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The p-adic monodromy-weight conjecture for

p-adically uniformized varieties

Ehud de Shalit

Abstract

A p-adically uniformized variety is a smooth projective variety whose associated rigid
analytic space admits a uniformization by Drinfeld’s p-adic symmetric domain. For such
a variety we prove the monodromy-weight conjecture, which asserts that two indepen-
dently defined filtrations on the log-crystalline cohomology of the special fiber in fact
coincide. The proof proceeds by reducing the conjecture to a combinatorial statement
about harmonic cochains on the Bruhat–Tits building, which was verified in our previous
work.

Introduction

Let K be a local field of characteristic 0 and residual characteristic p. Denote by OK its ring of
integers, and by K0 the maximal unramified subfield of K. Let σ ∈ Gal(K0/Qp) be the Frobenius
automorphism. Fix a uniformizer π of K.

Let X be a proper scheme over OK , with semistable reduction. Let 0 � m � 2 dim XK , and
let D be the mth Hyodo–Kato (log-crystalline) cohomology of the special fiber of X (see [Hyo91]
and [HK94]). Then D is a finite dimensional vector space over K0, which comes equipped with
a σ-semilinear bijective map Φ, the Frobenius endomorphism, and a nilpotent endomorphism N ,
the monodromy operator. The triple (D,Φ, N) depends on the first infinitesimal neighborhood of the
special fiber, X ⊗ (OK/π2OK), only. It carries two increasing filtrations. The weight filtration P.D
is related to Φ, and the monodromy filtration M.D is related to N . The two endomorphisms satisfy
the following commutation relation:

NΦ = pΦN. (0.1)

Hyodo and Kato constructed an isomorphism (depending on π) between the log-crystalline
cohomology of X, and the de Rham cohomology of its generic fiber:

ρπ : D ⊗K0 K � Hm
dR(XK) := Hm(XK,Zar,Ω

•). (0.2)

Via this isomorphism, Hm
dR(XK), with its Hodge filtration, becomes a filtered (Φ, N)-module [Fon94].

(The Hodge filtration will play no role in the present work, but see [IS00] and [AdS02] for its relation
to the weight filtration, in our class of p-adically uniformized varieties.)

If X is smooth, D is the usual crystalline cohomology of its special fiber, N = 0, and both
the monodromy and the weight filtrations are trivial. In general, the monodromy-weight conjecture
predicts, if X is projective, that the two filtrations coincide, up to a shift in the indices:

(MWC) P.+mD = M.D . (0.3)
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It is due to Mokrane [Mok93, Conjecture 3.27] who modeled it on a similar conjecture of Deligne
in l-adic cohomology [Del71], and on a corresponding theorem of J. Steenbrink and M. Saito in the
category of analytic spaces over C. The purpose of this work is to prove the conjecture for a rather
special class of varieties, whose special fiber is ‘as far as possible’ from being smooth.

Theorem 0.1. The monodromy-weight conjecture holds for p-adically uniformized varieties.

We call X ‘p-adically uniformized’, if the associated rigid analytic space Xan admits a uni-
formization as the quotient of Drinfel’d’s p-adic symmetric domain of dimension d, denoted X, by
a discrete, cocompact and torsion-free subgroup Γ of PGLd+1(K). By work of Rapoport-Zink and
Varshavsky, among these varieties lie some infinite families of unitary Shimura varieties with bad
reduction at p.

Although we do not claim to prove it here, Deligne’s l-adic monodromy-weight conjecture should
follow, for a p-adically uniformized X, along the same lines. One would first have to repeat the
developments of [deS00], [AdS02] and [AdS03] in the framework of l-adic cohomology. As pointed
out to us by U. Jannsen, the l-adic conjecture also seems to follow (for a p-adically uniformized X)
from recent work of M. Saito [Sai00], but our approach is very different and avoids the standard
conjectures.1

The main tools used in the proof are harmonic analysis and combinatorics on T , the Bruhat–
Tits building of G = PGLd+1(K). In our previous work [deS00] we established an isomorphism,
based on a rigid-analytic residue map, between the mth de Rham cohomology of X, and a certain
space Cm

har of harmonic K-valued m-cochains on T . In [AdS03] we constructed another space C̃m
har of

m-cochains on T , and a canonical extension of G-modules

0→ Cm−1
har → C̃m−1

har
d→ Cm

har → 0, (0.4)

where the first map is the inclusion, and the second the coboundary map. The space Cm
har is charac-

terized by simple ‘harmonicity conditions’. The space C̃m
har is characterized by the same conditions,

with the exception of ‘d = 0’. For example, if T is the tree and m = 1, C0
har = K, C̃0

har are the
functions on the vertices annihilated by the combinatorial Laplacian (i.e. having the mean-value
property), and C1

har are the alternating functions on the oriented edges, whose values on any q + 1
edges entering a given vertex sum up to 0.

Let Γ be a discrete, cocompact, torsion-free subgroup of G, and X the scheme over OK whose
completion, along the special fiber, is the quotient Γ\X̂, where X̂ is the formal scheme under-
lying X. This quotient is algebraizable, and even projective, by a theorem of Mumford, Kurihara
and Mustafin [Mus78, Theorem 4.1]. Its generic fiber XK is smooth and projective. Its special
fiber Xκ is semistable [Mus78, Theorem 3.1]. It is thus a variety of the type considered above.

The only interesting cohomology of X is in degree m = d. In degree m �= d, the cohomology
is one-dimensional if m is even, and vanishes if m is odd [SS91, Theorem 5]. The covering spectral
sequence [SS91, § 5, Proposition 2] is the spectral sequence

Er,s
2 = Hr(Γ,Hs

dR(X)) = Hr(Γ, Cs
har) =⇒ Hr+s

dR (XK), (0.5)

abutting to the cohomology of XK . The resulting (decreasing) filtration F •
Γ on Hd

dR(XK), the cov-
ering filtration, coincides, up to a change in the indexing, with the weight filtration (inherited
from D via the Hyodo–Kato isomorphism). The covering spectral sequence degenerates at E2

[SS91, § 5], [AdS02], hence the graded pieces grr
Γ Hd

dR(XK) are just the cohomology Hr(Γ, Cd−r
har ).

The commutation relation between N and Φ implies that N maps F r
ΓHd

dR(XK) to F r+1
Γ Hd

dR(XK),

1After the completion of this work we learned about the paper by T. Ito [Ito03], in which he proves both the l-adic and
p-adic monodromy-weight conjectures for p-adically uniformized varieties, by verifying special cases of the standard
conjectures of Hodge type.
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and induces therefore a map grΓ N : Hr(Γ, Cd−r
har ) → Hr+1(Γ, Cd−r−1

har ). To prove the monodromy-
weight conjecture for XK one only has to check that for any r � [d/2],

(grΓ N)d−2r : Hr(Γ, Cd−r
har ) � Hd−r(Γ, Cr

har) (0.6)

is an isomorphism.
Let ν be the connecting homomorphism in the long exact sequence of Γ-cohomology attached

to (0.4):

ν : Hr(Γ, Cs
har)→ Hr+1(Γ, Cs−1

har ) (r + s = d). (0.7)

In [AdS03] we showed that for any r � [d/2], iteration of ν induces an isomorphism

νd−2r : Hr(Γ, Cd−r
har ) � Hd−r(Γ, Cr

har). (0.8)

It remains to prove that the geometrically defined grΓ N equals the combinatorially defined ν. This is
what we do below.

The following is a brief outline of the paper. In § 1 we recall the logarithmic de Rham–Witt
complex Wω• on the étale site of the special fiber of X, and how it is used to compute D. We also
review, in § 2, a generalization of the work of Hyodo and Kato to the non-proper case, by E. Grosse-
Klönne, which allows us to compute, in a similar way, the Hyodo–Kato (= log-rigid) cohomology of
the special fiber of X. In § 3 we introduce the p-adically uniformized varieties, and the calculus
of logarithmic forms in de Rham (respectively de Rham–Witt) cohomology of X (respectively its
special fiber). We have to deal not only with the de Rham–Witt complex itself, but with a certain
extension of it

0→Wω
•[−1]→ Wω̃

• →Wω
• → 0, (0.9)

used to define N . The calculus of logarithmic forms is reflected ‘fully faithfully’ on the level of
harmonic cochains on T via the residue homomorphism. Theorem 0.1 eventually follows, in § 4,
from isomorphism (0.8), once we relate the extension (0.4) to (0.9).

Combining Theorem 0.1 with Tsuji’s proof [Tsu99] of Fontaine’s conjecture Cst, we arrive at the
following.

Corollary 0.2. The Galois representation Hd
ét(XK̄ , Qp) is not crystalline, unless d is odd and the

cohomology vanishes, or d is even and the cohomology is one-dimensional.

In fact, under the assumptions of the corollary, the weight filtration is non-trivial, hence N �= 0,
and this implies that the local Galois representation is not crystalline. Although this is weaker than
Theorem 0.1, which may be regarded as a quantitative version of it, we are not aware of an easier
proof of the corollary. Compare also with the corresponding theorem by Coleman and Iovita [CI99],
asserting that if AK is an abelian variety and H1

ét(AK̄ , Qp) is crystalline, then A has good reduction.
The exceptions in the corollary may occur, at least if Γ has torsion, as was indicated by Mumford.

1. Log-crystalline cohomology and the two filtrations

1.1 Log-crystalline cohomology of proper semistable schemes

In addition to the notation introduced in the Introduction, let κ = OK/πOK = Fq be the residue
field, so that K0 is the field of fractions of W (κ), the ring of Witt vectors of κ, and K is a totally
ramified extension of K0.

Let X → SpecOK be a scheme with semistable reduction. This means that X is regular, flat
over OK , the generic fiber XK is smooth, and the special fiber Y = Xκ is a reduced divisor with
normal crossings on X.
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Assume that X is proper. Fontaine and Jannsen conjectured that one should attach to it, in
a functorial way, and in any degree 0 � m � 2 dim XK , a filtered (Φ, N)-module (D,Φ, N,Fil)
which will look much simpler than the p-adic étale cohomology Hm

ét (XK̄ , Qp), yet will be sufficiently
rich to capture it, as a Gal(K̄/K) representation, with the help of Fontaine’s ring Bst. Such a
cohomology theory was constructed, in the proper case, by Hyodo and Kato [Hyo91, HK94] (and
also by Faltings using a different approach). Kato and Tsuji established the desired relation to
p-adic étale cohomology (Fontaine’s conjecture Cst).

The space D is a finite-dimensional K0-vector space, endowed with an endomorphism N and a
σ-linear bijective map Φ as in the Introduction. Furthermore, there is a comparison isomorphism
(the Hyodo–Kato isomorphism) ρπ between D ⊗K0 K and Hm

dR(XK), depending on the choice of a
uniformizer π. (On the p-adic étale side the choice of π is implicit in the construction of Bst.) If π′

is another uniformizer, then
ρπ′ = ρπ ◦ exp(log(π′/π)N), (1.1)

so NdR = ρπ ◦N ◦ ρ−1
π is independent of π, and we denote it again by N . In view of the relation

NΦ = pΦN, (1.2)

we conclude that N is nilpotent.
In the smooth and proper case, D = Hm

cris(Y/W (κ))⊗W (κ) K0, so (D,Φ) depends on the special
fiber only, and N = 0. In the general case, the triple (D,Φ, N) depends on the first infinitesimal
neighborhood of Y .

We shall review, in § 1.4 below, a construction of (D,Φ, N) via the logarithmic de Rham–Witt
complex, which is well adapted to the proof of Theorem 0.1. As in crystalline cohomology, Hyodo
and Kato defined also an integral version of D. In this paper, we shall ignore questions of torsion
(which anyhow should not exist in our examples), and work with K0-vector spaces.

1.2 The monodromy filtration
The construction of the monodromy filtration uses only the fact that N is nilpotent (see [Del80,
Proposition I.6.1]). Define

MrD =
∑

i−j=r

ker(N i+1) ∩ Im(N j), (1.3)

the ‘convolution’ of the filtrations by successive kernels and images. This is the unique increasing,
exhaustive and separated filtration on D satisfying the following two properties.

i) N maps MrD to Mr−2D.

From this we get a map grM N of grr
M D = MrD/Mr−1D to grr−2

M D.

ii) (grM N)r : grr
M D → gr−r

M D is an isomorphism.

For example, if N2 = 0, then M−2 = 0, M−1 = ImN , M0 = ker N , and M1 = D.

1.3 The weight filtration
Recall that a q-Weil number of weight m is an algebraic integer, whose absolute value in any
complex embedding is qm/2. Let q = pf be the cardinality of κ, and consider the relative Frobenius
automorphism φ = Φf , which now acts linearly on D. If X were smooth, a theorem of Katz and
Messing, based on Deligne’s proof of the Weil conjectures, says that all the eigenvalues of φ on D
are q-Weil numbers of weight m. One says that D is pure of weight m. In general, the existence
of the weight spectral sequence (for details, see [Mok93], in particular Theorem 3.32) implies that
there is a unique increasing filtration P.D on D, preserved by Φ, such that grr

P D is pure of weight r.
One expresses this by saying that D is mixed. Once this is proven, one can simply let PrD be the
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subspace, which, upon extension of scalars to an algebraic closure of K0, becomes the sum of the
generalized eigenspaces for all the eigenvalues λ satisfying |λ| � qr/2. This definition does not say
anything about the geometric nature of the filtration, and its relation to vanishing cycles, nor can
it be used if we want to treat the integral version of D, but for our purposes it will suffice.

The monodromy-weight conjecture of Mokrane states that, if X is projective,

Pm+rD = MrD. (1.4)

Since Nφ = qφN , and φ is an isomorphism, N maps PrD to Pr−2D. Thus, in order to prove the
conjecture, one only has to show that

(grP N)r : grm+r
P D → grm−r

P D (1.5)

is an isomorphism.

1.4 The logarithmic de Rham–Witt complex

So far we have discussed (D,Φ, N) as a black box. We now extract from [HK94] whatever will be
needed about its actual structure. At the heart of it lies an idea of Illusie [Ill79], who constructed, in
the smooth and proper case, for each n � 0, a certain complex of sheaves of Wn(κ)-modules WnΩ•

on the étale site of the special fiber, Yét, and proved that their hypercohomology (in either the
étale or the Zariski topology) computes the crystalline cohomology. The complex (more precisely,
inverse system of complexes) WΩ• employs both the de Rham machinery of differential forms, and
the Witt vectors construction, which is used to circumvent the problematics of differential forms in
characteristic p. It is therefore called the de Rham–Witt complex. From the Witt construction one
gets naturally the Frobenius endomorphism Φ.

Hyodo and Kato proposed to use, in the semistable case, a modified version of this complex,
denoted Wω•. It agrees with WΩ• on the smooth locus, but makes room for logarithmic forms at
the singularities. They also constructed another complex of sheaves Wω̃• on Yét, and a short exact
sequence of complexes

0→Wω•[−1]→ Wω̃• →Wω• → 0. (1.6)

A fairly quick way to define the Hyodo–Kato cohomology is to put

Dm = Hm(Yét,Wω
•)⊗W (κ) K0. (1.7)

We abuse notation. By Wω• we really mean the inverse system {Wnω•}, and Hm(Yét,Wω•) :=
lim
←

Hm(Yét,Wnω•), as usual. This definition avoids the log-crystalline site, but see § 2.2 below for
the relation with crystalline or rigid cohomologies.

The monodromy operator N is defined to be the connecting homomorphism in the long exact
sequence of hypercohomology attached to the short exact sequence (1.6).

To define Wnω•, fix any open dense smooth subscheme u : U ↪→ Y in the special fiber of X.
The complex Wnω• will be defined as a certain subcomplex of u∗WnΩ•. Let

Y
i−→ X

j←− XK (1.8)

be the inclusion maps. Let KX = j∗(OXK
) be the sheaf of functions ‘regular in characteristic 0’. The

sheaf K×X/O×X is supported on Y , and its restriction to U is the constant sheaf Z, via the valuation
map, because U is smooth.

Illusie [Ill79, § I.3.23] supplies us with a homomorphism of sheaves

d log : O×U → WnΩ1
U . (1.9)
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Combined with the projection u−1i−1O×X → O
×
U , it extends uniquely to a map

d log : u−1i−1K×X →WnΩ1
U (1.10)

by specifying d log(K×) = 0. This gives a map

d log : i−1K×X → u∗WnΩ1
U . (1.11)

Define Wnω•, to be the subalgebra of u∗WnΩ•
U generated over Wn(OY ) by dWn(OY ) and

d log(i−1K×X) in degree 1.
To define Wnω̃•, let WnΩ̃•

U = WnΩ•
U [θ], where θ is an indeterminate in degree 1, satisfying

θ2 = 0, dθ = 0, and θa = (−1)qaθ for a ∈WnΩq
U . The map d log lifts to a map

d l̃og : i−1K×X → u∗WnΩ̃1
U , (1.12)

which coincides with d log on i−1O×X , but on K× satisfies

d l̃og(a) = ord(a)θ. (1.13)

As before, Wnω̃• is defined to be the subalgebra of u∗WnΩ̃•
U generated over Wn(OY ) by dWn(OY ) and

d l̃og(i−1K×X) in degree 1. The map Wnω̃• →Wnω• is ‘dividing by θ’, and the map Wnω•[−1]→Wnω̃•

is a 
→ θ ∧ a. All these constructions are compatible with the transition maps from Wn+1(−) to
Wn(−). Taking inverse limits over n we get the complexes Wω• and Wω̃•. The sequence (1.6) is
exact.

2. De Rham–Witt cohomology and the Hyodo–Kato isomorphism
in the locally proper case

2.1 Logarithmic de Rham–Witt complex in the locally proper case
Let X̂ be a p-adic formal scheme over SpfOK , and let Y be its special fiber. We assume that:

i) X̂ has a strictly semistable reduction (see [Gro02, § 2.1]),
ii) Y is locally proper: its irreducible components are proper, and there exist closed (respectively

open) subschemes Zr (respectively Ur) such that
1) each Zr is a finite union of irreducible components
2) Zr ⊂ Ur ⊂ Zr+1 and their union is Y .

These assumptions can probably be relaxed, but they are sufficient for our purposes. We denote
by X the rigid analytic space which is the generic fiber, in the sense of Raynaud, of X̂ (see [Ber96,
§ 0.2]). We denote by ir (respectively jr) the closed (respectively open) embedding of Zr (respectively
Ur) in Y . For any open subscheme U of Y , we denote by

]U [X= sp−1(U) (2.1)

the rigid subdomain of all the points of X whose specialization lies in U . It is called the tube of U (see
[Ber96, ch. 1]). By our assumption on Y , X has a canonical underlying structure of a dagger space X†,
and we denote by ]U [†X the dagger-subdomain of all points specializing to U (see [Gro02], where he
preserves the notation ]U [X for the latter). As sets, ]U [X and ]U [†X coincide, but the structure sheaf
on the first consists of convergent (rigid analytic) functions, while the structure sheaf on the second
consists of overconvergent functions. We similarly define ]Z[X and ]Z[†X for Z a closed subscheme.

The definition of the sheaves Wω• and Wω̃• on Yét carries over to the locally proper case (or even
more generally). The only modification is that we replace the sheaf i−1K×X by K×

X̂
, which assigns to

any étale neighborhood U in Y , the invertible rigid analytic functions on the tube of U ,

K×
X̂
(U) = O( ]U [X)×. (2.2)
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A priori this is defined for U a Zariski neighborhood, but it makes sense for étale neighborhoods
as well, because the formal scheme ‘lifts’ to étale covers of the special fiber uniquely. If U is affine,
]U [X is an affinoid, and K×

X̂
(U) are the units of an affinoid K-algebra. Similarly we replace the

sheaf i−1O×X by O×
X̂

, the invertible elements in the structure sheaf of X̂. As before, the restriction of
K×
X̂

/O×
X̂

to an open smooth U ⊂ Y is the constant sheaf Z. This can be deduced, for example, from
the fact that the sup-norm on the affinoid algebra K

X̂
(U) (if U is affine and smooth) is multiplicative

[BGR84, 6.2.3, Proposition 5]. From here on the construction is identical to the one above. Fix a
smooth open dense u : U ↪→ Y, and define d log : u−1O×

X̂
→ O×U → WnΩ1

U by first reducing to the
special fiber, then applying Illusie’s map (1.9). Extend to u−1K×

X̂
so that d log(K×) = 0, and define

Wnω• in the same way as before. Similarly define d l̃og and Wnω̃•.

We remark that the complexes Wω• and Wω̃• have a crystalline definition as well [HK94, 4.1],
and from that perspective there is no difference between the proper and the locally proper case.
All that is needed is the special fiber with its induced log-structure. However, for the ‘calculus
of logarithmic forms’, it will be more convenient to work with the elementary description given
above.

2.2 The log-rigid cohomology of Grosse-Klönne

As indicated in the Introduction, E. Grosse-Klönne [Gro02] extended the definition of Dm to cer-
tain non-proper situations, including the locally proper set-up described above. He also obtained
a generalization of the Hyodo–Kato isomorphism between his Dm and Hm

dR(X). For (the formal
completion along the special fiber of) proper schemes with semistable reduction, his definitions co-
incide with those of [HK94]. However, his approach uses log-rigid overconvergent cohomology, and
not the (logarithmic) de Rham–Witt complex. In this section we make precise the relation between
the two in the locally proper case of § 2.1, since we shall eventually be computing with logarithmic
de Rham–Witt classes.

We assume familiarity with the various p-adic cohomologies which were invented over the last
decade, in order to overcome the limitations of crystalline cohomology. Rigid cohomology was created
by Berthelot [Ber96, Ber97], as a substitute for crystalline cohomology, and works well for smooth
(but not necessarily proper) schemes. Log-structures on schemes were defined by Kato and Illusie,
just so that semistable schemes would be (log) smooth (see [Ill94]). Log-crystalline cohomology
[HK94] works well for proper semistable (log) schemes. Log-rigid cohomology is defined in [Gro02],
in order to take care of semistable (log) schemes which are not necessarily proper. Convergent
cohomology was introduced by Ogus [Ogu90] and log-convergent cohomology is discussed in detail
in [Shi02].

We keep our assumptions on X̂, and let S0 be the formal log-scheme

(SpfW (κ), N, 1 
→ 0). (2.3)

Its special fiber S0 is the standard log point (Spec(κ), N, 1 
→ 0), and S0 is its canonical lifting to
SpfW (κ) in the sense of [HK94, Definition 3.1]. Let X̂ be the formal log-scheme given by X̂→ SpfOK ,
endowed with the log-structure defined by the special fiber. Let Y be its special fiber. Then Y is a
fine log-scheme, log-smooth over S0, and of Cartier type.

We define Dm(Y ) as Hm
rig(Y /S0) (see [Gro02, Lemma 1.4]). Since Y is locally proper, this is

equal also to Hm
conv(Y /S0) (see [Gro02, 1.5 and Theorem 8.3(ii)]). If Y is proper, the two coincide

with Hm
cris(Y /S0) ⊗W (κ) K0 (see [Shi02, Theorem 3.1.1]). Now Hm

cris(Y /S0) can be computed in
the étale topology, as the cohomology of the logarithmic de Rham–Witt complex (1.7). Hence the
definition agrees with that of [HK94], and with (1.7).
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Please note that the essential ingredient in Shiho’s comparison theorem [Shi02, 3.1.1] is for
Y /S0 to be log-smooth of finite type. As we assumed Y to be locally proper, if it is of finite type,
it must be proper. But we shall have the occasion below to use the comparison theorem between
log-convergent and log-crystalline cohomology in a non-proper situation, in fact when both
cohomologies are pathological! We remark that already in the classically smooth case, when the
comparison theorem between crystalline and convergent cohomologies becomes Ogus’ theorem
[Ogu90, Theorem 0.7.7], properness is not used in the proof. It was included by Ogus in the
hypothesis simply because these cohomologies are known to be pathological otherwise. Nevertheless,
they are canonically isomorphic.

It follows that in the proper case the cohomology has a canonical integral structure. In general,
in itself, log-rigid (or log-convergent) cohomology is a Q-cohomology, and does not come equipped
with a canonical integral structure. For Y not of finite type, when the cohomology might be infinite-
dimensional, it is not at all clear that such an integral structure exists. For the Drinfel’d symmetric
domain, this will turn out to be the case at the end, thanks to explicit computations with logarithmic
forms. But we do not know if the existence of a dense subspace of ‘bounded cohomology’ is a general
phenomenon. These remarks explain, why, in part ii of Theorem 2.1 below, we have to substitute a
rather awkward-looking space for Hm(Yét,Wω•) ⊗̂W (κ) K0, which eventually will turn out to be the
same. A priori we do not know that the latter is non-zero!

Theorem 2.1.

i) [Gro02] There is an isomorphism, depending on π,

ρπ : Dm(Y )⊗K0 K � Hm
dR(X). (2.4)

ii) There is a canonical isomorphism

Dm(Y ) � lim
←
{Hm(Zr,ét, i

∗
rWω

•)⊗W (κ) K0}. (2.5)

iii) Consider the edge-homomorphism in the first spectral sequence of hypercohomology (see also
Lemma 3.2)

H1(Wω
•(Y ))→ H1(Yét,Wω

•), (2.6)

followed by the map to D1(Y ) obtained from part ii, and the comparison isomorphism from
part i with H1

dR(X). Let f ∈ O(X)× be a nowhere vanishing rigid analytic function on X. The
function f defines a global section of the sheaf K×

X̂
, hence a closed 1-form d log f ∈ Wω1(Y ).

Then the cohomology class of this element corresponds, under the above map, to [df/f ] ∈
H1

dR(X).

Proof. The Hyodo–Kato isomorphism in the non-necessarily proper case is the isomorphism (see
[Gro02, Theorem 3.4, Corollary 3.7], and the discussion in § 3.8)

Hm
rig(Y /S0)⊗K0 K � Hm

dR(X). (2.7)

This gives part i.
On the other hand, we have the logarithmic de Rham–Witt complex Wω•, described in § 2.1.

Denote by Sn the log-scheme

Sn = (SpecWn(κ), N, 1 
→ 0) (2.8)

(denoted by (Wn,Wn(L)) in [HK94]) and by uY /Sn
the canonical morphism of topoi

uY /Sn
: (Y /Sn)˜crys → Y ˜

ét. (2.9)
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Then, in the derived category D(Yét),

Wnω
•
Y � RuY /Sn∗(OY/Wn(κ)) (2.10)

(see [HK94, Theorem 4.19 and (4.20)]). Thus

RΓét(Yét,Wnω
•
Y ) � RΓét ◦RuY /Sn∗(OY/Wn(κ))

� RΓcris((Y /Sn)crys,OY/Wn(κ)), (2.11)

and, taking inverse limits,
Hm

cris(Y /S0) � Hm(Yét,Wω•
Y ). (2.12)

Similarly, for every r,
Hm

cris(U r/S
0) � Hm(Ur,ét, j

∗
r Wω

•
Y ). (2.13)

We shall need this canonical isomorphism in the ‘open’ case, despite the fact that crystalline (or
log-crystalline) cohomology is then ‘bad’. See the discussion below.

By [SS91, p. 64],

Hm
dR(X) = lim

←
Hm

dR( ]Zr[
†
X). (2.14)

By [Gro02, Theorem 0.1 (= Theorem 3.1)],

Hm
dR( ]Zr[

†
X) � Hm

rig(Zr/S
0)⊗K0 K. (2.15)

In fact, in part (a) of that theorem, it is proven that

Hm
dR( ]M [†X) � Hm

rig(M/S0)⊗K0 K (2.16)

for the intersection M of any number of irreducible components of Y , endowed with the induced log-
structure. Then (2.15) is deduced from (2.16) by means of the Čech spectral sequence for the closed
covering of Zr by its irreducible components [Gro02, § 3.3 (1)], in the same way that Grosse-Klönne
deduces part (b) of his theorem for the full space.

Remark. Recall that Zr is the union of a finite number of irreducible components of Y , and that the
log structure on Zr is the one induced from that of Y . At points of Zr at which Y is defined (locally
étale in X̂) by an equation of the form t1 . . . tk = π, this log structure is the reduction modulo π of
the standard log-structure given by the chart

Nk → O
X̂

: (mi) 
→
∏

tmi
i , (2.17)

even if the point is smooth on Zr. Thus Zr may not be log-smooth over S0 at such a point. The
same remark applies to the intersections M figuring in (2.16).

Now
Hm

rig(Zr/S
0) � Hm

conv(Zr/S
0) (2.18)

because Zr is proper, by the same argument involving the Čech spectral sequence. For the irreducible
components of Zr, which are also those of Y , and their intersections M , this is proved in [Gro02,
Proposition 8.6]. For Zr itself, apply the Čech spectral sequence for the closed covering by the
irreducible components [Gro02, § 3.3 (1)]. Notice that [Gro02, Theorem 8.3(ii)] cannot be applied
directly because Zr is not a semistable log-scheme.

Next, there are functorial restriction maps

Hm
conv(Zr/S

0)← Hm
conv(U r/S

0)← Hm
conv(Zr+1/S

0). (2.19)

When we take the inverse limit we get a canonical isomorphism

lim
←

Hm
conv(Zr/S

0) � lim
←

Hm
conv(U r/S

0). (2.20)
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Remark. It is well known that the Hm
conv(U r/S

0) are pathological, and even infinite-dimensional.
However, in the inverse limit all the bad classes die out, and only the good ones survive. The reader
should keep in mind the picture of the Néron model of Gm. When its special fiber, which is a string
of projective lines, labeled by Z, is exhausted by open subschemes, their tubular neighborhoods are
closed annuli of the shape

{z | p−r � |z| � pr}. (2.21)

The convergent cohomology of the Ur contains then the good class of dz/z, but also all the ‘bad’
classes of Taylor–McLaurin expansions with zero residue, which converge up to the boundary of the
annulus, but whose integral does not converge up to the boundary. Nevertheless, these bad classes
are killed by the map from the rth annulus to the (r − 1)th. In the limit, only the class of dz/z
survives.

The reason we have passed to the Ur is that, unlike the Zr, when they are given the induced
log-structure, they become log-smooth over the base. They are also of finite type, hence Shiho’s
comparison theorem [Shi02, Theorem 3.1.1], allows us to write

Hm
conv(U r/S

0) � Hm
cris(U r/S

0)⊗W (κ) K0. (2.22)

We may now invoke (2.13) to pass to logarithmic de Rham–Witt cohomology, and the isomor-
phism

lim
←
{Hm(Ur,ét, j

∗
r Wω

•
Y )⊗W (κ) K0} � lim

←
{Hm(Zr,ét, i

∗
rWω

•
Y )⊗W (κ) K0} (2.23)

resulting from the restriction maps (as we did in convergent cohomology).
Putting it all together we deduce the desired isomorphism

Hm
dR(X) � lim

←
{Hm(Zr,ét, i

∗
rWω

•
Y )K}. (2.24)

Part iii is proved by following the definitions and we omit it.

With regard to part iii we remark that the open dense smooth subscheme U used in the con-
struction of Wω• will in general not be connected. On any of its irreducible components Ui we
shall have to normalize f differently, dividing by a power of the uniformizer π, so that the result-
ing function is regular and invertible on the restriction of X̂ to Ui. This normalization does not
change d log f , but the power by which we divide, ‘the multiplicity of Ui in the divisor of f ’, is
recorded in d l̃ogf , as the coefficient of θ.

One should also bear in mind that the association between logarithmic classes in de Rham–Witt
cohomology of the special fiber, and de Rham cohomology of the rigid analytic space, is well defined
only on the level of cohomology, and not at the level of differential forms. For example, if U ⊂ Y is
an open subset such that fU = f |]U [ satisfies |fU − 1| < 1, then 0 = d log fU ∈ Wω1(U), since the
image of fU in O×Y (U) is already the constant 1. On the tube ]U [X, on the other hand, dfU/fU will
be only exact.

3. p-adically uniformized varieties

3.1 The de Rham cohomology of X and of XΓ,K

Let VK be a (d+1)-dimensional vector space over K. Denote by Ha, for a ∈ P(VK), the corresponding
hyperplane in P(V ∗), and let

X = P(V ∗)−
⋃

a∈P(VK)

Ha. (3.1)
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This is a rigid analytic space on which G = PGL(VK) acts, called Drinfeld’s p-adic symmetric
domain of dimension d. Fix a discrete cocompact subgroup Γ of G. The quotient space Γ\X is the
rigid analytic space associated to a (unique) projective and smooth variety XΓ,K over K (Mumford,
Mustafin). Now X has an underlying structure of a formal scheme X̂, and XΓ,K has a uniquely
determined model XΓ over OK which is proper, with strictly semistable reduction, and whose formal
completion along the special fiber is Γ\X̂. Since Γ is fixed, from now on we omit the subscript Γ
from the notation.

We review some results concerning the rigid analytic de Rham cohomology of X and XK =
XΓ,K (see [SS91], [deS00], [AdS02], [IS00] and [Gro02]). Let T be the Bruhat–Tits building of G,
and let Cr(T , A), for any ring A, be the group of alternating r-cochains on T with values in A.
Let Cr

har ⊂ Cr(T ,K) be the group of harmonic r-cochains, as defined in [deS00, § 3.1] (see also
[AdS03, § 2.5]). If ω is a closed rigid analytic r-form on X, then we defined in [deS00, Definition 7.1]
the residue of ω along any oriented r-simplex σ of T , denoted resσ ω. Fixing ω, and putting

cω(σ) = resσ ω, (3.2)

we obtained an r-cochain which we proved was harmonic [deS00, Theorem 7.7]. The main result
[deS00, Theorem 8.2] is that this yields an isomorphism

Hr
dR(X) � Cr

har. (3.3)

An immediate consequence is that Hr
dR(X) has a distinguished subspace, of bounded cohomol-

ogy classes, corresponding to the bounded harmonic cochains, Cr
bhar. It is dense in the topology

of uniform convergence on affinoid subdomains, but is complete in the Banach supremum norm
transported from Cr

bhar via (3.3). The integral cohomology is, by definition, the part mapping to
Cr

har(OK) ⊂ Cr
bhar. All these spaces are stable under G.

Let A = P(VK) be the set of K-rational hyperplanes in V ∗, viewed as a compact space in the
p-adic topology. To

S = (a0, . . . , ar) ∈ Ar+1 (3.4)

we associate the differential form

ωS =
r∑

i=0

(−1)ida0/a0 ∧ · · · ∧ d̂ai/ai ∧ · · · ∧ dar/ar. (3.5)

Notice that da/a is independent of the representative of a in VK , but is a 1-form on the pre-image of
X in V ∗ only. Nevertheless, ωS descends to X because it is equal to

∧r
i=1 d log(ai/a0). The harmonic

cochain cS = cω(S) is particularly nice. It is given by a combinatorial pairing ([deS00, § 2.3 and
Corollary 7.6])

cS(σ) = (σ, S). (3.6)

Let σ be represented by the lattice-flag

σ = [L0 ⊃ L1 ⊃ · · · ⊃ Lr ⊃ πL0] (3.7)

(the lattices determined up to a common homothety, and the inclusions are strict). Normalize the
elements of S to lie in L0 − πL0. Then (σ, S) = sgn(α) if there exists a permutation α such that
aα(i) ∈ Li − Li+1, and is 0 otherwise.

More generally, let µ be any bounded K-valued distribution on Ar+1 (a bounded, finitely additive
K-valued function on the compact-open subsets of this profinite space). Such a µ is called a measure.
The space of measures is denoted by M(Ar+1). Then

ω(µ) =
∫

ωS dµ(S) (3.8)
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is well defined on any affinoid subdomain of X, hence on all of X (see [IS00]). We call such an ω
a logarithmic r-form and denote the space of them all by Ωr

log(X). Logarithmic forms are closed.
The corresponding harmonic cochain is given by

cµ(σ) = cω(µ)(σ) =
∫

(σ, S) dµ(S). (3.9)

An important observation of Iovita and Spiess is that the bounded cohomology is precisely the
image of the map

M(Ar+1)→ Hr
dR(X), µ 
→ [ω(µ)] (3.10)

and that the logarithmic forms represent the bounded cohomology classes one-to-one, namely, if
[ω(µ)] = 0, then already ω(µ) = 0 (see [AdS02, Theorem 1.2]). It is not true that ω(µ) = 0
implies µ = 0. The kernel of this map is the space M(Ar+1)deg of degenerate measures [AdS02, 1.4].
Among other things, we prove in [AdS02] that the Banach quotient norm of the class of µ modulo
M(Ar+1)deg is equal to the supremum norm of cµ.

There is a spectral sequence

Er,s
2 = Hr(Γ, Cs

har) = Hr(Γ,Hs
dR(X)) =⇒ H

•
dR(XK) (3.11)

which degenerates at E2 (the covering spectral sequence, see [SS91, § 5, Proposition 2]). It therefore
induces a filtration F •

Γ on the cohomology of XK , whose graded pieces are

grr
Γ Hd

dR(XK) = Hr(Γ, Cd−r
har ). (3.12)

One may substitute the bounded harmonic cochains (or bounded cohomology) Cs
bhar for Cs

har and
get the same spectral sequence (see [AdS02, Lemma 3.4]).

The results of § 2 apply to X. If we denote by Y its special fiber, then the log-rigid cohomology
Dm(Y ) is defined, and carries a Frobenius endomorphism. Theorem 2.1 holds. The relative Frobe-
nius automorphism φ (of degree q) acts linearly. It was computed by Grosse-Klönne in [Gro02,
Corollary 5.6], and was found to act like qm on Dm. This is not surprising if we note that, on
the logarithmic de Rham–Witt 1-forms d log f , the absolute Frobenius acts by multiplication by p.
It will eventually turn out that these logarithmic classes generate the entire cohomology.

In [Gro02, Theorem 6.3], this is used to prove that the relative Frobenius φ respects the covering
filtration on the de Rham cohomology and in fact acts like qs on the graded pieces Hr(Γ, Cs

har).
It follows that the weight filtration and the covering filtration are essentially identical, up to a
change of the indexing:

F r
ΓHd

dR(XK) = P2d−2rD
d(Y )⊗K0 K. (3.13)

3.2 The extensions C̃shar

We now review and elaborate on some results from [AdS03]. We recall the extension of G-modules

0→ Cs−1
har (A)→ C̃s−1

har (A) d→ Cs
har(A)→ 0 (3.14)

constructed in [AdS03, § 3] (A any ring). If A = K we drop it from the notation.
Let Ã = (VK\{0})/O×K . This is a locally compact space fibered over A, whose fibers are principal

homogeneous spaces for Z = K×/O×K . Any lattice L in VK determines a splitting A → Ã, namely
a 
→ aL where aL lies in L− πL. Via this splitting, Ã is identified with A× Z. A measure on Ãs+1

is, as before, a bounded finitely additive K-valued function on the compact-open subsets
of Ãs+1. We say that a measure µ is compactly supported if there exists a compact-open subset C
such that µ(U) = µ(U ∩ C) for every compact-open U . Let Mc(Ãs+1) be the space of compactly
supported measures. We can integrate against such a µ any continuous K-valued function on Ãs+1.
We denote by µ∗ the push-down of µ to a measure on As+1.
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Let S̃ = (ã0, . . . , ãs) ∈ Ãs+1. The element c̃S̃ ∈ C̃s−1
har is defined by

c̃S̃(τ) = −
s∑

j=0

(−1)j ordL0(ãj)(τ, Sj), (3.15)

where L0 is the leading vertex of τ ∈ T̂s−1 and Sj is the projection to As of the sequence obtained
from S̃ by deleting ãj . We proved in [AdS03, § 3] that this is indeed an element of C̃s−1

har , and [AdS03,
Lemma 3.2] that

d(c̃S̃) = cS . (3.16)

More generally, we may define c̃µ for any µ ∈Mc(Ãs+1) and d(c̃µ) = cµ∗ .

3.3 Special logarithmic forms in the de Rham–Witt cohomology
Let S ∈ As+1 be as before. Then [ωS ] ∈ Hs

dR(X) is the image, under the comparison isomorphism
ρπ, of a logarithmic class in de Rham–Witt cohomology, which we denote [WωS ] ∈ Ds(Y ). In fact,
ai/a0 represents an element of K×

X̂
(Y ) = O(X)×, uniquely determined up to K×, so d log(ai/a0) ∈

Wω1(Y ). Then

WωS =
s∧

i=1

d log(ai/a0) (3.17)

is a closed s-form in Wωs(Y ). Its class in Hs(Wω•(Y )) maps, under the edge-homomorphism

Hs(Wω
•(Y ))→ Hs(Yét,Wω

•) ⊂ Ds(Y ), (3.18)

to a cohomology class which we denote by [WωS] (see Lemma 4.2 below). In view of part iii of
Theorem 2.1, it maps under ρπ to [ωS ] ∈ Hs

dR(X).

Similarly, if S̃ ∈ Ãs+1, we define

[Wω̃S̃] =
[ s∧

i=1

d l̃og(ãi/ã0)
]
∈ Hs(Yét,W ω̃

•). (3.19)

The element Wω̃S̃ is a closed global section in Wω̃s(Y ). We wish to compute it, using the definition
of the complex of sheaves Wω̃• as a subcomplex of u∗WΩ•[θ] for an appropriate smooth open dense
subscheme u : U ↪→ Y (see § 2.1). To this end we have to specify U .

Let red : X → |T | be the reduction map from the rigid analytic space to the real realization
of T , and sp : X→ Y (κ̄) the specialization map to the special fiber. We take

U = sp(red−1(T0)), (3.20)

the set of specializations of points of X reducing to the vertices of T . Here we have assumed some
familiarity with the structure of X and the associated formal scheme. The irreducible components
Ȳv of Y are labeled by the vertices of T . Let v = [L] be such a vertex, representing the homothety
class of the lattice L. One has Ȳv = sp(red−1(St(v))) where St(v) is the open star of v in |T |. It is a
proper smooth variety over κ which is obtained by successive blow-ups of κ-rational linear subspaces
in projective spaces. Its core is Yv = sp(red−1(v)), which is just the complement in Pv = P((L/πL)∗)
of all the κ-rational hyperplanes. Then Yv is also the intersection of Ȳv with the smooth locus of Y .
The union

U =
∐
v∈T0

Yv (3.21)

is disjoint. It is in fact the whole smooth locus of Y , and is easily seen to be open and dense.
To give Wω̃S̃ as a global section of u∗W Ω̃s(Y ) we simply have to specify

Wω̃S̃,v ∈W Ω̃s(Yv) (3.22)
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independently for each v = [L]. (Of course, not every such a collection is allowable.) But ãi/ã0 has
to be divided precisely by πordL(ãi/ã0) to make it an invertible element in O

X̂
(Yv). Denote by a the

image of ã in A, and by S that of S̃. From the definition of d l̃og, and from θ2 = 0, we get

Wω̃S̃,v =
s∧

i=1

[d log(ai/a0) + θ(ordL(ãi)− ordL(ã0))]

= WωS − θ ∧
s∑

i=1

(−1)i(ordL(ãi)− ordL(ã0))WωSi .

= WωS − θ ∧
s∑

i=0

(−1)i ordL(ãi)WωSi . (3.23)

The last equality uses the fact that
∑s

i=0(−1)iWωSi = 0. If we use the abbreviation

WηS̃,v = −
s∑

i=0

(−1)i ordL(ãi)WωSi ,

then
Wω̃S̃,v = WωS + θ ∧WηS̃,v. (3.24)

We denote by ηS̃,v the corresponding element of Ωs−1
log (X), namely

ηS̃,v = −
s∑

i=0

(−1)i ordL(ãi)ωSi . (3.25)

Proposition 3.1.

i) If v is a vertex of τ ∈ T̂s−1 then

c̃S̃(τ) = resτ (ηS̃,v). (3.26)

ii) If σ ∈ T̂s, σ = (v0, . . . , vs) and σ(i) = (v0, . . . , v̂i, . . . , vs) is its ith face, and if v(i) = vj (j �= i)
denotes any vertex of σ(i), then

resσ ωS =
s∑

i=0

(−1)i resσ(i) ηS̃,v(i) . (3.27)

iii) If σ is as in part ii,

resσ ωS = resσ(0) ηS̃,v1
− resσ(0) ηS̃,v0

. (3.28)

Remark. If d = 1, s = 1, and σ = [L0 ⊃ L1 ⊃ πL0] (a one-dimensional annulus) then ii says that

resσ d log f = ordL1(f)− ordL0(f). (3.29)

Proof. Part i follows, for v the leading vertex of τ , from a comparison of (3.15) with (3.25). If we
apply a cyclic permutation to τ , both c̃S̃(τ) and the residue along τ change by the sign of the
permutation, but v is replaced by another vertex, hence the formula remains valid with any vertex
of τ .

Part ii follows from (3.16) since

resσ(ωS) = cS(σ) = dc̃S̃(σ). (3.30)

Part iii follows from part ii and the fact that
∑s

i=0(−1)i resσ(i) ηS̃,v0
= 0.

All that we did in this section with WωS, Wω̃S̃ and WηS̃,v can be ‘integrated’ to give Wω(µ∗),
Wω̃(µ) and Wη(µ)v, if µ ∈Mc(Ãs+1). We follow the construction of [I-S], write λ = µ∗, and describe,
as an example, Wω(λ). It is enough to give Wω(λ)|V , its restriction to any open subscheme of finite
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type V ⊂ Y . Such a V intersects only finitely many Yv, and therefore d log(ai/a0)|V ∈ Wω1(V ) is
locally constant in ai and a0. The integral

Wω(λ)|V =
∫
As+1

WωS|V dλ(S) (3.31)

makes sense as a finite linear combination of the previously defined WωS.
Thus Wω̃(µ) is specified by giving a collection of Wω̃(µ)v ∈W Ω̃s(Yv) and

Wω̃(µ)v = Wω(µ∗) + θ ∧Wη(µ)v . (3.32)

Notice that the differential forms

η(µ)v = −
∫
Ãs+1

s∑
i=0

(−1)i ordL(ãi)ωSi dµ(S̃) (3.33)

(S̃ = (ã0, . . . , ãs) and v = [L] as usual) are global logarithmic forms, although the corresponding
de Rham–Witt forms Wη(µ)v are regarded as sections of WΩs−1 over Yv only.

For the proof of the Main Theorem we shall need some technical lemmas on these special
logarithmic forms.

Lemma 3.2. If S is linearly dependent, then WωS = 0. If SL (representatives of S in L− πL, for a
lattice L) are linearly dependent modulo πL, then under the map

Wωs(Y ) ⊂ u∗WΩs
U(Y ) =

∏
v∈T0

WΩs(Yv) (3.34)

the image of WωS in WΩs(Yv), for v = [L], vanishes.

Proof. It is enough, of course, to prove the second claim, because if S is a linearly dependent
sequence, SL is linearly dependent modulo πL for every L. To compute WωS|Yv we have to consider
the representatives ai,L in L−πL, reduce them modulo πL to get αi ∈ OU (Yv)×, and then use Illusie’s
map (1.9). If there is a linear dependence we may assume that it is

α0 + · · ·+ αt = 0 (3.35)

for some t � s, hence 1 + x1 + · · ·+ xt = 0 where xi = αi/α0, and clearly
∧s

i=1 d log(xi) = 0.

Lemma 3.3. Suppose that S̃ = (ã0, . . . , ãs+1) ∈ Ãs+2 and S̃i is obtained by deleting the ith vector.
Let

µ =
s+1∑
i=0

(−1)iδS̃i
. (3.36)

Then
i) Wω̃(µ) = 0,
ii) c̃µ = 0.

Proof. i) The measure µ∗ is degenerate, hence Wω(µ∗) = 0. It remains to show that, for every
v = [L], Wη(µ)v = 0. We compute

Wη(µ)v = −
s+1∑
i=0

(−1)i
{ i−1∑

j=0

(−1)j ordL(ãj)WωSji +
s+1∑

j=i+1

(−1)j−1 ordL(ãj)WωSij

}

=
s+1∑
j=0

(−1)j ordL(ãj)
{ ∑

i<j

(−1)iWωSij +
∑
j<i

(−1)i−1WωSji

}
= 0, (3.37)

since for every T = Sj of length s + 1,
∑s

i=0(−1)iWωTi = 0.
ii) As in part i we compute η(µ)v = 0 for all v, hence c̃µ = 0 (by Proposition 3.1).
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For the next lemma, let S = (a0, . . . , as) be linearly dependent. We may assume that a0, . . . , at

is a minimal linearly dependent subset, and choose representatives S̃ so that

ã0 + · · ·+ ãt = 0. (3.38)

Lemma 3.4. Under the above assumptions:

i) Wω̃S̃ = 0,
ii) c̃S̃ = 0.

Proof. i) We already know that WωS = 0 (see Lemma 3.2). It remains to check that, for any v = [L],
WηS̃,v = 0. Normalize L so that ãi, for i � t, all lie in L, but not all of them lie in πL. Rearrange
the indices so that ãi ∈ L− πL for i � r and ãi ∈ πL for r < i � t. Then {ã0, . . . , ãr} are linearly
dependent modulo πL, hence WωSi|Yv = 0 if i > r. If 0 � i � r, on the other hand, ordL(ãi) = 0.
It follows from (3.23) that Wω̃S̃,v = 0, as desired.

ii) Although, as in the previous lemma, we could deduce part ii from part i, let us prove it
directly. Let τ ∈ T̂s−1 and let v = [L] be the leading vertex of τ . Normalize L and rearrange the
indices as in part i. Recall that

c̃S̃(τ) = −
s∑

i=0

(−1)i ordL(ãi)(τ, Si). (3.39)

Since {ã0, . . . , ãr} are linearly dependent modulo πL, (τ, Si) = 0 for i > r. For i � r, ordL(ãi) = 0.
It follows that c̃S̃(τ) = 0.

4. The Main Theorem

Let
ν : Hr(Γ, Cd−r

har )→ Hr+1(Γ, Cd−r−1
har ) (4.1)

be the connecting homomorphism in group cohomology coming from the extension (0.4). It follows
immediately from [AdS03, Theorem 4.3] that, for any r � [d/2], iteration of ν yields an isomorphism

νd−2r : Hr(Γ, Cd−r
har ) � Hd−r(Γ, Cr

har). (4.2)
Because of the relation between the covering filtration and the weight filtration (3.13), and because
of the characterization given in § 1.2 of the monodromy filtration, the following theorem is all that
we need to conclude the proof of Theorem 0.1.

Theorem 4.1. Let grΓ N : grr
Γ Hd

dR(XK) → grr+1
Γ Hd

dR(XK) be the map induced from the
monodromy operator N of Hd

dR(XK), by passing to graded pieces in the covering filtration. Then

grΓ N = ν. (4.3)

Proof. We begin by noting that not only Hm
dR(X), but also Hm(Yét,Wω•), admits an action of Γ

(or even G). Indeed, Γ acts on Y , and the quotient map Y → YΓ is étale, since we assumed Γ to be
torsion-free. The category of abelian sheaves on YΓ,ét is canonically equivalent, under the restriction
functor, to the category of Γ-equivariant abelian sheaves on Yét. From general principles we get the
desired Γ-action on Hm(Yét,Wnω•), as well as a Hochschild–Serre spectral sequence

Hr(Γ, Hs(Yét,Wnω
•))⇒ Hr+s(YΓ,ét,Wnω

•). (4.4)

Remark. For the existence of a Hochschild–Serre spectral sequence one only has to verify that, if I
is an injective abelian sheaf on YΓ,ét, then H0(Yét, I) is an acyclic Γ-module. This is proved precisely
as in [Mil80, Theorem III.2.20]. Note that the discussion in Example 2.6 of that work applies to
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our situation, although Γ is infinite. The group Γ is discrete, and Γ-cohomology is ordinary group
cohomology, without any reference to continuity.

Lemma 4.2. There are Γ-isomorphisms

ρk : Hk(Yét,Wω
•)⊗W (κ) K � Ck

bhar(K) (4.5)

sending the class [WωS ] to cS .

Proof. Let Zr be as in § 2.1. Define ρk to be the compositum of the three maps

Hk(Yét,Wω
•)⊗W (κ) K ↪→ lim

←
{Hk(Zr,ét, i

∗
rWω

•)⊗W (κ) K}, (4.6)

lim
←
{Hk(Zr,ét, i

∗
rWω

•)⊗W (κ) K} � Hk
dR(X), (4.7)

Hk
dR(X) � Ck

har(K). (4.8)

Here the first map is obvious, the second comes from Theorem 2.1, parts i and ii, and the third is
the canonical isomorphism constructed in [deS00]. The edge homomorphism

Hk(Wω
•(Y ))→ Hk(Yét,Wω

•) (4.9)

of the (first) spectral sequence of hypercohomology

Epq
1 = Hq(Yét,Wωp)⇒ Hp+q(Yét,Wω•) (4.10)

(note that Ep0
2 = Hp(Wω•(Y ))), allows us to talk about the logarithmic classes [Wω(λ)] in

Hk(Yét,Wω•) ⊗W (κ) K, for any K-valued measure λ on Ak+1. This class maps to cλ ∈ Ck
bhar.

As it is clear that Hk(Yét,Wω•) gets mapped to Ck
har(OK), and as every bounded harmonic cochain

is of the form cλ, we conclude that the image of Hk(Yét,Wω•) ⊗W (κ) K is precisely Ck
bhar(K), and

that every element in it is of the form [Wω(λ)].

We now return to the proof of the theorem. Consider the following diagram.

0 ����� Hk−1(Wω•(Y )) ��

��

Hk(Wω̃•(Y )) ��

��

Hk(Wω•(Y )) �����

��

0

0 ����� Hk−1(Yét,Wω•)K ��

∼=ρk−1

��

Hk(Yét,W ω̃•)K ��

ρ̃k

��

Hk(Yét,Wω•)K �����

∼=ρk

��

0

0 �� Ck−1
bhar(K) �� C̃k−1

bhar(K) �� Ck
bhar(K) �� 0

(4.11)

Here the middle row is part of the long exact sequence in hypercohomology coming from (1.6),
and the maps in the top row are the obvious ones. The arrows from the top to the middle row are
supplied by the edge-homomorphisms of the first spectral sequence of hypercohomology. The map
ρ̃k will be constructed soon.

Step I. We first note that the middle row is exact (namely, the ‘monodromy operator’ on
Dk(Y ) vanishes). The results of [AdS02] show that every c ∈ Ck

bhar is of the form cµ∗ for some
µ∗ ∈M(Ak+1), which is unique up to M(Ak+1)deg. The fact that ρk is an isomorphism implies that
every element of Hk(Yét,Wω•)K is of the form [Wω(µ∗)]. Since µ∗ can be lifted to a measure µ on
Ãk+1, Wω(µ∗) is the image of Wω̃(µ), and we obtain exactness on the right. The same exactness
on the right, for index k − 1 instead of k, proves exactness on the left in the diagram.
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Step II. We now define the map ρ̃k. From Step I we deduce that every element of Hk(Yét,W ω̃•)K
is of the form [Wω̃(µ)], although µ is not unique. We put

ρ̃k([Wω̃(µ)]) = c̃µ (4.12)

and proceed to show that this is well defined. We have to check that, if [Wω̃(µ)] = 0, then also
c̃µ = 0. Before we begin recall (Proposition 3.1, part i) that, if v is the leading vertex of τ ,

c̃µ(τ) = resτ η(µ)v . (4.13)

Suppose that [Wω̃(µ)] = 0. Then [Wω(µ∗)] = 0 too, hence [ω(µ∗)] = 0, so ω(µ∗) = 0, and µ∗ is
degenerate. Now every degenerate measure is a linear combination (integral) of

a) λ∗, for λ =
∑k+1

i=0 (−1)iδS̃i
, and

b) λ∗ that are supported on (Ak+1)0, the locus of linearly dependent vectors in Ak+1.

If λ is of type a), both Wω̃(λ) = 0 and c̃λ = 0, by Lemma 3.3. If λ∗ is of type b), Lemma 3.4 shows
that we can lift it to a compactly supported measure λ on Ãk+1 so that the same conclusion holds.
In either case, we can modify µ without affecting Wω̃(µ) or c̃µ, and make sure that µ∗ is not only
degenerate, but vanishes identically.

We claim that, if µ∗ = 0, then η(µ)v is independent of v. For that, it is enough to treat the
following special case. Pick S = (a1, . . . , ak) ∈ Ak, and consider any lifting S̃ to Ãk, and any ã0.
Let

µ = δã0,S̃ − δπã0,S̃, (4.14)

where δ is the Dirac measure. Then it follows from the definitions that

η(µ)v = ωS, (4.15)

independently of v, as claimed.
We conclude that, if µ∗ = 0, then Wω̃(µ) = θ ∧ Wη(µ). If in addition [Wω̃(µ)] = 0, then

[Wη(µ)] = 0, so [η(µ)] = 0 and η(µ) = 0; hence

c̃µ(τ) = resτ η(µ) = 0. (4.16)

This proves that ρ̃k is well defined.

Step III. It is clear that ρ̃k is G-equivariant. It also makes the diagram commutative. For the
square on the right, use

ρk([Wω(µ∗)]) = cµ∗ = d(c̃µ) = dρ̃k([Wω̃(µ)]). (4.17)

For the square on the left, use the same computation from Step II. Let µ be as in (4.14). Then

Wω̃(µ) = θ ∧WωS; (4.18)

hence

ρ̃k([θ ∧WωS]) = ρ̃k([Wω̃(µ)]) = c̃µ = cS , (4.19)

the last equality being a consequence of (3.15). This proves the commutativity of the left square.

Step IV. When we take Γ-cohomology of the middle row in the diagram, the connecting
homomorphism

Hr(Γ, Hs(Yét,Wω
•)K)→ Hr+1(Γ, Hs−1(Yét,Wω

•)K) (4.20)

is precisely grr
Γ N where N is the Hyodo–Kato monodromy operator. In the bottom row, however,

we get the map ν of [AdS03]. This completes the proof of Theorem 4.1.
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