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An Aspect of Icosahedral Symmetry

Dedicated to R.V. Moody on the occasion of his 60th birthday

Jan Rauschning and Peter Slodowy

Abstract. We embed the moduli space Q of 5 points on the projective line S5-equivariantly into P(V ),

where V is the 6-dimensional irreducible module of the symmetric group S5. This module splits with

respect to the icosahedral group A5 into the two standard 3-dimensional representations. The resulting

linear projections of Q relate the action of A5 on Q to those on the regular icosahedron.

1 Introduction

The most famous source on icosahedral symmetry is probably the celebrated book
[8] of Felix Klein on “The icosahedron and the solution of equations of degree five”

which appeared for the first time in 1884. Its main objective is to show that the solu-
tion of general quintic equations can be reduced to that of (locally) inverting certain
quotients of actions of the icosahedral group G ∼= A5 on spaces related to the usual
geometric realisation of the regular icosahedron in three-space. Examples for such

spaces are the standard three-dimensional representation of G on R3 or the induced
action on the (unit-)two-sphere S2 in R3 which may be identified with a projective
linear action on the Riemann sphere P1, liftable to a two-dimensional complex rep-
resentation of the binary icosahedral group G̃. Following preceding work of Hermite,

Kronecker, Brioschi, Schwarz, and starting to build up his own comprehensive theory
of elliptic modular and automorphic functions, Klein showed that this inversion can
be effected in terms of elliptic or hypergeometric functions.

Maybe because of Klein’s preoccupation with the above-mentioned transcenden-
tal theories we do not find in his writings any serious discussion of the work on
quintic equations related to the study of binary quintic forms and the corresponding
SL(2)-action as done for example in the later work by Hermite ([4]), a topic obtain-

ing extensive interest by other invariant theorists of the time like Cayley, Silvester,
Aronhold and Gordan (cf. e.g. [5]). However, later in the hands of the Chicago
school (not without influence from Klein), especially by E. H. Moore and his student
Slaught ([10, 15]), this connection was taken up again in a geometric framework.

The study of binary forms of a given degree d up to equivalence under coordinate
changes (i.e. essentially the group SL(2)) and scalar multiplication is equivalent to
the study of the space of d-tuples of points on the projective line P1 up to simulta-
neous projective linear transformation (action of PGL(2)) and permutation by the

symmetric group Sd. “Dividing out” the PGL(2)-action, this leads to a birational ac-
tion of Sd on an affine space of dimension d− 3. In particular, for d = 5, we obtain a
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birational action of S5 and the icosahedral group G ∼= A5 on a plane, given attention
to already in [7].

Rather recently, in a redressing of the old works ([10, 15]) in terms of matrices
and actions on them ([14]), a new look was given at the geometry of the above men-

tioned birational S5-action (cf. the “real” picture of fixed point loci at the end of [15]
and on p. 373 of [14]). Of course, as soon as the icosahedral group (i.e. the subgroup
A5) is involved, a “real icosahedron” might lurk behind the situation, and it was soon

pointed out (cf. the “greek picture” of [16], in the same proceedings) that there was
a combinatorial-numerical coincidence, equating the numbers of 2-, 3-, 5-fold in-
tersections of Renner’s involutory fixed point divisors to those of the real symmetry
planes in the regular icosahedron. However, this has remained on a somewhat formal

and mysterious level, up till now (e.g. the coincidence does not correctly respect the
corresponding isotropy groups).

The purpose of this note is to show that there is a mathematically precise rela-
tion behind this coincidence. It comes about as follows. The moduli space Q, in
the sense of Mumford’s geometric invariant theory ([11]), of five points on P1 is a
surface, birational to P2—in fact a del Pezzo surface of degree five—equipped with a

natural, regular S5-action. It admits an S5-equivariant embedding into P5—the anti-
canonical embedding of the del Pezzo surface. As an A5-module, the corresponding
linear space of anti-canonical sections A6, which is irreducible with respect to S5,
decomposes into two three-dimensional summands on which the icosahedral group

acts by its two irreducible (and conjugate) representations of degree 3. Thus, the sur-
face Q admits two A5-equivariant projections (of degree 5) to the usual icosahedral
projective planes, and the fixed point behaviour of the action of A5 on Q is directly
related to the “classical” picture in these planes.

The results presented in this note are essentially contained in the first author’s

Diplomarbeit ([13], compare this also for a more detailed account) written, under
the (partial) guidance of the second named author, at the University of Hamburg.

2 The Icosahedral Group and Some Linear Representations

As an abstract group, the icosahedral group G is the smallest non-abelian simple
group, isomorphic to the alternating group A5 on five letters. It decomposes into the

following conjugacy classes:

• one class C1 consisting of the neutral element,
• one class C2 consisting of 15 conjugate involutions,
• one class C3 consisting of 20 conjugate elements of order 3,
• and two classes C5, C ′5, each consisting of 12 conjugate elements of order 5 (C5∪C ′5

forming one conjugacy class inside S5).

All complex irreducible representations of the icosahedral group G ∼= A5 are most
easily remembered by regarding the McKay graph associated with the binary icosahe-
dral covering group G̃ ∼= Ã5 of order 120, i.e. the extended Coxeter-Dynkin diagram
of type Ẽ8 parametrizing the irreducible complex characters of G̃ (cf. e.g. [8], p. 268,

and references there):
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Here, the attached indices yield the degrees of the representations, and the black
nodes indicate those representations that descend to the icosahedral group:

• (1), the trivial representation,
• (3) and (3 ′), the basic three-dimensional representations, defined over Q(

√
5)

and conjugate under the non-trivial field automorphism of Q(
√

5) (alternatively by

an outer automorphism of A5 realised by conjugation with an element of S5 \ A5),
• (5), which we won’t touch in this article, and
• (4 ′), defined over Q , which is obtained as the restriction of the irreducible four-

dimensional permutation Q[S5]-module inside the standard permutation module

on five elements. Its second exterior power Λ2(4 ′) decomposes over Q(
√

5) into the
two basic representations (3) and (3 ′).

We shall also have to deal with the action of the symmetric group S5 of order 120,
having seven conjugacy classes. Here is the list of its complex irreducible representa-

tions, all defined over Q , again suggestively denoted by their dimensions:

• (1) and (1 ′), the trivial and the sign representation,

• (4) and (4 ′) = (4)⊗ sign,
• (5) and (5 ′) = (5)⊗ sign,
• (6) ∼= (6)⊗ sign = Λ2(4) = Λ2(4 ′).

The representations of A5 and S5 which will be of fundamental concern to us can
all be constructed in a neat direct way.

Let us first consider the icosahedral group G = A5. We fix once and for all one
of the conjugacy classes C of G containing 12 elements of order 5. Define FQ as the
6-dimensional quotient module of the space of all functions F(C,Q) divided by the
subspace F(C,Q)+ of all functions invariant with respect to inversion on C (alterna-

tively, as the subspace F(C,Q)− of inversion-anti-invariant functions, alternatively,
as the induced representation IndG

D(ε) from a dihedral subgroup D ⊂ G of order 10,
ε : D → Z2). Over the field Q , this yields an irreducible representation of G. How-
ever, it is not absolutely irreducible. After extension of scalars to Q(

√
5), it splits as

a G-module into the sum of the two irreducible three-dimensional representations
related to the regular icosahedron in three-space.

It is illuminating, though we won’t need that later, to regard this situation in more
detail on the background of the icosahedral interpretation of G.

We may identify C with the 12 vertices of an abstract (i.e. graph theoretical) icosa-
hedron, two vertices g, g ′ ∈ C being neighbours, i.e. being connected by one of the
30 edges, if and only if the product gg ′ has order 3. Then every g ∈ C has 5 neigh-
bours N(g) = {g1, . . . , g5}, an antipode g−1 and 5 antipodes of N(g), i.e. neighbours

N(g−1) = {g−1
1 , . . . , g

−1
5 } of the antipode g−1. The operator

∆ : FQ → FQ , ∆(F)(g) =
∑

g ′∈N(g)

F(g ′),
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commutes with G and satisfies∆2
= 5 · Id. This yields

EndQ[G](FQ ) ∼= Q[∆]/(∆2 − 5) ∼= Q(
√

5).

The three-dimensional representations of G are then realised in the eigenspaces of
∆, defined over Q(

√
5). Geometrically, the existence of a square root of 5 in the

ground field k ⊃ Q or, alternatively, that of a golden section τ = 1+
√

5
2

, allows the
construction of a regular icosahedron inside k3 (the main constructive problem be-
ing that of a regular plane pentagon). We may then map the abstract icosahedron
introduced above onto this regular icosahedron, i.e. map the elements of C onto its

12 vertices preserving the neighbourhood and the G-action. Extending by linearity,
this provides us with a non-zero G-equivariant map from Fk onto one of the stan-
dard 3-dimensional k[G]-modules (3), the kernel being the conjugate module (3 ′).
Alternate choices in the above construction may lead to the conjugate situation.

Note that a basis for FQ may be obtained by six elements of G (identified with
the corresponding δ-functions) representing all elements of C up to inversion), e.g.
C+ = {g}∪N(g) for a fixed g ∈ G. (For the linear G-action, we then have to interpret
the inverse elements in C− = C \C+ as the negatives of those in C+).

Later, we shall also encounter an analogous construction of the 6-dimensional
representation (6) for the full symmetric group S5. For that, fix the conjugacy class C̃
consisting of all 24 order-5-elements in S5. (Note that C̃ is equivariantly stable under
taking second powers of elements, s : g 7→ g2, and that s2 : g 7→ g4, equals inver-

sion). In analogy to the icosahedral case, we may now consider the 12-dimensional
Q-S5-module F(C̃,Q)−, a Q-basis of which may be provided by the elements of
the icosahedral classes C+ and s(C+). This shows that F(C̃,Q)− decomposes as a
Q[A5]-module into two copies of the above described 6-dimensional Q-irreducible

A5-representation, which implies that, as a Q[S5]-module, it decomposes into two
copies of the irreducible 6-dimensional S5-representation, F(C̃,Q)− ∼= (6) + (6). In
particular, any non-trivial sub- or quotient module of F(C̃,Q)− is isomorphic to the
6-dimensional S5-module (6). (Note, by the way, that s induces a complex structure

on F(C̃,R)−.)

3 Five Points on the Projective Line

Let us look at five ordered points {p1, . . . , p5} on the complex projective line P1
=

P1(C) and classify such five-tuples up to simultaneous transformation under the pro-
jective linear group PGL(2) = PGL(2,C). Let Ũ be the subset of X = (P1)5 con-
sisting of 5-tuples with at least three distinct points. Then the action of PGL(2)

is free on Ũ , and there is a geometric quotient q̃ : Ũ → Q̃ of this action which
is a PGL(2)-principal fibre bundle, however, not over an ordinary but over a non-
separated scheme Q̃ (cf. the discussion in [12], Chapter 2). To remedy this, one has
to restrict to the slightly smaller open subset U of stable points in X consisting of

those 5-tuples which do not contain three pairwise identical points (note, due to 5
being an odd number, this is also the set of semistable points in X). Then Mumford’s
general theory ([11, 12]) provides us with a geometric quotient q : U → Q onto a
projective scheme Q, by simple dimension reasons, an algebraic surface, now.
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Of course, Q contains as a dense open affine subset the quotient space Q ′ of the set
U ′ of 5-tuples in X consisting of pairwise distinct points, which is the space consid-

ered in [14, 16] and which may be identified with the complement of the seven lines
{x = 0}∪{x = 1}∪{x =∞}∪{y = 0}∪{y = 1}∪{y =∞}∪{x = y} in P1×P1.
Since the action of PGL(2) on X commutes with the permutation action of S5 on the
ordering of points, σ(p1, . . . , p5) = (pσ−1(1), . . . , pσ−1(5)), the last action descends to

a regular S5-action on these quotient spaces, Q̃, Q, Q ′, thereby realising the birational
plane action of the icosahedral group G = A5 mentioned in the introduction.

The basis for a finer description of the structure of the moduli space Q and its
symmetry is a concrete S5-equivariant embedding into projective 5-space P5 which

will be dealt with in this and the next section.
In [12], Chapter 2, Theorem 1, an ample S5-equivariant invertible sheaf L on

Q is constructed which yields a realisation of Q as the projective spectrum of the
graded C-algebra A of all global sections

⊕

k∈N
H0(Q,Lk). More precisely, L is

obtained by descending (in an elementary way) the PGL(2)-linearised sheaf L̃ =
⊗

i=1,...,5 pr∗i OP1 (2) from U ⊂ (P1)5 to the quotient Q. In our situation, here, one

can improve on that by explicitly showing that L is in fact very ample, the global
sections H0(Q,L) already providing the searched for projective embedding.

For that let us switch to the slightly more algebraic language of classical invariant
theory. The moduli problem for the action of PGL(2) on (P1)5 is the same as that for

the action of the product SL(2)× T, T ∼= (C∗)5, acting, via both factors individually,
on (C2 \ 0)⊗C5. Let δ : SL(2)×T → C∗ denote the character δ

(

g, (ti)
)

= (
∏

i ti)
2.

Then H0(Q,Lk) is the subspace C[C2 × C5]kδ of all polynomials on C2 × C5 which

transform under SL2×T with respect to the character kδ. In particular, such ele-
ments are invariant under SL2. Note that, due to the S5-invariance of δ, we obtain an
S5-action on the graded algebra A and all its homogeneous components H0(Q,Lk).

The determination of the invariants of the SL(2)-action is a direct consequence

of the so-called First Fundamental Theorem for the special linear group (cf. e.g. [19],
II.6) which implies, in our situation, that C[C2 ⊗ C5]SL(2) is generated by all 2 × 2-
minors (i, j) formed from two column vectors pi and p j , i, j = 1, . . . , 5 (here we
consider C2 ⊗ C5, in matrix interpretation, as the set of 5-tuples of 2 × 1-column

vectors pi ; we will adhere to the obvious convention (i, j) = −( j, i)). The Second
Fundamental Theorem (cf. loc. cit.) implies that the only relations satisfied by these
minors are the Plücker relations (for indices i, j, k, l = 1, . . . , 5):

(i, j)(k, l) + (i, k)(l, j) + (i, l)( j, k) = 0.

Note that T × S5 acts naturally on the free polynomial ring generated by the minors
(i, j) and that the ideal generated by the Plücker relations is T × S5-stable.

From a geometric point of view, this construction realises the partial quotient of
(

(C2 \ 0) ⊗ C5
)

stable
by SL(2) as an open subset of the affine cone over the Grass-

mannian G2,5 of 2-planes in C5. To obtain our moduli space Q, we still have to form
the quotient of that set by the action of T in a further step, which is achieved in the

following way.
If m is a monomial product

∏

`=1,...,m(i`, j`) of minors in C[C2 ⊗ C5]SL(2), then

it transforms under T with respect to kδ, i.e., it determines a section of H0(Q,Lk),
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exactly when each column i ∈ [1, . . . , 5] occurs exactly 2k-times among the indices
i`, j`. In particular, we then have m = 5k. It is now an exercise in elementary combi-

natorics (performed in [13], Chap. 4) to show that the algebra A =
⊕

k∈N
H0(Q,Lk)

is generated by its lowest degree terms, i.e., by the space of global sections H0(Q,L).
Thus we obtain:

Theorem 1 The anticanonical sheaf L̃ =
⊗

i=1,...,5 pr∗i OP1 (2) on X = (P1)5 admits

a unique PGL(2)-linearisation. It descends from U ⊂ (P1)5 to a very ample sheaf L

on the moduli space Q. In particular, Q is an irreducible algebraic surface admitting a
projective embedding into P

(

H0(Q,L)∗
)

.

Remark Since X is a principal PGL2-bundle over Q, it is easily seen that L is the
anticanonical sheaf on Q.

4 Equivariant Embedding of the Moduli Space

According to the last section, we obtain a projective embedding of Q into the projec-
tive space P

(

H0(Q,L)∗
)

, which is equivariant with respect to the given S5-actions.

Theorem 2 As a C-S5-module, H0(Q,L) is isomorphic to the unique irreducible
6-dimensional S5-module discussed in Section 2. In particular, as an A5-module,

H0(Q,L) decomposes into the direct sum of the two three-dimensional “icosahedral”
representations, V = (3) + (3 ′).

Proof As explained above, the space of global sections V = H0(Q,L) may be viewed
as a subspace of C[C2 ⊗ C5]SL(2), which is a quotient of the free polynomial ring
M = C[(i, j)] on 10 formal minors (i, j) by the Plücker relations. The set of all
monomials m (of degree 5 in the minors (i, j)) mapping to a generating set of V may

be obtained by the following construction:
(i) Let g be one of the 24 elements of order 5 in S5. Define

mg =
(

g(1), g(2)
)

·
(

g(2), g(3)
)

·
(

g(3), g(4)
)

·
(

g(4), g(5)
)

·
(

g(5), g(1)
)

.

(ii) Let g be one of the 20 elements of order 3 in S5. If i and j ∈ {1, . . . , 5} are
the fixed letters of g, k one of the other three, put

mg = (i, j)2 ·
(

k, g(k)
)

·
(

g(k), g2(k)
)

·
(

g2(k), k
)

.

Up to sign, this gives (6+6)+10 distinct monomials. Exploiting the Plücker relations,
the S5-equivariance, σmg = mσgσ−1 , between conjugacy classes and monomials, and

the explicit module constructions in Section 2, one obtains the result.

Remarks

(1) As a by-result of the proof above, one gets an explicit basis of V , e.g. the set of
(residue classes of the) monomials mg where g runs through the set C+ of 6 el-
ements in A5 marked in Section 2. Enumerating these elements by g0, . . . , g5,
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one thus obtains the following ‘explicit’ definition of the projective embedding
Φ : Q→ P(V ∗) = P5 of Q:

Φ(q) =
(

mg0
(q) : · · · : mg5

(q)
)

.

(2) This explicit form of the map Φ, together with local arguments, can of course

be used to give a direct, elementary proof of the projectivity of Q. Note, that
the set of stable points U ⊂ (P1)5 is covered by open subsets of the form U i, j,k

consisting of those 5-tuples with pi , p j , pk pairwise distinct. The quotient Qi, j,k of
such an open set is isomorphic to the complement of the three ‘diagonal’ points

(0 : 0), (1 : 1), (∞,∞) in P1 × P1, and it is easily seen that Φ realises Q as the
blow-up of P1 × P1 in these points. In other words, Q is obtained by blowing
up three generic points on P1 × P1 or, alternatively, of four generic points in the
projective plane P2. Thus Q is a smooth del Pezzo surface of degree 5 embedded

via Φ by its anti-canonical system (cf. e.g. [3, 9, 18]). A different identification of
Q with a del Pezzo surface of degree 5 is given in [2]. It is based on the system of
10 exceptional curves of the first kind on Q.

(3) In (1) above, we have chosen the basis (of classes) {mg ; g ∈ C+} for V . Another

basis, realising the same matrix form for the action of A5, is given by (the classes
of) {mg ; g ∈ s(C+)}, leading to a rational and A5-invariant 6 × 6-matrix S =
(

(Sg,h)
)

g,h∈C+

ms(g) =

∑

h∈C+

Sg,hmh.

It corresponds to an A5-equivariant “induced” endomorphism s̄ of V , defined
over Q . However, since s does not respect the kernel of the projection from

F(C̃,Q)− to V , it is highly non-canonical (depending on the explicit choice an
A5-equivariant lift of V to F(C̃,Q)−). For example, it cannot satisfy anymore the
relation s̄2

= −1 satisfied by s. Explicit matrix entries for S can, of course, be
determined by means of the Plücker relations.

Any element m ∈ H0(Q,Lk) determines a form of degree k on H0(Q,L)∗, in par-
ticular, for g ∈ C+, mgms(g) determines a quadratic form. It is invariant under A5

since it consists (up to sign) of exactly all 10 minors (i, j) (if g is visualised as a pen-
tagon with edges g(1), . . . , g(5), then s(g) corresponds to the associated pentagram).
Moreover, the different quadrics mgms(g), g ∈ C+, are transformed into each other
by A5. Thus they all must equal each other. This provides already the first half of the

following theorem:

Theorem 3 As a subvariety of P
(

H0(Q,L)∗
)

, the moduli space Q is defined by the 15
quadratic equations

mg .ms(g) = mh.ms(h),

where g and h run over all distinct pairs of elements in C+.

Unfortunately, at this moment we don’t have an elegant direct proof of the second
half of this statement, i.e. that besides the points in Q there are no other solutions to
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the given quadratic equations. The proof in [13] rests on a verification using Com-
puter Algebra (MACAULAY2).

Remarks

(1) Obviously, 5 of the 15 equations are sufficient (as are the custom for del Pezzo
surfaces of degree 5).

(2) Using the mg , g ∈ C+, as linear coordinates and the matrix S, these equations can
be put in coordinate form

∑

k∈C+
(mgSg,k −mhSh,k)mk = 0.

(3) Using Computer Algebra and the explicit equations, one may also show indepen-
dently of the theory of del Pezzo surfaces that Q has degree 5 in P5.

As a further application of Computer Algebra and the explicit equations, let us
mention the following result which also follows from the realisation of Q as a
del Pezzo surface of degree 5.

Theorem 4 As a subvariety of P5, the moduli space Q contains exactly 10 projective
lines, all having self-intersection −1 (exceptional curves of the first kind). Two such

curves are disjoint or meet transversely in one point. There are 15 such intersection
points. The group S5 acts transitively on this configuration.

Remark These 10 lines are the images of the ‘diagonal’ divisors on U where two
points coincide. They make up the discriminant locus D = Q \ Q ′. This locus does

not enter, i.e. lies outside, the ‘minimal’ affine picture of [14, 16].

5 Icosahedral Projections of the Moduli Space

We shall have a closer look now at the position of Q inside P5. Since the points of
Q generate an S5-stable linear subspace of P5

= P(V ∗), the S5-irreducibilty of V
implies that Q cannot lie inside any hyperplane.

Let V = W1 ⊕ W2 denote the decomposition of V as an A5-module into the

two three-dimensional “icosahedral” representations. Then P(W i) is an A5-stable
projective plane inside P5, and we have two natural A5-equivariant projections
P5 \ P(Wi)→ P(W j), i 6= j.

Theorem 5 The intersections Q ∩ P(W i), i = 1, 2, are empty. In particular, there are
two A5-equivariant projections

πi : Q→ P(Wi)

of degree 5.

Proof For i = 1, 2, the intersections Q ∩ P(W i) are A5-stable subvarieties of P(W i)

which are permuted by the elements in S5 \ A5. If they were of dimension 2, they
would be components of Q contradicting its irreducibility. If they were of dimension
0, they would each have to consist of at least 6 points (the minimal A5-orbit in P(Wi),
cf. [8], II4). However, they are intersections of quadrics, and thus have at most 4
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points. Finally, assume they were of dimension 1. Then they would have to equal the
fundamental A5-stable conic Ci in P(Wi), cf. [8], II4, i.e. all the restrictions to W i of

the quadrics mg ·ms(g)−mh ·ms(h) would have to be proportional to the corresponding
non-degenerate A5-invariant quadric on W i . However, the restrictions of mg .ms(g) to
Wi are proportional to squares of linear forms (because of the A5-equivariance of s
on V and the irreducibility of W i , we have for the restricted linear forms ms(g)|Wi

=

λi · mg |Wi
for some λi ∈ C∗), and their differences give degenerate conics (pairs of

lines) in P(Wi). Thus the first claim. The second is then a trivial consequence.

Remarks

(1) A look at the fibres of these projections πi (see e.g. below) quickly reveals that they

cannot be (ramified) Galois covers.
(2) Under these projections, the 10 lines in D are mapped onto the 10 polars of the

10 = 20/2 midpoints of the faces of the projective icosahedron inside P2(R) ⊂
P(Wi).

Theorem 5 is the basis for a detailed investigations of the fixed points of A5 (and
of S5) on Q and their relation to the “usual” icosahedron. Let us just mention some

results (for more details cf. [13]; it is quite instructive to derive these results by using
the symplectic reduction of the PGL(2)-quotient of (P1)5 to that of SO(3) acting on
5 points pi on the 2-sphere satisfying the centre of gravity condition

∑

i pi = 0, cf.
[11], Appendix):

• There are 24 elements of order 5 in A5. Each such element has exactly two fixed
points on Q, and there is a total of 12 such points on Q. They map 2:1 onto the 6
vertices of the projective icosahedron inside P2(R) ⊂ P(Wi).
• There are 20 elements of order 3 in A5. Each such element has exactly 4 fixed

points on Q, two of which lie on the discriminant D = Q \ Q ′. There is a total of 20
such points inside the “regular” part Q ′, mapping 2:1 onto the 10 midpoints of the
faces of the projective icosahedron inside P2(R) ⊂ P(Wi). On each projective line in
D there are 2 such further fixed points.

• There are 15 elements of order 2 in A5. Each such element has a fixed line
isomorphic to P1 and a single isolated fixed point on Q. There is a total of 15 such
lines and 15 such points in Q, the points being the intersection points of the 10 lines
in D. The 15 lines map to the polars of the 15 = 30/2 midpoints of the edges of the

projective icosahedron inside P2(R) ⊂ P(Wi).

6 Questions

Due to the formal limitations on a “Diploma”-project like this one, a number of
questions which pose themselves quite naturally could not be addressed in ([13]).
• The most urgent problem would be to obtain a better and more detailed un-

derstanding of the ramified coverings πi of Q onto the icosahedral planes P(W i) and

their effect on the fixed point behaviour which is well studied in P(W i) (see e.g. [8],
II4). We have already mentioned above that they cannot be Galois coverings.
• Does the interpretation of Q as a del Pezzo surface of degree 5 give any useful

information in that respect (cf. [3, 9, 18])? It certainly illuminates the discussions in
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[15].

• Though these coverings do not show up in the work [1], they might be re-

lated to them. Certainly, Q itself is realized as a ball quotient (see [2]), and thus also
the further covering of degree 5 over P(W i) should have an interpretation in terms
of ball quotients, i.e. it should give a 2-dimensional analogue of Klein’s original 1-
dimensional situation (hypergeometric and elliptic modular functions) by means of

the Appel-Picard hypergeometric functions and automorphic functions on the 2-ball
(see [2, 6]).

• One might also try to establish a direct relation between Klein’s original 1-

dimensional approach and the variety Q. For example, is Klein’s use of his “Haupt-
fläche” (see [8], II3) related to the quadric H obtained inside the direct product
P(W1) × P(W2) as the product of the fundamental conics C1 ×C2? More generally,
does the variety Q embed into the product P(W1)×P(W2) (via the two projections),

and is there an analogue of Gordan’s S5-invariant theory ([8], II3, Sections 6–11)
for this product. This would lead to a complete icosahedral interpretation of the
SL(2)-invariant forms of binary quintics (cf. e.g. [5], I7) as they are the same as the
S5-invariants on the affine cone over Q. For some observations in that respect cf.

[13], Chapter 5. Finally, let us point out that Klein himself, led by line geometric
reasoning, invokes the decomposition of the 6-dimensional S5-moduleΛ2C4 into the
two 3-dimensional representations of A5 in his concluding, general reflections on the
resolution process (see [8], II5).

It seems to us that any progress on these questions would be worthwhile, exhibit-
ing further aspects of icosahedral symmetry.
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