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Abstract

Let {Mn}n≥0 be a nonnegative time-homogeneous Markov process. The quasistationary
distributions referred to in this note are of the form QA(x) = limn→∞ P(Mn ≤ x | M0 ≤
A, M1 ≤ A, . . . , Mn ≤ A). Suppose that M0 has distribution QA, and define
T

QA

A = min{n | Mn > A, n ≥ 1}, the first time when Mn exceeds A. We provide
sufficient conditions for QA(x) to be nonincreasing in A (for fixed x) and for T

QA

A to
be stochastically nondecreasing in A.
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1. Introduction

Quasistationary distributions come up naturally in the context of first exit times of Markov
processes. Of special interest—in particular in statistical applications—is the case of a non-
negative Markov process, where the first time that the process exceeds a fixed level signals that
some action is to be taken. The quasistationary distribution is the distribution of the state of the
process if a long time has passed and yet no crossover has occurred.

Various topics pertaining to quasistationary distributions are existence, calculation, simula-
tion, etc. For an extensive bibliography, see [6].

The topic addressed in this paper deals with a certain aspect of the quasistationary distribution
QA as a function of A. Pollak and Siegmund [5] have shown, under certain conditions, that if
a stationary distribution Q exists then QA → Q as A → ∞. Here we study a monotonicity
property of QA and apply it to the behavior of the expected time of the first exceedance of A by
a Markov process started at QA, as a function of A. Specifically, we provide conditions under
which QA is nonincreasing.

This paper is organized as follows. We present our results and their proofs in Section 2.
In Section 3 we provide examples of interesting cases where the conditions that we posit in
Section 2 are satisfied. We discuss the meaning and relevance of our results in Section 4.
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2. Results

Let (�, F , P) be a probability space, and let {Mn}∞n=0 be an irreducible Markov process
defined on this space taking values in M ⊆ [0, ∞) and having time-homogeneous transition
probabilities ρ(t, x) = P(Mn+1 ≤ x | Mn = t).

Let TA = min{n | Mn > A, n ≥ 0}, and assume that the following conditions hold.

(C1) The quasistationary distribution

QA(x) = lim
n→∞ P(Mn ≤ x | TA > n)

exists for all A > A0 ≥ 0 (for some A0 < ∞) and satisfies QA(0) = 0.

(C2) ρ(s, x) is nonincreasing in s for all fixed x ∈ M.

(C3) ρ(ts, tx) is nondecreasing in t for all fixed s, x ∈ M.

(C4) ρ(s, x)/ρ(s, A) is nonincreasing in s for all fixed x ∈ M, x ≤ A.

(C5) ρ(ts, tx)/ρ(ts, tA) is nondecreasing in t for all fixed s, x ∈ M, x ≤ A.

Now regard the case where M0 has distribution QA, and define

T
QA

A = min{n | Mn > A, n ≥ 1; M0 ∼ QA}.
Theorem 1. Let conditions (C1)–(C5) be satisfied. Then

(i) M0 is stochastically nondecreasing in A, i.e. QA1(x) ≥ QA2(x) for all x if A1 < A2;

(ii) QyA(yx) ≥ QA(x) for all y ≥ 1 and all fixed x ∈ M, x ≤ A;

(iii) T
QA

A

st	 T
QyA

yA for all y ≥ 1, where ‘
st	’ stands for ‘stochastically smaller than (or equal

to)’. In particular, it follows that E[T QA

A ] ≤ E[T QyA

yA ] for all y ≥ 1.

Although conditions (C1)–(C5) are restrictive, they are nevertheless satisfied in a number of
interesting cases, some of which are provided in the next section.

Proof of Theorem 1. Let {Un}n≥0 be a Markov process with time-homogeneous transition
probabilities

P(Un+1 ≤ x | Un = t) = ρ(t, x)

ρ(t, A)
, x ≤ A,

where A > 0 is fixed and U0 has an arbitrary distribution (possibly degenerate) on [0, A].
(i) Let y > 1, and define {Vn} to be a Markov process with V0 = yU0, having time-

homogeneous transition probabilities

P(Vn+1 ≤ x | Vn = t) = ρ(t, x)

ρ(t, yA)
, x ≤ yA. (1)

Clearly, the quasistationary distribution of {Vn} is QyA. By condition (C4),

ρ(U0, x)

ρ(U0, A)
≥ ρ(V0, x)

ρ(V0, A)
≥ ρ(V0, x)

ρ(V0, yA)
.

It follows that U1
st	 V1. Therefore, we can construct a sample space where U0 ≤ V0 and

U1 ≤ V1. Repeating this with U1, V1 replacing U0, V0 we obtain U2 ≤ V2. So, we can construct
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a sample space where U0 ≤ V0, U1 ≤ V1, and U2 ≤ V2. Continuing with this inductively we
obtain a sample space where Un ≤ Vn for all n ≥ 0. Consequently, limn→∞ P(Un > x) ≤
limn→∞ P(Vn > x), i.e. QA(x) ≥ QyA(x), accounting for (i).

(ii) Define Wn = yUn, and (as above) let {Vn}n≥0 be a Markov process with V0 = W0 = yU0,
having time-homogeneous transition probabilities (1). Clearly, the quasistationary distribution
of {Vn} is QyA(x) and that of {Wn} is QA(x/y).

Since

P(V1 ≤ x | V0) = ρ(V0, x)

ρ(V0, yA)

≥ ρ(V0/y, x/y)

ρ(V0/y, A)

= P

(
U1 ≤ 1

y
x

∣∣∣∣ U0 = 1

y
V0

)
= P(W1 ≤ x | W0 = V0),

it follows that V1
st	 W1. Therefore, we can construct a sample space on which U0, U1, V0, V1,

W0, W1 are all defined and such that V1 ≤ W1 almost surely (a.s.). Write V1 = s and W1 = t ,
where s ≤ t ≤ yA, s, t ∈ M. Now (by virtue of (C5))

P(V2 ≤ x | V1 = s) = ρ(s, x)

ρ(s, yA)

≥ ρ(t, x)

ρ(t, yA)

≥ ρ(t/y, x/y)

ρ(t/y, A)

= P

(
U2 ≤ 1

y
x

∣∣∣∣ U1 = 1

y
t

)
= P(W2 ≤ x | W1 = t),

so that V2
st	 W2, and we can construct a sample space on which U0, U1, U2, V0, V1, V2, W0,

W1, W2 are all defined and V0 = W0, V1 ≤ W1, V2 ≤ W2 a.s. Continuing this inductively,
we obtain a sample space on which {Un}, {Vn}, {Wn} are all defined and Vn ≤ Wn a.s. for all
n ≥ 0. Consequently, limn→∞ P(Vn > x) ≤ limn→∞ P(Wn > x), i.e. QyA(x) ≥ QA(x/y),
accounting for (ii).

(iii) Note that both first exit times T
QA

A and T
QyA

yA are geometrically distributed random
variables, with

1 −
∫ A

0
ρ(s, A) dQA(s)

and

1 −
∫ yA

0
ρ(s, yA) dQyA(s),

the respective parameters of ‘success’. Hence, it suffices to show that

∫ yA

0
ρ(s, yA) dQyA(s) ≥

∫ A

0
ρ(s, A) dQA(s) for y ≥ 1.
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Note that ρ(ds, t) ≤ 0. Therefore, integrating by parts yields∫ yA

0
ρ(s, yA) dQyA(s)

= ρ(s, yA)QyA(s)|yA
0 −

∫ yA

0
QyA(s)ρ(ds, yA)

= ρ(yA, yA) −
∫ yA

0
QyA(s)ρ(ds, yA) (since QyA(0) = 0 by (C1))

≥ ρ(yA, yA) −
∫ yA

0
QA

(
s

y

)
ρ(ds, yA) (by (ii))

= ρ(yt, yA)QA(t)|A0 −
∫ A

0
QA(t)ρ(d(yt), yA)

=
∫ A

0
ρ(yt, yA) dQA(t)

≥
∫ A

0
ρ(t, A) dQA(t) (by (C3)),

which completes the proof.

3. Examples

Suppose that {Mn}n≥0 obeys a recursion of the form

Mn+1 = ϕ(Mn)�n+1, n = 0, 1, . . . ,

where

(D1) {�i}i≥1 are independent, identically distributed (i.i.d.) positive and continuous random
variables;

(D2) the distribution function F of �i satisfies

F(tx)

F (tA)
increases in t, t > 0, for fixed x ∈ M, x ≤ A;

(D3) ϕ(t) is continuous, positive, and nondecreasing in t ;

(D4) t/ϕ(t) is nondecreasing in t ;

(D5) ϕ and F are such that P(limn→∞ Mn = 0) = 0.

In this example,

ρ(s, x) = F

(
x

ϕ(s)

)
.

Under these conditions, Theorem III.10.1 of [2] can be applied to obtain the existence of a
quasistationary distribution. Conditions (D1)–(D5) are easily seen to imply conditions (C1)–
(C5).

Condition (D2) is equivalent to the log of the cumulative distribution function of log(�1)

being concave. This is satisfied, for example, if log(�1) = aY + b, where a and b are real
numbers and Y has a normal or an exponential distribution.
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Many ‘popular’ Markov processes fit this model, some of which we now outline.
(a) The exponentially weighted moving average (EWMA) processes:

Yn+1 = αYn + ξn+1, n ≥ 0,

where 0 ≤ α < 1 and the {ξi} are i.i.d. continuous random variables. Define Mn = eYn and
�n = eξn . Here ϕ(t) = tα .

(b) Let a > 0 and ϕ(t) = t + a, so that Mn+1 = (Mn + a)�n+1. When a = 1 and �n+1
is a likelihood ratio (�n+1 = f1(Xn+1)/f0(Xn+1), where the Xi are i.i.d. with density f0),
{Mn}n≥0 is a sequence of Shiryaev–Roberts statistics for detecting a change in distribution of
Xi , from density f0 to f1. The standard Shiryaev–Roberts procedure calls for setting M0 = 0,
specifying a threshold A, and declaring at TA = min{n | Mn > A} that a change took place.
A procedure T

QA

A that starts at a random point M0 ∼ QA has asymptotic optimality properties
(cf. [3], [4], and [7]). Another setting is where ri is the return on (one unit of) investment in
the ith period and �i = 1 + ri , so that an investment of m units at the beginning of the ith
period will be worth m�i at its end. If one invests a units at the beginning of the first period,
reinvests the a�i units and adds another a units at the beginning of the second period, and
continues this way (i.e. always reinvesting and adding a units at every period), then the process
Mn+1 = ϕ(Mn)�n+1 with ϕ(t) = t + a describes the scheme.

(c) The random walk reflected from the zero barrier:

Y0 = 0, Yn+1 = (Yn + Zn+1)
+, n = 0, 1, . . . ,

where the {Zi} are i.i.d. and P(Zi < 0) > 0. Note that on the positive half-plane the trajectory of
the reflected random walk {Yn}n≥0 is identical to the trajectory of the Markov process {Y ∗

n }n≥0
given by the recursion

Y ∗
0 = 0, Y ∗

n+1 = (Y ∗
n )+ + Zn+1, n = 0, 1, . . . .

Therefore, if log A > 0, we may operate with Y ∗
n instead of Yn and all conclusions will be the

same. Define Mn = eY ∗
n and �i = eZi , so that

Mn+1 = max(Mn, 1)�n+1, n ≥ 0.

Here ϕ(t) = max(1, t). This process describes a broad class of single-channel queueing
systems (see, e.g. [1]). This setting can also be applied to the Cusum scheme for detecting a
change in distribution, when Zi = log[f1(Xi)/f0(Xi)], and Xi , f0, and f1 are as in (b).

4. Discussion

(a) The problem addressed in this paper sheds some light on the behavior of a Markov process
constrained to a certain set. Often one starts to observe a sequence well after its initiation. If
in the past the process never exited a given set then the quasistationary distribution is relevant,
especially since it often kicks in fairly rapidly.

While this is of considerable interest in its own merit, our interest stems from certain aspects
in changepoint detection theory. Suppose that a system yields a sequence of independent
observations X1, X2, . . . , Xn. When the system is in control, the observations are i.i.d. with
known density f0. The system may go out of control, in which case a quick detection of the
occurrence of the change is desirable. Consider the case where the change is abrupt, being
manifest by a sustained change of the density of the observations to f1. A trigger-happy
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detection scheme may set off frequent false alarms, whereas a conservative scheme may cause
a long delay of detection. Common operating characteristics of a detection scheme are the
average run length to false alarm (ARL2FA) and average delay to detection (ADD), and the
common constraint on the false alarm rate is a requirement that ARL2FA ≥ B for some B ≥ 1.

The problem with a long history is finding a procedure that minimizes ADD subject to
ARL2FA ≥ B, and in tandem what this minimum is. One popular procedure that has certain
optimality properties is the Shiryaev–Roberts procedure, which is based on the sequence of
statistics

Rn =
n∑

k=1

n∏
i=k

f1(Xi)

f0(Xi)
,

and raises an alarm at
T sr

A = min{n | Rn ≥ A, n ≥ 1},
where A is suitably chosen so that ARL2FA = B. It is easy to see that the sequence {Rn}n≥1
is a Markov process, satisfying the recursion

Rn+1 = (Rn + 1)
f1(Xn+1)

f0(Xn+1)
, R0 = 0.

Pollak [4] (see also [7]) showed that if Rn is started off at R0 that has a quasistationary
distribution QA (where A is selected in such a way that ARL2FA = B), then the rule that
announces a detection the first time that the resulting Markov process exceeds A attains the
minimum ADD up to an additive term o(1), where o(1) → 0 as B → ∞. It is intuitive to
expect that the run length to false alarm of such a procedure is stochastically increasing in A,
something that implies monotonicity in A of the ARL2FA. This is important in the sense of
guaranteeing (for given B) a unique solution to the equation B = ARL2FA of T

QA

A .
(b) Some of the conditions (C1)–(C5) are ‘natural’, others less so. Condition (C2) is known

in the literature as ‘stochastic monotonicity’, a formulation of a situation where one would
expect the next observation to be larger when the present observation is large than when it is
small. Condition (C4) means the same when the process is constrained to [0, A]. Condition
(C3) is a brake on the rate of decrease in (C2) and condition (C5) does the same for (C4). In a
similar vein, Theorem 1(ii) is a brake on the rate of increase (in A) of Theorem 1(i).

(c) At a first glance, the monotonicity properties in A of QA and T
QA

A are ‘obvious’. At a
second glance, however, they are not easy to prove. As a matter of fact, monotonicity does not
hold in full generality, as the following counterexample indicates.

Let {Un} be a time-homogeneous Markov process defined by the transition probabilities

P(Un ≤ x | Un−1 = t) = ρ(t, x) =
{

1
2x if t ≤ 1,

1 if t > 1,

where 0 ≤ x ≤ 2. Clearly, QA is a U [0, A] distribution when A ≤ 1. When 1 < A ≤ 2,
obviously QA(0) = 1 − QA(1), so that QA(x) = QA(1)x/A + [1 − QA(1)] for 0 ≤ x ≤ A.
Plugging in x = 1 yields

QA(1) = A

2A − 1
, QA(0) = A − 1

2A − 1
, QA(x) = x + A − 1

2A − 1
.

So, for example, Q1 and Q2 intersect, meaning that there is no monotonicity relation between
them.
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