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Abstract

The comparison of lifetimes has been treated extensively during the last decade. A wide
variety of mathematical objects have been defined, which, in reliability theory, are used
to quantify ageing properties. In this work, using the equilibrium variable, we give a new
viewpoint on ageing properties. Moreover, we give new bounds on the moments of series
systems.
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1. Introduction

Ageing was defined for positive random variables forty years ago. In the last decade,
many developments have taken place. In order to take into account the numerous fields of
application, various new approaches have been proposed. Usually an ageing property is based
on a comparison (with respect to a stochastic order) between the lifetime and the residual time
(or another lifetime).

1.1. The equilibrium variable

Let X be a nonnegative continuous random variable with absolutely continuous distribution
FX. Let us denote the survival distribution by FX = 1 − FX, the density function by fX, the
expectation, which is assumed to be finite, by m = E[X], and the second-order moment, which
is also assumed to be finite, by m2 = E[X2].

Now, let X̃ be a random variable with density function f
X̃

, defined from the tail of X by

f
X̃
(t) = FX(t)

m
for any positive t.

Its survival function is denoted by F
X̃
(·), and its mean m̃ is well known to be

m̃ = m2

2m
.

We call X̃ the equilibrium variable of X. Its distribution is known as the equilibrium distribution
of X in renewal process theory. It is also called the integrated tail function.

If the variable X has a finite moment of order k, k ≥ 2, then the equilibrium variable of
order k is defined as

X̃(k) = ˜

X̃(k−1)
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using the following density:

f
X̃(k) (t) = F

X̃(k−1) (t)

E[X̃(k−1)] ,

where, for k = 1, X̃(1) = X̃.
Let lX = min{u : FX(u) = 0} and, for t ≤ lX, let us define Xt , the residual lifetime of X,

using its survival distribution, as follows:

FXt (x) = FX(t + x)

FX(t)
.

Also, the hazard rate is defined by

hX(t) = fX(t)

FX(t)
.

1.2. Usual stochastic orders

In order to compare different ways to define ageing, let us recall the usual definitions of the
partial stochastic orders that we will use (see, for example, Shaked and Shanthikumar (1994)).

Definition 1. Let X and Y be nonnegative continuous random variables such that lX =
min{u : FX(u) = 0} and lY = min{u : FY (u) = 0}, respectively, and l = min{lX, lY }.
(a) The random variable X is said to be smaller than Y with respect to the usual stochastic order
(written X ≤st Y ) if, for any u ≥ 0,

FX(u) ≤ FY (u).

(b) The random variable X is said to be smaller than Y in the hazard-rate order (written X ≤hr Y )
if, for any u ∈ [0, l],

hX(u) ≥ hY (u)

or, equivalently,

FX(u)

FY (u)
is decreasing. (1)

(c) The random variable X is said to be smaller than Y in the likelihood ratio (denoted by
X ≤lr Y ) if, for any 0 ≤ u ≤ v ≤ l,

fX(u)fY (v) − fX(v)fY (u) ≥ 0.

These definitions come from different fields of reliability theory, and they are used in the
limiting case, where l = +∞.

For two nonnegative random variables X and Y , the following chain of implications is well
known:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (2)
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1.3. Ageing properties

The ageing property is introduced in reliability to quantify the fact that a system which is
functioning at time t has a survival lifetime that is less than the initial one. The comparison
can be based upon various criteria depending on stochastic order. The most popular notions of
ageing are based on the comparison of the residual lifetime to the initial lifetime with respect to
the failure rate and the stochastic and mean orders (see, for example, Desphande et al. (1986),
Klefsjö (1982), and Shaked and Shanthikumar (1994)).

We propose to define these ageing properties in terms of equilibrium variables.

Definition 2. A nonnegative continuous random variable X can be defined as follows. (This
list is not exhaustive.)

(a) The random variable X is increasing failure rate (IFR) if, for any t ∈ [0, lX],

hX(t) = fX(t)

FX(t)
is increasing,

or, equivalently,
X̃ ≤lr X.

(b) The random variable X is decreasing mean residual life (DMLR) if, for any t ∈ [0, lX],

E[Xt ] =
∫ ∞
t

F (u) du

F(t)
is decreasing,

or, equivalently (see, for example, Belzunce et al. (1999)),

X̃ is IFR, (3)

or, equivalently,
X̃ ≤hr X. (4)

(c) The random variable X is harmonic new better than used in expectation (HNBUE) if, for
any x ≥ 0, ∫ ∞

x

FX(u) du ≤ me−x/m.

This is equivalent to (see Klefsjö (1982))

X̃ ≤st Em,

where Em is an exponential random variable with mean m.

The following implications are well known (see, for example, Shaked and Shanthikumar
(1994)):

IFR ⇒ DMRL ⇒ HNBUE. (5)

2. Ageing properties and series system

In this section, we are interested in the mean time of a series system. We recall the following
result (see Shaked and Shanthikumar (1994)) about the preservation of the orders st and hr.
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2.1. Stability by series

Proposition 1. Let X1, . . . , Xn and Y1, . . . , Yn be independent random variables with survival
functions FX1 , . . . , FXn and FY1 , . . . , F Yn , respectively.

If Xi ≤∗ Yi for all i = 1, . . . , n, then

X1 ∧ · · · ∧ Xn ≤∗ Y1 ∧ · · · ∧ Yn,

where ≤∗ denotes st or hr order and X ∧ Y = min(X, Y ).
For lr ordering this implication is true for independent, identically distributed variables.

The stability-by-series system is quite natural in an ageing context because of the following
relation:

(X ∧ Y )t =st Xt ∧ Yt for all t ≥ 0.

Therefore, it is sufficient to have stability of the minimum.
The stability of the ageing property DMRL, based upon the residual life of k-out-of-n

systems, is given by Li and Zuo (2002).

2.2. Bounds for the moment of a series system

Bounds exist for the mean time-to-failure of a series system in the case of ageing components.
Here, we present bounds for the moments of order n, n ≥ 2, under the DMRL assumption.
First, recall the following results.

Lemma 1. (Klefsjö (1982, p. 333).) Let X1, . . . , Xp be p independent nonnegative random
variables. If Xi has the HNBUE property for all i, then

E[X1 ∧ · · · ∧ Xp] ≥ 1∑p
i=1(1/ E[Xi])

. (6)

Proposition 2. Let X be a nonnegative random variable and X̃(k) be the equilibrium variable
of X of order k. If X has a finite moment of order n (denoted by mn), then

mn = n!
n−1∏
k=0

m̃(k) for all n ≥ 2, (7)

where m̃(k) = E[X̃(k)] is the mean of the equilibrium variable X̃(k). Moreover, m̃(0) = m and
m̃(1) = m̃.

Proof. We have seen that, for n = 2,

m2 = 2mm̃.

Integrating by parts gives
mn = nm̃(n−1)mn−1,

which proves (7) by induction.

Corollary 1. Let X be a nonnegative random variable and X̃(n) be the equilibrium variable of
X of order n. If X has a finite moment mn of order n, then the mean of X̃(n−1) is equal to

m̃(n−1) = E[X̃(n−1)] = mn

nmn−1
.
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The connection between the ageing properties of the variable and its equilibrium variable is
presented in the following result.

Lemma 2. Let X be a nonnegative random variable with a finite moment of order n. If X has
the DMRL property, then the equilibrium variable X̃(n) of X of order n is IFR.

Proof. From the DMRL property of X and the property given by (3), X̃ is IFR. Using the
relation (5) gives the DMRL property of X̃. Thus, X̃(2) is IFR and, clearly, X̃(n) has the IFR
property.

Theorem 1. Let X and Y be independent nonnegative random variables. Let X̃(k) and Ỹ (k)

be, respectively, the independent equilibrium variables of X and Y of order k. If X and Y have
the DMRL property and if the nth moments of X and Y are finite, then

X̃(n) ∧ Ỹ (n) ≤lr ˜X ∧ Y
(n)

, (8)

where ˜X ∧ Y
(n)

is the equilibrium variable of X ∧ Y of order n.

Proof. For n = 1, X̃ and Ỹ are independent and, thus, the density of X̃ ∧ Ỹ , for t ∈ [0, l],
can be written as follows:

f
X̃∧Ỹ

(t) = f
X̃
(t)F

Ỹ
(t) + f

Ỹ
(t)F

X̃
(t).

The density of ˜X ∧ Y is

f
˜X∧Y

(t) = FX(t)F Y (t)

E[X ∧ Y ] .

Using the notation m = E[X], r = E[Y ], m(t) = E[Xt ], and r(t) = E[Yt ], the likelihood ratio
can be written as

f
X̃∧Ỹ

f
˜X∧Y

(t) = E[X ∧ Y ]
mr

(m(t) + r(t)).

From the assumption that X and Y have the DMRL property, we find that m(t) and r(t) are
decreasing. Thus, for any 0 ≤ u ≤ v ≤ l,

f
X̃∧Ỹ

(u)f
˜X∧Y

(v) − f
X̃∧Ỹ

(v)f
˜X∧Y

(u) ≥ 0,

which leads to X̃ ∧ Ỹ ≤lr ˜X ∧ Y .
Now, by induction, (8) is assumed to be true for n − 1, that is,

X̃(n−1) ∧ Ỹ (n−1) ≤lr ˜X ∧ Y
(n−1)

.

The density of X̃(n) ∧ Ỹ (n) is

f
X̃(n)∧Ỹ (n) (t) = f

X̃(n) (t)F Ỹ (n) (t) + f
Ỹ (n) (t)F X̃(n) (t)

and the density of ˜X ∧ Y
(n)

is

f
˜X∧Y

(n) (t) =
F

˜X∧Y
(n−1) (t)

E
[
˜X ∧ Y

(n−1)] .
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The likelihood ratio f
X̃(n)∧Ỹ (n) (t)/f

˜X∧Y
(n) (t) is

E
[
˜X ∧ Y

(n−1)]( F
X̃(n−1) (t)F Ỹ (n) (t)

E[X̃(n−1)]F
˜X∧Y

(n−1) (t)
+ F

Ỹ (n−1) (t)F X̃(n) (t)

E[Ỹ (n−1)]F
˜X∧Y

(n−1) (t)

)
.

Since X and Y have the DMRL property, the equilibrium variables of order k, X̃(k) and Ỹ (k),
are IFR for all k ≥ 1 (see Lemma 2).

The relation (5) implies that Ỹ (n−1) is DMRL and, from (4,) we obtain

Ỹ (n) ≤hr Ỹ (n−1).

The preservation of hazard-rate order in a series system (see Proposition 1) gives

X̃(n−1) ∧ Ỹ (n) ≤hr X̃(n−1) ∧ Ỹ (n−1).

The induction assumption is

X̃(n−1) ∧ Ỹ (n−1) ≤lr ˜X ∧ Y
(n−1)

,

and the implication (2) gives

X̃(n−1) ∧ Ỹ (n−1) ≤hr ˜X ∧ Y
(n−1)

,

which leads to

X̃(n−1) ∧ Ỹ (n) ≤hr ˜X ∧ Y
(n−1)

.

From the relation (1), the ratio

F
X̃(n−1) (t)F Ỹ (n) (t)

E[X̃(n−1)]F
˜X∧Y

(n−1) (t)

and, symmetrically, the ratio
F

Ỹ (n−1) (t)F X̃(n) (t)

E[Ỹ (n−1)]F
˜X∧Y

(n−1) (t)

are both decreasing, which completes the proof.

A consequence of this result is given in the following corollary.

Corollary 2. Let X and Y be independent nonnegative random variables. If X and Y have the
DMRL property, then, for any x ≥ 0,

∫ ∞

x

FX(u)FY (u) du ≥ 1

m + r

∫ ∞

x

FX(u) du

∫ ∞

x

F Y (u) du.

Proof. Since X and Y are DMRL, using Theorem 1 we obtain

X̃ ∧ Ỹ ≤lr ˜X ∧ Y

and, from the relation (2),
X̃ ∧ Ỹ ≤st ˜X ∧ Y .
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This inequality can be written as
∫ ∞

x

FX(u)FY (u) du ≥ E[X ∧ Y ]
mr

∫ ∞

x

FX(u) du

∫ ∞

x

F Y (u) du.

The relations (5) and (6) give

E[X ∧ Y ] ≥ 1

1/m + 1/r
,

and the above two inequalities yield
∫ ∞

x

FX(u)FY (u) du ≥ 1

m + r

∫ ∞

x

FX(u) du

∫ ∞

x

F Y (u) du.

Theorem 1 can be generalized to the case of p random variables.

Theorem 2. Let X1, . . . , Xp be p independent nonnegative random variables and X̃
(k)
i , i =

1, . . . , p, their independent equilibrium variables of order k. If Xi has the DMRL property and
the moment of order n, n ≥ 1, exists, then

X̃
(n)
1 ∧ · · · ∧ X̃(n)

p ≤lr ˜(X1 ∧ · · · ∧ Xp)
(n)

for all p ≥ 2.

Now we are ready to propose a lower bound on the nth moment of a series system.

Theorem 3. Let X and Y be independent nonnegative random variables and let mn and rn,
n ≥ 2, be their nth moments, respectively.

If X and Y have the DMRL property, then

E[(X ∧ Y )n] ≥ n!
n−1∏
k=0

1

1/m̃(k) + 1/r̃(k)
,

where
m̃(k) = mk+1

kmk

and r̃ (k) = rk+1

krk

are the means of X̃(k) and Ỹ (k) respectively.

Proof. The nth moment µn of the random variable X∧Y can be written, using Proposition 2
(see (7)), as

µn = n!
n−1∏
k=0

E
[
˜X ∧ Y

(k)]
.

However, Theorem 1 gives

X̃(k) ∧ Ỹ (k) ≤lr ˜X ∧ Y
(k)

.

Since X̃(k) and Ỹ (k) have the IFR property, (6) gives

E[X̃(k) ∧ Ỹ (k)] ≥ 1

1/m̃(k) + 1/r̃(k)
,
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so we obtain

E
[
˜X ∧ Y

(k)] ≥ E[X̃(k) ∧ Ỹ (k)] ≥ 1

1/m̃(k) + 1/r̃(k)
,

and the result follows.

It is worth noting that this inequality is an equality in the exponential case. In terms of
reliability, the lower bound is particularly useful.

The result in Theorem 3 can also be generalized to the case of p random variables.

Theorem 4. Let X1, . . . , Xp be p independent nonnegative random variables. If Xi has the
DMRL property and its nth moment mn exists (for all i), then the nth moment of the random
variable X1 ∧ · · · ∧ Xp satisfies

E[(X1 ∧ · · · ∧ Xp)n] ≥ n!
n−1∏
k=0

1∑p
i=1 1/m̃

(k)
i

.

Corollary 3. Let X1, . . . , Xp be p independent, identically distributed nonnegative random
variables. If Xi has the DMRL property and its nth moment exists (for all i), then the nth
moment of X1 ∧ · · · ∧ Xp has the lower bound

E[(X1 ∧ · · · ∧ Xp)n] ≥ E[(Xn
1 )]

pn
. (9)

A similar corollary can be deduced for other families of ageing properties, not only DMRL.
For example, DRLLt is a class introduced by Belzunce et al. (1999), (2001) from the Laplace
order, and our formula (9) is valid for DRLLt.

As in the previous case, the inequality turns out to be an equality in the case of an exponential
distribution. Computing the lower bounds above requires the computation of certain moments
of the equilibrium variables. There are many ways to approximate these moments when the
distribution is not completely known. A special case, which is particularly interesting, is n = 2
when the mean time-to-failure must be estimated with few data points.
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