/ob	32**	4	152**++	72	124	

(Values for the ob/ob (EPO) and ob/ob (CLO) mice are the means and standard deviations of six samples and are compared with those of the reference ln/ln and ob/ob mice (REF) fed on a stock diet (n 2))

nd, not detected (< 1 mg/g).

4

Mean values for ob/ob mice were significantly different from those for ln/ln mice (ANOVA): ** P < 0.01. Mean values were significantly different from these for EPO (Student's 4 test); *P < 0.05 #* P < 0.01.

Mean values were significantly different from those for EPO (Student's t test): † P < 0.05, † † P < 0.01.

Body and tissue weights at the time of killing the mice are shown in Table 1. Weights of liver, BAT and WAT, both absolute and relative to final body-weight, were greater in the ob/ob groups but were not significantly affected by differences in dietary fat. Food intake was comparable in all the groups of ob/ob mice (EPO, CLO and the reference group) but was greater in the ob/ob than in the ln/ln mice (Table 1).

TXB_2

TXB₂ values in serum from freshly clotted blood were similar in all groups (*ob/ob* (EPO), ln/ln (EPO) and ln/ln (CLO)) except the *ob/ob* (CLO) mice in which the mean values were significantly lower (39 (sD 22) v. 6 (sD 3) ng/ml, P < 0.01).

Total lipids

Serum TG levels were not different between groups (Table 2). Liver total PL was lower in the ob/ob (CLO) group (significant compared only with the ln/ln (CLO) group, P < 0.01). Liver TG was higher in the ob/ob mice but were not significantly different between the ob/ob (CLO) and ob/ob (EPO) mice. BAT total PL was significantly higher in the ln/ln mice (mg/g) but, based on the total weight of the dissected BAT, was equivalent in the ln/ln and ob/ob mice. BAT total TG (mg/g) was not significantly different between the ln/ln and ob/ob mice. WAT total PL (mg/g) was not significantly different between groups. WAT total TG (mg/g)

91

Table 4. Proportional composition of fatty acids (mg/g total fatty acids) from brown adipose tissue phospholipids from lean (ln/ln) and obese (ob/ob) mice fed on diets containing 100 g evening primrose (Oenothera biennis) oil (EPO) or 100 g cod liver oil (CLO) for 16 weeks

			EPO)	CLO	
Fatt	ty acid		Mean	SD	Mean	SD
16	:0	ln/ln	159	37	181	18
		ob/ob	160	13	197††	13
16	:1n-7	ln/ln	60	5	65	18
		ob/ob	62	33	45	8
18	:0	ln/ln	64	22	77†	21
		ob/ob	105**	47	117**	11
18	: in-9	ln/ln	291	32	372††	40
		ob/ob	245**	105	230**	14
18	:2n-6	ln/ln	278	45	54††	24
		ob/ob	227	61	91††	15
20	:3n-6	ln/ln	7	1	2††	0.2
		ob/ob	6	3	4	1
20	:4n-6	ln/In	47	8	34††	4
		ob/ob	102**	9	41**††	4
20	: 5n-3	ln/ln	nd	l	63††	17
		ob/ob	4	1	64††	7
22	:6n-3	ln/ln	40	24	142††	52
		ob/ob	21	6	182††	24

(Values are means and standard deviations for six samples)

nd, not detected (< 1 mg/g).

Mean values were significantly different from those for ln/ln mice (ANOVA): ** P < 0.01.

Mean values were significantly different from those for EPO (Student's t test): †P < 0.05, ††P < 0.01.

was higher in both groups of ob/ob mice than in the ln/ln mice but was not significantly affected by differences in dietary fatty acids.

Fatty acids

The fatty acid composition of the total PL from liver, BAT and WAT is shown in Tables 3-5. The values are of proportional composition (total number of fatty acids integrated equal 100% but since some fatty acids have not been included in the tables, values do not add up to 100%). Quantitative fatty acid levels will also be discussed and are based on the values for total PL and TG (Table 2). In liver and BAT, the TG fatty acids reflected similar differences between groups as the PL fatty acids, hence the TG fatty acids have not been shown.

EPO-fed mice (ln/ln and ob/ob) had proportionally higher levels of all n-6 EFA compared with those fed on CLO. Conversely, CLO-fed mice had proportionally higher n-3 EFA and decreased n-6 EFA. These differences were consistent regardless of tissue or lipid fractions measured. Therefore, only changes in fatty acid composition peculiar to a specific tissue or lipid fraction, or inconsistent with previous observations, will be elaborated on further.

In the total PL of the liver, saturated fatty acids (16:0, 18:0) were lower but monounsaturated fatty acids (16:ln-7 and 18:ln-9) were higher in the ob/ob than in ln/ln groups. In liver total PL, 20:4n-6 was lower in the ob/ob (EPO) and ob/ob (CLO) mice than in the ln/ln (EPO) or ln/ln (CLO) mice. However, in the reference group fed on the basal diet, 20:4n-6 was higher in the liver total PL of the ob/ob than the ln/ln mice (Table 3). In BAT total PL, one particular change in fatty acid composition was notable; 20:4n-6 was Table 5. Proportional fatty acid composition (mg/g total fatty acids) of phospholipids and triacylglycerols of white adipose tissue from lean (ln/ln) and obese (ob/ob) mice fed on diets containing 100 g evening primrose (Oenothera biennis) oil (EPO) or 100 g cod liver oil (CLO)/kg for 16 weeks

			Phos	pholipids	Triacylglycerols				
_		EPO		CLO		EPO		CLO	
Fatty acid		Mean	SD	Mean	SD	Mean	SD	Mean	SD
16:0	ln/ln	112	27	164††	9	142	21	169	16
	ob/ob	108	18	202††	11	157	11	208††	8
16:1n-7	ln/ln	67	10	108††	18	55	9	106††	12
	ob/ob	71	8	40	5	77**	7	133**††	13
18:0	ln/ln	35	12	55	11	12	1	12	1
	ob/ob	63**	11	165**††	13	12	1	11	1
18:ln-9	ln/ln	194	12	363††	47	201	25	465††	68
	ob/ob	348**	49	231**++	14	366	22	471++	27
	ln/ln	430	89	78††	24	498	27	72††	27
	ob/ob	279**	52	128**††	21	351**	30	105**††	13
20:3n-6	ln/ln	7	1	1	1				
	ob/ob	5	3	7	0.2		_		
20:4n-6	ln/ln	22	6	26	6				_
	ob/ob	38**	18	67**††	8	_			
18:3n-3	ln/ln	9	1	55††	8	7	1	74††	10
	ob/ob	14**	6	10**++	3	3**	1	29**++	2
22:6n-3	ln/ln	27	8	55	6	nd		24††	12
	ob/ob	11	5	107††	11	nd		10††	2

(Values are means and standard deviations for six samples)

nd, not detected (< 1 mg/g).

Mean values were significantly different from those for ln/ln mice (ANOVA): ** P < 0.01.

Mean values were significantly different from those for EPO (Student's t test): † P < 0.05, † P < 0.01.

significantly (proportionally and quantitatively) higher in the ob/ob (EPO) group than in the ob/ob (CLO) group or in the ln/ln mice (Table 4). In WAT total PL from the ob/ob mice, levels of 18:2n-6 and 18:ln-9 were inversely proportional to those of 20:4n-6 and 22:6n-3; in the ob/ob (EPO), 18:ln-9 and 18:2n-6 were proportionally higher whereas in the ob/ob (CLO) mice, 20:4n-6 and 22:6n-3 were increased (Table 5). The long-chain non-EFA (16:0, 16:ln-7, 18:ln-9) were significantly higher but 18:2n-6 was significantly lower in the WAT TG of the ob/ob (CLO) compared with ob/ob (EPO) mice.

DISCUSSION

The premise for the present study was that n-6 EFA are proportionally increased and n-3 EFA are proportionally decreased in livers of ob/ob mice. Since n-6 EFA have been shown to increase weight gain in these mice (Cunnane *et al.* 1985), the dietary ratio of these families of EFA might be related to weight gain in ob/ob mice. Thus, the hypothesis was that dietary supplementation with n-3 EFA might reduce weight gain in ob/ob mice. Our present results provide evidence to support a role of n-3 EFA in reducing weight gain in ob/ob mice and suggest that this effect may be associated with (a) reduced n-6 EFA in tissues and (b) reduced 20:4n-6 conversion to '2 series' PG (TXB₂). Energy intake was not statistically different between the ob/ob (CLO) mice and the ob/ob (EPO) mice, indicating that reduced weight

93

gain in the former group was not related to reduced energy intake. Rather, replacement of n-6 EFA by n-3 EFA (both proportionally and quantitatively) in liver and BAT total PL occurred in the ob/ob (CLO) mice, in conjunction with a decrease in total lipids in liver (Table 3).

A central role for 20:4n-6 in the comparative effect of EPO and CLO on weight gain in ob/ob mice seems apparent on the following basis: levels of 20:4n-6 (proportional and quantitative) in liver and BAT total PL from ob/ob (CLO) mice and '2 series' PG, as assayed by TXB₂ synthesized by freshly clotted blood, were decreased in the ob/ob (CLO) mice. Assay of TXB₂ in freshly clotted blood is an accurate estimate of the PG-synthesizing capacity of platelets (Soma *et al.* 1985). Dietary manipulation of platelent TXB₂ synthesis is reproducible but not necessarily representative of effects in other tissues. Nevertheless, n-3 EFA are well-known competitive inhibitors of 20:4n-6 utilization by the platelet cyclooxygenase (Hornstra, 1981). Our findings therefore provide preliminary evidence that reduced weight gain in CLO-fed ob/ob mice occurs concurrently with reduced synthesis of '2 series' PG. The fact that the ln/ln mice had similar TXB₂ levels to the ob/ob (EPO) mice yet weighed significantly less suggests that the effective PG concentration causing lipolysis in the ob/ob and ln/ln mice is different.

In our previous report (Cunnane *et al.* 1985) and in reports of others (French *et al.* 1983; York *et al.* 1982), 20:4n-6 has been shown to be higher in liver PL of ob/ob mice than ln/ln mice. In the reference group of the present study, 20:4n-6 was also higher in the liver PL in the ob/ob mice than in the ln/ln mice. However, in the ob/ob (EPO) and ob/ob (CLO) mice fed on the semi-synthetic diets, 20:4n-6 was lower than in the respective ln/ln groups (Table 3). The likely explanation for this descrepancy must lie in the different composition of the reference and semi-synthetic diets. The ob/ob (EPO) and ob/ob (CLO) mice in the present study were fed on a semi-synthetic diet in order that the total fat intake could be manipulated to maximize differences in n-6 and n-3 EFA intake. The reference group was fed on a basal diet (Purina chow) which was also used previously.

20:4n-6 was significantly higher in the BAT total PL of the ob/ob (EPO) group (proportionally and quantitatively), suggesting that dietary manipulation of EFA composition in BAT may be a significant factor associated with weight gain in ob/ob mice. This is supported by the high degree of incorporation of labelled 18:2n-6 into BAT in EFA-deficient rats (Becker, 1984). EFA (mixed n-6 and n-3) have been shown to have a stimulatory effect on BAT thermogenesis concomitant with reduced weight gain in rats (Nedergaard *et al.* 1983).

S.C.C. was the recipient of an Industrial Research Fellowship from the National Science and Engineering Research Council of Canada. Excellent technical assistance was provided by N. Morse, D. K. Jenkins, V. Kyte and S. Sheffield.

REFERENCES

Becker, W. (1984). Journal of Nutrition 114, 1690-1696.

- Cunnane, S. C., Manku, M. S. & Horrobin, D. F. (1985). British Journal of Nutrition 53, 441-448.
- Curtis-Prior, P. B. (1975). Lancet i, 897-899.
- French, R. R., York, D. A., Portman, J. A. & Isaacs, K. (1983). Comparative Biochemistry and Physiology 76B, 309-319.
- Hornstra, G. (1981). Progress in Lipid Research 20, 407-413.
- Hughes, S. & York, D. A. (1985). Biochemical Journal 225, 307-313.
- Kather, H. & Zimmer, B. (1983). Advances in Prostaglandin and Thromboxane Research 12, 253-259.

National Research Council (1978). Nutrient Requirements of Domestic Animals no. 10, Nutrient Requirements of Laboratory Animals, 3rd ed. Washington, DC: National Academy of Sciences.

Nedergaard, J., Becker, W. & Cannon, B. (1983). Journal of Nutrition 113, 1717-1724.

n-3 Essential fatty acids in obese mice

- Pratt, J. D. (1984). Hormone and Metabolic Research 16, 152–153. Soma, M., Manku, M. S., Jenkins, D. K. & Horrobin, D. F. (1985). Prostaglandins 29, 323–333.
- Stewart, J. C. M. (1980). Analytical Biochemistry 104, 10–14. Wahle, K. W. J., Duncan, A. M. & Coutts, L. (1984). Proceedings of the Nutrition Society 43, 97A.
- Wahle, K. W. J. & Radcliffe, J. R. (1977). Lipids 12, 135-139.
- York, D. A., Hyslop, P. A. & French, R. R. (1982). Biochemical Biophysical Research Communications 106, 1479-1483.