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COMPLEX-HARMONIC MEIER'S THEOREM

SHINJI YAMASHITA

1. Fatou's theorem is true for a bounded complex-valued harmonic

function in the disk D: | s | < l . One asks naturally: "Is Meier's topological

analogue of Fatou's theorem (simply, "MF theorem"; [14, p. 330, Theorem

6], cf. [10, p. 154, Theorem 8.9]) true for a bounded complex-valued har-

monic function in Z>?" We shall give the affirmative answer to this question.

Furthermore, the horocyclic MF theorem [2, p. 14, Theorem 5] in the com-

plex-harmonic form will be proved in parallel.

For recent various discussions on Plessner's and Meier's theorems we

•consult [1—7, 11, 12, 15—18].

2. In the rest of this note we denote by δ(ζ0, p) the open disk \z — ζo\

< p in the z-plane.

L E M M A 1. Let a function g{ζ) be complex-valued and harmonic {simply, "complex-

harmonic") in δ{ζ0, p) and \g{ζ) \ < 1 for ζ^δ(ζ09 p). Then we have

<D 19(ζ) ~ g(ζo) I ̂  (8/ίr) arc tan(\ζ-ζ o \/p)

for ζ<=δ(ζ0, p) {Schwarz's lemma).

Proof. Let w = (ζ — ζo)/p and consider the function

in D: \w\ < 1. Then G(0) = 0 and \G{w)\ < 1 in D, so that we may apply

the ready Schwarz lemma [13, p. 101, Lemma] to the complex-harmonic G

in D. The inequality [13, p. 101, (3)]

G(w)\ S(4/JΓ) arc

for w^D proves (1). Q.E.D.

The reader should know the definition of cluster set3 chordal cluster set

a n d angular cluster set [10, pp. 1, 72 and 73].
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LEMMA 2. Let a function f(z) be complex-harmonic in D with \f[z)\ < 1 for

Z<ELD. Assume that

(2) Cx(f, 1) Ψ CD(f, 1),

where X is a chord of the unit circle passing through the point z = 1. Then there

exists an angle Δ at z = 1 (i.e., the interior of a triangle lying in D except for om

vertex 2 = 1) such that

(3) CJJ% 1) Ψ CD(f, 1).

Proof Choose a point P^CD{f, 1) - CAf, 1) and let

0 < 2 ε < d i s [P, CAf, 1)}.

By (2) such a point P does exist and further we can find a rectilinear seg-

ment Xλ<z.X terminating at z — 1 such that

(4) 7UQnδ(P, ε) = φ (empty)

by the very definition of Cx(f$ 1). Let ψ be the directed angle, \<p\<π/2r

made by X and the radius of D at z = 1 and suppose without loss of gene-

rality that 0 ^ ψ < ίr/2. Set

T(z0) = |1 - zo[ sin («/4 -

and choose a constant ^ such that

(5) 0<μ<tan(:rε/16).

Then tan (τrβ/16) < 1 < JΓ/2 because of ε < 1 and for any point z&δ{z0, μϊ(z0)}

(zo^Xi) we have

(6) \f(z) - /(20) I ^ (8/ir) arc tan {/<r(zo)/r(so)} < e/2

by (1) of Lemma 1 and (5) if z0 is so near to z = 1 that δ{z0, ϊ{zo))c:D. Now y

as XiB^o-fl, the disks δ(z0, μϊ(z0)) sweep an angle J at 2 = 1, so that by

(4) and (6) we have

(7)

Now that (7) means Pφ/(J) we have

PeCD(f, 1) - Cd(f, 1),

which proves (3). Q.E.D^

For the terminology, "right horocycle", < cright horocyclic cluster set" r
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"right horocyclic angle", etc. we refer to [2, pp. 4-6].

3. Let a function f(z) be complex-harmonic in D with | / (z) | < 1 for

. Assume that

(8) C M l ) (/, 1) ψ CD(f, 1),

where h(ϊ) = K{1) is a right horocycle at z = 1. Then there exists a right horocyclic

angle H{1) = Ai l i r 2 f r 8 ( l ) at z = 1 such that

(9) CH ( 1 )(/, l)*CD(f, 1).

Proof We use a different method from BagemihΓs [2, p . 14, Lemma 3].

By (8) we can find a point P(=CD(f, 1) — CACD(/, 1) and we then set

0 < 2 ε < d i s { P , CA(i)(/, 1)}.

By the definition of CΛα)(/, 1) we obtain a subarc α of Λ(l) terminating at

z = l such that

(10) 7(S)na(P, ε) = 0.

We consider next the map

from the half plane Reζ > 0 onto D. The initial point of h(l) lies on the

real axis, which we denote by x, \x\ < 1. Then the image Lx of A(l) by the

map X~ι is the half line

Lx = [ζ; Reζ = (1 + α)/(l - a?) and Imf ^ 0 } .

Let j3 be the image of a by X"1 and let

(11) 0 < μ< tan(jrε/16).

Let 0 < /o < (1 + α?)/(l — x) and consider the composed function F(ζ) = f°X{ζ)

in the disk <5(ξ*0, /o), where ζo&β. Then for ζ*e^(ζΌ, μp)<^δ(ζ0, p), we have

(12) \F(ζ) - F(fJ I ̂  (8/ir) arc tan (μp/p) < ε/2

by (1) of Lemma 1 combined with (11). Now, as £3f 0 -»oo (i.e., «3Z(f o)->l)

the disks δ(ζ0, μp) sweep a strip of width 2μp whose image by X contains a

right horocyclic angle H(l) = iaΓ;itr8,r8(l) at z = 1. By (10) and (12) we have

so that we have (9). Q.E.D.
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Remark. Lemma 3 is true if the word "right" is replaced by "left"

where it is.

3. A point eίθ of the circle is a Meier point (horocyclic Meier point,

resp.) of a complex-harmonic function f{z) in D if CD(f, eiθ) is a proper

subset of the Riemann sphere and if every chordal cluster set (every right

or left horocyclic cluster set, resp.) of / at eiθ coincides with CD{f9 eiθ) [10,

p. 153], [2, p. 6].

By means of Lemmas 2 and 3, and Collingwood's maximality theorem

{[8, p. 1241, Theorem 4], [9, p. 8, Theorem 4]; [10, p. 80, Theorem 4.10]) or

its ready generalization from (Stolz) angles to horocyclic angles we have the

following two theorems.

THEOREM 1. Let a function f(z) be bounded, complex-valued and harmonic in

the disk \z\ < 1. Then all points of the circle Γ: \z\ = 1 are, except perhaps for

a set of first Baire category on Γ [10, p. 75], Meier points of f.

THEOREM 2. Let a function f(z) be bounded, complex-valued and harmonic in

the disk \z\<l. Then all points of the circle Γ: \z\ = 1 are, except perhaps for

a set of first Baire category on Γ, horocyclic Meier points of f.

4. As a concluding remark we note that further generalizations of

Theorems 1 and 2 are possible (cf. [15]). Let Ω and Ω' be domains in the

z-plane and in the ξ*-plane respectively. A complex-valued function f(z) in Ω

is called Zf-quasi-conformal harmonic (simply, "KQCH") in Ω provided that

f(z) is of the composed form f{z) = g o Q(z), where ζ = Q(z) is a K-quasi-

conformal homeomorphism (K^l) from Ω onto Ωr and g(ζ) is complex-har-

monic in Ω'*\ The key lemma for the proof of MF or horocyclic MF theorem

of KQCH functions in D is, of course, an analogue of the Schwarz lemma:

LEMMA l b i s . Let a function f{z) be KQCH and \f{z)\ < 1 in the disk δ{z0, q).

Then for z^δ{z09 q) we have

(13) \f(z) - f(zo)\^(SM arc tan (4*-1'*|« - zo\
1/κ).

Proof We may consider / = g o Γ, where T is a /Γ-quasi-conformal self-

homeomorphism of δ(z09 q) with the additional property that z0 — T{zo)9 and

g is complex-harmonic in δ(z0, q). Furthermore, we know about T that [15,

p. 323, line 2 from below]

A domain Ω' may depend upon /.
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\T(z) - TOO I £4qW*>\z - Zo^z, z<=δ(z09 q),

an inequality due to A. Mori, so that combining this with Lemma 1 of section

2 we obtain (13).
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