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Hill Stability in the Full 3-Body Problem

D. J. Scheeres

Abstract. Hill stability cannot be easily established in the classical 3-body problem with point
masses, as sufficient energy for escape of one of the bodies can always be extracted from the
gravitational potential energy. For the finite density, so-called Full 3-body problem the lower
limits on the gravitational potential energy ensure that Hill stability can exist. For the equal
mass Full 3-body problem this can be easily established, with the result that for any equal mass,
finite density 3-body problem in or near a contact equilibrium, none of the components of the
system can escape in the ensuing motion.
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1. Introduction
In Scheeres 2012 the Full N -body problem is introduced, distinguished from the tra-

ditional N -body problem in that each body has a finite density, and hence two bodies
cannot come arbitrarily close to each other. The finite-sized bodies are assumed to be
rigid, and only exhibit contact forces between each other of friction and coefficient of
restitution. This means that relative equilibria must also include resting configurations,
with all relative motion between components zeroed. This both results in new possible
relative equilibrium configurations of an N -body system, with components resting on
each other, and also places lower limits on the gravitational potential energy. This model
has been developed to describe the relative mechanics and dynamics of self-gravitating
rubble pile asteroids, where the relative forces between components are weak enough for
the rigidity of the components to not be compromised. In Scheeres 2012 it is shown how
this simple change provides a drastic modification of the stable states of the 2 and 3
body problems. For the 3-body problem under the restriction that the bodies are equal
mass spheres these relative equilibria are shown in Fig. 1, and in addition to the classical
Euler and Lagrange solutions also include the so-called Resting Euler, Resting Lagrange,
Transitional, Transverse and Aligned. The energetic stability of these solutions are indi-
cated on the figure, with light being stable and dark being unstable. In Fig. 2 we show
the energy / angular momentum chart of these equilibria, which traces out the total
(normalized) energy as a function of angular momentum for each relative equilibrium.
Wherever a line stops or the ends of two lines meet each other indicates a bifurcation
point where the equilibrium may not longer exist or may transition to a different type.
We note that the Lagrange and Transverse configuration lines are not shown although
they are indicated at the top of the chart, and that these bifurcate into existence once the
Lagrange Resting equilibrium loses its stability. Similarly the Euler Resting configuration
line is not shown, but comes into existence when the Euler Resting equilibrium loses its
stability. The current paper explores one aspect of this problem, namely whether Hill
stability can be proven to exist for such a Full 3-body problem.
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2. Background
The main results are established by using the minimum energy function defined in

Scheeres 2012, which can be derived from Sundman’s Inequality:

E =
1
2

H2

IH
+ U � E (2.1)

where E and H are the total energy and angular momentum of the system, including
translational and rotational motion, IH is the total moment of inertia of the system
about the fixed total angular momentum vector of the system, and U is the gravitational
potential energy of the system. The function E is intimately related to Smale’s Amended
Potential (Smale 1970) and can be used to discover all of the previously mentioned
relative equilibria as outlined in Scheeres 2012.

If we assume that the three bodies are of equal mass and density the system can be
normalized such that
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]
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where rij denotes the distance between bodies i and j. For a finite density system, the
distance between the bodies has a lower limit such that rij � 1. This implies that the
potential energy and moment of inertia have lower limits, as indicated above. For a point
mass 3-body problem the lower limit on relative distance is rij � 0, meaning that there
is no lower limit on the potential energy for that case.

Finally, we define the stability concept of interest for this paper.

Definition: A system is Hill Stable if rij < C < ∞ for all time, both future and past.

3. Hill Stability of the equal mass Full 3-Body Problem
Hill stability tells us whether the components of a gravitating system can escape with

respect to each other. In the two body problem, both full and point mass, this is simply
established by considering the total energy of the system: If it is positive the system is
not Hill stable in general, while if it is negative it is Hill stable. For multi-particle systems
this simple result no longer holds. In general, for the point mass N -body problem it can
be shown that if a system has a positive energy, then the system is not Hill stable, and
that at least one body must escape (Pollard 1976). Thus, a Necessary Condition for Hill
Stability in the N -body problem is that E < 0.

Thus, while Hill Stability can exist in the point mass 3-body problem, it cannot be
rigorously shown based on simple inequalities, such as is possible in the restricted 3-body
problem. At best, as discussed in Marchal and Saari 1975, constraints can be given for
when exchanges cannot occur. This difficulty of establishing a sufficient condition for
Hill Stability in the point mass 3-body problem can be understood by considering the
minimum energy function E � E. If one of the bodies escapes from the other two, say
body 1, then r12 , r31 → ∞ while r23 < ∞ (note, since E < 0, r23 cannot become arbi-
trarily large without violating Sundman’s Inequality). Then E → −1/r23 � E, leading
to r23 � −1/E. In the point mass problem the only restriction is that r23 � 0, thus this
inequality is always satisfied, providing no definite restrictions.
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For the Full 3-body problem, with our constraint rij � 1, we note that the poten-
tial energy between each body, Uij = −1/rij has a lower limit, Uij � −1. With this
observation, we can present the following Theorem and Proof.

Theorem: Consider an equal mass, finite density 3-body problem that has been nor-
malized as in Eqns. 2.2 and 2.3. If E < −1 then it is Hill Stable.

To prove, we first establish the result by contradiction and then show that systems
that satisfy the constraint exist.

Proof. Given E < −1, assume that one of the bodies, say body 1, undergoes escape.
Then r12 , r31 → ∞, and E → −1/r23 . However, the Sundman inequality E � E < −1
must still hold, leading to the inequality r23 < 1, a contradiction since in the normalized
Full Body Problem we must have r23 � 1.

To show that systems with E < −1 can exist in the equal mass Full 3-body problem,
consider Fig. 2, modified from Scheeres 2012. From this figure it is evident that all relative
equilibrium configurations that have a resting component have an energy less than -1, for
both stable and unstable configurations. Only orbital relative equilibria can have energies
above this limit. Finally, note that the energy of the stable Aligned Configuration has an
energy value < −1, for all finite distance between the components.

Note that if a system is Hill stable, one cannot conclude that E < −1, making this
only a sufficient condition. In fact, the particular solutions of the Lagrange and Euler
relative equilibria are both Hill Stable (even though they are unstable to small variations
in general), and both can exist at energies above −1.

The theorem leads directly to the following corollary.

Corollary: All motions starting close enough to relative equilibrium in the Full 3-body
problem that have resting elements are Hill Stable.

Proof. The complete set of resting relative equilibria is presented in Fig. 2, and estab-
lished through proof in Scheeres 2012. All of these equilibria have a total energy strictly
less than −1. Thus, any deviation from a relative equilibrium can be made small enough
such that the energy remains less than −1, and thus by the previous theorem are Hill
stable.

4. Discussion
The results presented in the above Theorem and Corollary have implications. Any

equal mass 3-body system that undergoes rotational fission due to exogenous effects that
increase its angular momentum over time will be Hill stable, and the components will
not be able to escape from each other. This mirrors a similar result in Scheeres 2009
for the Full 2-body problem, where an equal mass resting configuration spun to fission
is dynamically unstable, yet is Hill stable and cannot mutually escape. The implication
(somewhat limited due to the strong model assumptions), is that an equal mass ‘contact
triple’ asteroid will remain a contact triple, mirroring the more general results for two
component bodies described in Jacobson & Scheeres 2011.

In analogy with the Full 2-body problem, these Hill stability results are not expected
to exist in the more general problem where the bodies do not have equal mass. Thus,
similar to the Full 2-body problem described in Scheeres 2009 there should exist limits on
the relative masses of a Full 3-body problem for the relative equilibrium configurations
to be Hill stable. Future research will probe this.
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Figure 1. Relative equilibria in the equal mass, finite density 3-body problem.

Figure 2. Chart showing the energy and angular momentum for all classes of relative equilibria
in the equal mass Full 3-Body Problem. Cusps occur when the lines meet each other and indicate
a bifurcation either creating or destroying relative equilibria.
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