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There is a reasonable possibility that the present-day Atlantic Meridional Overturning
Circulation is in a bistable regime, hence it is relevant to compute pathways of noise-
induced transitions between the stable equilibrium states. Here, the most probable
transition pathway of a noise-induced tipping of the northern overturning circulation in
a spatially-continuous two-dimensional model with surface temperature and stochastic
salinity forcings is computed directly using large deviation theory. This pathway reveals
the fluid dynamical mechanisms of such a tipping. Paradoxically it starts off with a
strengthening of the northern overturning circulation before a short but strong salinity
pulse induces a second overturning cell. The increased atmospheric energy input of this
two-cell configuration cannot be mixed away quickly enough, leading to the collapse of
the northern overturning cell, and finally resulting in a southern overturning circulation.
Additionally, the approach allows us to compare the probability of this transition under
different parameters in the deterministic part of the salinity surface forcing, which
quantifies the increase in transition probability as the bifurcation point of the system is
approached.

Key words: ocean circulation, variational methods, buoyancy-driven instability

1. Introduction
The Atlantic Meridional Overturning Circulation (AMOC) plays a vital role in regulating
Earth’s climate. It transports warm upper ocean water northwards, which causes the
rather mild climate in western Europe. When reaching the subpolar North Atlantic Ocean,
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the relatively warm and salty water is cooled by the atmosphere and becomes the denser
cold and salty North Atlantic Deep Water, which sinks and returns as a deep southward
flow (Frajka-Williams et al. 2019). The AMOC is identified as a tipping element in the
present-day climate system (Armstrong McKay et al. 2022), and its collapse would have
severe consequences for the global climate (van Westen et al. 2024b).

Stommel (1961) already realised the AMOC’s potential for tipping, as the AMOC is
affected by two competing feedbacks due to the opposing effects of temperature and
salinity on the density of seawater. A strengthening of the AMOC results in increased
northward heat transport, causing a decrease in density of the upper subpolar North
Atlantic water, which inhibits sinking. Consequently, the thermal circulation represents
a negative feedback. On the other hand, AMOC strengthening also increases northward
salt transport, which aids the northern deep water formation. Hence the haline circulation
provides a positive feedback mechanism: the salt-advection feedback (Marotzke 2000).
These feedbacks, together with the fact that ocean temperature anomalies are more strongly
damped by the atmosphere than ocean salinity anomalies, result in a multiple equilibria
regime for the AMOC. In the box model used by Stommel (1961), two stable equilibria
exist in a range of the surface buoyancy forcing, hence transitions between these states can
occur.

Since then, multiple equilibria regimes have been found in a hierarchy of AMOC
models, from conceptual box models (Rooth 1982; Rahmstorf 1996; Lucarini & Stone
2005; Cimatoribus et al. 2014), two-dimensional (2-D) models (Quon & Ghil 1992;
Thual & McWilliams 1992), three-dimensional ocean-only models (Dijkstra 2007),
various Earth system models of intermediate complexity (Rahmstorf et al. 2005), global
climate models (Hawkins et al. 2011), to modern Earth system models (van Westen &
Dijkstra 2023). Based on observations of available stability indicators, such as the AMOC
induced freshwater convergence (Dijkstra 2007), the present-day AMOC would be in such
a regime (Weijer et al. 2019), although this claim is contested (Jackson & Wood 2018).
Accordingly, there has been a growing interest in establishing the distance of the present-
day AMOC to these bifurcation points, and whether it will cross a critical threshold in
a bifurcation-induced tipping event. Based on early warning signals determined from
reconstructed historical data, the AMOC is thought to be heading towards this critical
bifurcation point (Caesar et al. 2018; Boers 2021), and estimates have been made for when
this point will be reached (Ditlevsen & Ditlevsen 2023). However, many uncertainties, in
particular in the sea surface temperature data to reconstruct the historical AMOC, remain
(Ben-Yami et al. 2024).

In addition to a bifurcation-induced tipping, the AMOC can also undergo a noise-
induced tipping, where the transition occurs due to variations in small-scale forcing
processes represented as ‘noise’ (Dijkstra 2024). This is far more dangerous, as there are
no reliable early-warning signals for a noise-induced transition as opposed to a bifurcation-
induced one (Ditlevsen & Johnsen 2010), especially when considering non-Gaussian noise
(Lucarini et al. 2022). Moreover, a bifurcation-induced tipping can occur only close to the
bifurcation thresholds, whereas one induced by noise can occur as long as the system is
in a multiple-equilibria regime. Several AMOC models have been developed where the
ocean’s surface is forced by stochastic salinity noise in order to study the statistics of these
noise-induced transitions (Cessi 1994; Timmermann & Lohmann 2000). A major hurdle in
this analysis is that noise-induced AMOC transitions are expected to be quite rare. There
is no observational evidence for such a transition over the historical period, and computed
probabilities for a transition in box models can be as low as 10−8 under realistic noise
levels (Castellana et al. 2019; van Westen et al. 2024a). At these low probabilities, standard
Monte Carlo techniques fail to obtain a transition path within reasonable computing
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time. However, we would still like to obtain these rare transition paths as they can be
qualitatively different from the more commonly studied bifurcation-induced transitions
(Soons et al. 2024), and they may provide new early-warning signals for a noise-induced
transition (Giorgini et al. 2020).

Here, we use a technique from the Freidlin–Wentzell theory of large deviations
(Freidlin & Wentzell 1998) to directly compute the most likely transition path in the
low-noise limit of a noise-induced tipping of the overturning circulation in a 2-D
Boussinesq fluid model with stochastic surface salinity forcing. This model captures
the salt-advection feedback mechanism well, although it does not represent the AMOC
realistically. The technique entails minimising the Freidlin–Wentzell action, yielding this
most likely transition path and its associated noise forcing. This minimisation is equivalent
to maximising the probability of the applied stochastic forcing under the constraints that
it causes a transition. This technique transforms this rare transition sampling problem into
a deterministic minimisation problem. The corresponding path, also called the instanton,
has been determined in other applications to study noise-induced transitions (Grafke et al.
2015; Grafke & Vanden-Eijnden 2019; Woillez & Bouchet 2020; Schorlepp et al. 2022),
and we have previously computed the instantons for an AMOC collapse in a stochastic
version of the Wood et al. (2019) box model (Soons et al. 2024). This work is a natural
extension to that.

In the following, we introduce the 2-D Boussinesq model of thermohaline flow in § 2.
Then in § 3, the methodology is described briefly, including a short introduction of the
Freidlin–Wentzell theory of large deviations, which is subsequently applied to the model.
The fluid dynamical mechanisms and energetics of the resulting most likely tipping of the
overturning circulation are analysed in § 4. Next, the probability ratios of the transitions
in the low-noise limit are presented for various surface forcings in § 5. Section 6 finally
contains a summary and discussion of the results.

2. The 2-D Boussinesq model
We use a Boussinesq model of the zonally averaged thermohaline circulation in the
double-hemispheric Atlantic basin with heat and salt forcing at the surface, where the
latter has a stochastic component. It is considered for a rectangular basin of length L and
depth H . The diffusivities of heat κT , salt κS , and momentum ν are assumed constant, and
must be interpreted as eddy diffusivities. A linear equation of state holds, with thermal
expansion and haline contraction coefficients αT and αS , respectively. The model used is
a slight modification of the ones studied in Quon & Ghil (1992), Thual & McWilliams
(1992) and Dijkstra & Molemaker (1997).

The governing equations are non-dimensionalised with scales H , H2/κT , κT /H ,
�T and �S/λ for length, time, velocity, temperature and salinity, respectively. Here,
�T and �S are characteristic meridional temperature and salinity differences, and λ
is the buoyancy ratio (λ= (αS �S)/(αT �T )). The streamfunction ψ and vorticity ω
are introduced, with the horizontal and vertical velocity (u, w) expressed by u = ∂zψ ,
w= −∂xψ and ω= ∂xw− ∂zu. Hence the system is described by streamfunction
ψ(x, z, t), vorticity ω(x, z, t), temperature T (x, z, t) and salinity S(x, z, t). The non-
dimensional governing equations are

Pr−1
(
∂ω

∂t
+ ∂ψ

∂z

∂ω

∂x
− ∂ψ

∂x

∂ω

∂z

)
= ∇2ω+ Ra

(
∂T

∂x
− ∂S

∂x

)
, (2.1)

ω= −∇2ψ, (2.2)
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∂T

∂t
+ ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∇2T + h(z)

τT
(TS(x)− T ) , (2.3)

∂S

∂t
+ ∂ψ

∂z

∂S

∂x
− ∂ψ

∂x

∂S

∂z
= Le−1 ∇2S + h(z)

τS

(
SS(x)+ S̃S(x, t)

)
, (2.4)

on the domain (x, z) ∈ [0, A] × [0, 1] for time t � 0. The basin’s bottom is at z = 0, its
surface is at z = 1, and the southern and northern ends are located at x = 0 and x = A,
respectively. All the boundaries are assumed to be stress free, i.e.

for x = 0, A, ψ =ω= 0, (2.5)
for z = 0, 1, ψ =ω= 0, (2.6)

and additionally they are isolated and impervious to salt and temperature, so

for x = 0, A,
∂T

∂x
= ∂S

∂x
= 0, (2.7)

for z = 0, 1,
∂T

∂z
= ∂S

∂z
= 0. (2.8)

Equations (2.1) and (2.2) model the advection and diffusion of momentum, which
is forced by the meridional temperature and salinity gradients. Note that using the
streamfunction implies mass conservation. Equations (2.3) and (2.4) represent the
advection–diffusion processes for heat and salinity, respectively. Temperature is forced
by a restoring force, where it is always driven towards a fixed atmospheric temperature
TS(x). Salinity, on the other hand, is forced by a flux, consisting of a deterministic and
temporally constant part SS(x) and a stochastic part S̃S(x, t). All forcings have a vertical
profile prescribed by

h(z)= exp
(

z − 1
δV

)
, (2.9)

with δV � 1 a characteristic thickness for the top boundary layer. In this way, the forcings
are essentially applied only near the surface where h(1)= 1. Moreover, the temperature
and salinity forcings have respective time scales τT and τS . Note that the stochastic forcing
is acting only on the salinity component of our system, so we have degenerate noise.
However, we still expect the system to be a hypo-elliptic diffusion, i.e. the noise spreads
to all degrees of freedom in the system, since any perturbation to the surface salinity will
propagate to the other components via the advective terms (Lucarini & Bódai 2020).

Finally, the following non-dimensional parameters are used: the Prandtl number Pr, the
Lewis number Le, the thermal Rayleigh number Ra and the aspect ratio A. These are
defined as

Pr = ν

κT
, Le = κT

κS
, Ra = gαT �T H3

νκT
, A = L

H
, (2.10)

where g is the standard acceleration of gravity. Throughout this work, we take these to be
constant: Pr = 1, Le = 1, Ra = 4 × 104 and A = 5 which are based on the values found in
Quon & Ghil (1992) and Dijkstra & Molemaker (1997). Moreover, we also fix τT = 0.1,
τS = 1 and δV = 0.05.

Note that the adopted parameter values are unrealistic for the present-day AMOC,
as A and Ra should be altered by several orders of magnitude to represent the actual
Atlantic basin and the observed diffusivities. However, they are chosen such that the
model still has a stable diabatically driven pole-to-pole circulation despite omitting the
relevant wind and tidal mechanisms that mainly drive the AMOC (Kuhlbrodt et al. 2007;
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Johnson et al. 2019). The presented model, even though conceptual, is still relevant, as
it captures the salt-advection feedback (Dijkstra 2024). This mechanism is responsible
for the multi-stability of the AMOC and its collapse (Weijer et al. 2019; Vanderborght
et al. 2024). The purpose of our model consequently is to represent the thermohaline
aspect of the AMOC as opposed to including all relevant drivers (Cessi & Young 1992;
Quon & Ghil 1992; Thual & McWilliams 1992; Dijkstra & Molemaker 1997). Hence our
study aims to produce and analyse the most likely process in which the thermal and salt-
advection feedbacks cause a tipping of this diabatic overturning circulation, which in turn
is insightful for noise-induced AMOC tippings in more representable models.

2.1. Surface forcing
The prescribed atmospheric temperature is

TS(x)= 1
2

(
cos

(
2π

(
x

A
− 1

2

))
+ 1

)
, (2.11)

which is identical to Dijkstra & Molemaker (1997) and is symmetric around the equator
(x = 1/2), with hot tropics and cold poles. Regarding the freshwater forcing, an additional
constraint is present, as we want the total salinity in the basin to be conserved. Integrating
(2.4) over the complete basin yields

d
dt

∫ 1

0

∫ A

0
S dx dz = δ

τS

(
1 − e−1/δ

) (∫ A

0
SS(x) dx +

∫ A

0
S̃S(x, t) dx

)
, (2.12)

so total salinity is conserved only if each of the integrated horizontal profiles of the
deterministic and stochastic parts of the freshwater forcing are zero. For the deterministic
part, we take

SS(x)= 3.5 cos
(

2π

(
x

A
− 1

2

))
− β sin

(
π

(
x

A
− 1

2

))
, (2.13)

which is asymmetric for β > 0, with the northern (sub)polar region being more freshened
than its southern counterpart (and vice versa for β < 0). Note that integrated over the
basin’s horizontal dimension, the freshwater forcing is zero.

For the stochastic component, we assume that the noise is white in time as this simplifies
the computations significantly, and it is standard for other AMOC models (Cessi 1994;
Timmermann & Lohmann 2000; Castellana et al. 2019). Physically, this assumption
implies that the time scale at which the sea surface salinities vary is much smaller than the
time scale at which the large-scale circulation varies. We choose

S̃S(x, t)=
√
ε

K

K∑
k=1

Ẇ (1)
k (t) cos

(
2π

A
kx

)
+ Ẇ (2)

k (t) sin
(

2π

A
kx

)
, (2.14)

with 2K spatial components, variance ε > 0, and 2K independent Wiener processes
W (1)

k (t) and W (2)
k (t) for k ∈ {1, . . . , K }. This fulfils the salinity conservation constraint

and is white in time as

E

(
S̃S(x, t) S̃S(x, t ′)

)
= ε δ(t − t ′), (2.15)

where δ(·) is the Dirac delta distribution. The number of components K influences the
noise behaviour greatly, so a considered choice for its value is required. Of course, a larger
K will result in a higher resolution in the form of allowing the forcing to vary on smaller
spatial scales, but it will also require additional CPU time to compute realisations and
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the instanton trajectory. Following Adler et al. (2003, 2017) and Boot & Dijkstra (2025),
the largest variation in mean annual precipitation is around the Inter tropical Convergence
Zone. This band of high variance stretches for roughly 20◦ in latitude. Taking the Atlantic
basin from 70◦S to 70◦N then results in a rough cut-off at K = 7, which we fix here in
this paper. Finally, we base the size of the temporal variance ε on estimates of the annual
standard deviation of the sea surface salinities in the Atlantic basin (Friedman et al. 2017).
This yields

√
ε ∈ (10−3, 10−2), hence ε ∈ (10−6, 10−4).

2.2. Model as a stochastic partial differential equation
The model is rewritten as a standard stochastic partial differential equation (SPDE) in
order to apply the Freidlin–Wentzell theory to it. We define the function

φ : Ω ×R�0 →R
3 with φ(x, z, t)= (ω(x, z, t), T (x, z, t), S(x, z, t))T , (2.16)

where Ω = [0, A] × [0, 1] is the basin domain. Note that the streamfunction ψ(x, z, t) is
omitted as it has no time evolution equation, and we rewrite it as ψ[ω(x, z, t)]. This is
possible since the Poisson equation (2.2) with homogeneous Dirichlet boundaries has a
unique well-defined ψ(x, z, t) for every ω(x, z, t). So we write

ψ[ω] =G(ω), (2.17)

where G is the linear operator

G(v)= −
∫
Ω

G(x, z; ζ, ξ) v(ζ, ξ, t) dζ dξ, (2.18)

with G (Green’s function) obeying

∇2
(x,z)G(x, z; ζ, ξ)= δ(ζ − x, ξ − z) for (x, z) ∈Ω, (2.19)

G(x, z; ζ, ξ)= 0 for (x, z) ∈ ∂Ω. (2.20)
Now, the deterministic part of the evolution equations is given by

f : φ 	→ ( f1[φ], f2[φ], f3[φ])T , (2.21)

where

f1[φ] = ∂xψ[φ1] ∂zφ1 − ∂zψ[φ1] ∂xφ1 + Pr ∇2φ1 + Pr Ra (∂xφ2 − ∂xφ3) , (2.22)

f2[φ] = ∂xψ[φ1] ∂zφ2 − ∂zψ[φ1] ∂xφ2 + ∇2φ2 + h(z)

τT
(TS(x)− φ2) , (2.23)

f3[φ] = ∂xψ[φ1] ∂zφ3 − ∂zψ[φ1] ∂xφ3 + Le−1 ∇2φ3 + h(z)

τS
SS(x). (2.24)

Let η(x, z, t) represent the three-dimensional spatio-temporal white noise, with

E
(
ηi (x, z, t) ηi (x

′, z′, t ′)
)= δ(x − x ′) δ(z − z′) δ(t − t ′) for i ∈ {1, 2, 3}, (2.25)

and note that{
cos

(
2π

A
kx

)
cos

(
2πlz

)
, cos

(
2π

A
kx

)
sin
(

2πlz

)
, sin

(
2π

A
kx

)
cos

(
2πlz

)
,

sin
(

2π

A
kx

)
sin
(

2πlz

)}
k,l∈N0

(2.26)

is an orthonormal basis of L2(Ω). We denote the associated basis transform operator with
U. As this is a unitary operator, we have that its adjoint is equal to its inverse (U∗ =U−1).
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Furthermore, we define a projection operator P that projects a function in L2(Ω) onto the
space spanned by this basis under restrictions that l = 0 and 1 � k � K . Then it holds
that

S̃S(x)=
√
ε

K
U∗PU(η)(x, z, t). (2.27)

The model can then be written as the SPDE system

∂tφ(x, z, t)= f [φ(x, z, t)] + √
ε σ (η(x, z, t)), (2.28)

where the operator σ acts on the white-in-space and white-in-time noise

σ =
⎛
⎜⎝

0
0

h(z)

τS
√

K
U∗PU

⎞
⎟⎠ . (2.29)

2.3. Deterministic equilibria
Under the stated surface forcings, there are three distinct equilibria in the deterministic
setting (i.e. ε= 0) that are relevant, and they are depicted in the partial bifurcation
diagram in figure 1. Here, the asymmetry β of the deterministic freshwater forcing is
the bifurcation parameter. There are two possible stable states, which both consist of
one asymmetric overturning cell with downwelling near one pole; see figures 1(a,c). One
state with downwelling near the basin’s northern boundary is denoted as the ON state
(as it mimics an active AMOC state), and one with downwelling in the south is denoted
as the OFF state. As parameter β increases, the freshwater flux into the northern half
increases as well, which inhibits downwelling there and weakens the ON state. Eventually,
for β > 0.11, the freshwater flux is large enough to tip the ON state. Note that the model’s
dynamics is invariant under the transformations β → −β and x → A − x . In other words,
the ON state at β is exactly the OFF state at −β, but mirrored at the equator, x = A/2.
Therefore, the OFF state tips for values β <−0.11. This creates a bistable regime for
|β|< 0.11. Additionally, in this bistable regime, a saddle state is present, which is an
unstable equilibrium with two symmetric overturning cells in each hemisphere, with
downwelling near both poles; see figure 1(b). We restrict ourselves here to the bistable
regime as this contains the relevant attractive structure for the noise-induced transition.
The bifurcation structure outside of this region is in principle much more complicated,
and a thorough bifurcation analysis and descriptions of the instability mechanisms can be
found in Dijkstra & Molemaker (1997).

The ON and OFF states (also denoted as φON and φOFF) are pole-to-pole circulations
that each can be qualitatively viewed as a superposition of a thermally driven symmetric
circulation with deep water formation at both cold poles and upwelling near the equator,
and a haline-driven circulation that sees the opposite flow with downwelling near the
equator and upwelling at both fresh poles. The haline circulation is much weaker than
the thermally driven one as the former is forced by a constant salinity flux while the
latter is forced by a restoring boundary condition that imposes a fixed surface temperature.
This causes sharper isopycnals and hence a stronger flow (Thual & McWilliams 1992).
Therefore, in the pole-to-pole circulation, the thermally driven downwelling near one of
the poles is stronger than the salinity-induced upwelling near the other. As volume needs
to be conserved, a small vertical boundary layer for the downwelling is countered by
upwelling in the rest of the basin. The horizontal length scale of this layer is approximately
0.9, which is consistent with the scaling argument presented in Quon & Ghil (1992).

1009 A53-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

24
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.248


J. Soons, T. Grafke and H.A. Dijkstra

3

2

1

0

−1

−2

−0.2

−4 −3 −2 −1 0 1 2 3 4

−0.1 0 0.1 0.2

1.0
0.8
0.6
0.4
0.2

1.0
0.8
0.6
0.4
0.2

0
0 1 2 3 4 5

0
0

1.0
0.8
0.6
0.4
0.2

0
01 2 3 4 5 1 2 3 4 5

−3

ψ
 (

2
.5

, 
0
.5

)

ψ

ON

OFF

(a)

(b)

(c)

(a) (b) (c)

β
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Figure 1. Partial bifurcation diagram of the 2-D Boussinesq model (top) with stable ON and OFF branches
(solid) and unstable saddle states in the bistable region (dashed), with contour plots of the streamfunction ψ of
examples of (a) the stable ON state, (b) the saddle, and (c) the stable OFF state, which are all indicated on the
bifurcation diagram.

The stability of these states can be explained physically using arguments presented in
Turner (1973). In the steady state, diffusion of salt and heat is balanced by buoyancy-
induced mixing. If a perturbation at the surface increases the horizontal density gradient,
and hence the overturning strength, then more warm and salty water will be transported to
the bottom via downwelling, while more cold and fresh water wells up. This water needs
to be heated and salinified by the surface forcing via diffusion. If this cannot keep up
with the increased supply of deep water, then the horizontal density gradients will fall, so
the overturning strength decreases again. This negative feedback mechanism stabilises the
pole-to-pole circulations.

The saddle state, on the other hand, is completely thermally driven. Its instability is due
to the competition between the two overturning cells: if a perturbation would cause one
of the cells to be slightly larger than the other, then the larger cell would see a net input
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of salt via the freshwater forcing. This would strengthen its downwelling, hence this cell
would grow even more and eventually become the sole overturning cell.

3. Methodology

3.1. Freidlin–Wentzell theory
Consider an SPDE with additive noise

∂t U =B(U)+ √
ε F(η)(x, t), t � 0, (3.1)

where U : Rd ×R�0 →R
m is the m-dimensional state of the system as a function of

space x ∈R
d and time t ∈R�0. The deterministic drift is given by the operator B(U),

and operator F(η) acts on the Gaussian spatio-temporal white noise η, which is scaled
by smallness parameter ε. The covariance operator is denoted by A=F∗F, which is the
adjoint of F acting on itself. For simplicity, we treat only additive noise, but the theory can
be extended to include multiplicative noise. It is non-trivial to show in general that this
SPDE is well-posed, since the spatially rough noise necessitates carefully defining any
nonlinearities present in B(U) (Hairer 2014). Since our choice of spatial noise covariance
with a finite number of wavelengths K introduced a natural cut-off, such complications
are avoided, and we can formally extend the Freidlin–Wentzell theory directly to the
infinite-dimensional set-up (Grafke et al. 2017). Concretely, we are interested in situations
where the stochastic process (3.1) realises a certain transition within a time τ starting at
U(x, 0)= U0(x) and ending at U(x, τ )= U1(x). This transition might be impossible in
the deterministic setting (ε= 0), but can occur if noise is present (ε > 0), although it might
be increasingly rare in the limit of small noise (ε→ 0).

Large deviation theory allows us to compute the rate at which this probability decays as
the size of the noise ε approaches zero. The probability of observing a realisation close to
a function υ : Rd × [0, τ ] →R

m, (x, t) 	→ υ(x, t), obeys

P

[
sup

t∈[0,τ ]
‖U(x, t)− υ(x, t)‖L2 < δR

]
� exp (−Sτ [υ/ε]) (3.2)

for sufficiently small δR > 0. Here, � denotes log-asymptotic equivalence, and ‖ · ‖L2 is
the L2-norm in the spatial components. The functional Sτ [υ] is the Freidlin–Wentzell
action, and is defined as

Sτ [υ] =
⎧⎨
⎩

1
2

∫ τ

0

〈
∂tυ −B(υ), A−1 (∂tυ −B(υ))

〉
L2

dt if the integral converges,

∞ otherwise,
(3.3)

where 〈·, ·〉L2 denotes the L2 inner product in the spatial components, and A−1 is the
inverse of the covariance operator. More technical constraints regarding the smoothness
of the functions and operators at hand can be found in Freidlin & Wentzell (1998). In our
case of degenerate noise, the covariance operator is not invertible, and there are several
methods to circumvent the inversion (Grafke & Vanden-Eijnden 2019).

The major implication of (3.2) is that in the limit of small noise (ε→ 0), the trajectory
υ̃ with the smallest action becomes the least unlikely trajectory to realise the transition. In
other words,

υ̃(x, t)= arg min
υ(x,0)=U1(x), υ(x,τ )=U2(x)

Sτ [υ] (3.4)
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is the maximum likelihood pathway (or instanton). Moreover, all realisations that fulfil the
transition conditions will concentrate around υ̃ for low noise levels:

lim
ε→0

P

[
sup

t∈[0,τ ]
‖U(x, t)− υ̃(x, t)‖L2 < δ

∣∣∣∣U(x, 0)= U1(x), U(x, τ )= U2(x)

]
= 1,

(3.5)
for δ > 0 sufficiently small. Our goal now is to compute this instanton υ̃(x, t) for a tipping
of the overturning circulation in our model. This will be the path whose associated forcing
is the most likely to occur out of all possible stochastic forcings that induce a tipping in a
time interval t ∈ [0, τ ].

The minimisation (3.4) is a common problem in classical field theory (Altland & Simons
2010). The Lagrangian of (3.3) is

L (υ, ∂tυ)=
〈
∂tυ −B(υ), A−1 (∂tυ −B(υ))

〉
L2
. (3.6)

Then we can define the conjugate momentum to υ as

χ(x, t)= ∂L (υ, ∂tυ)

∂ (∂tυ)
, (3.7)

and so define the Hamiltonian as the Fenchel–Legendre transform of the Lagrangian:

H (υ, χ)= (χ ∂tυ −L (υ, ∂tυ))

∣∣∣∣
∂tυ=∂tυ(υ,χ)

= 〈B(υ), χ〉L2 + 1
2 〈χ ,A(χ)〉L2 . (3.8)

Hence the Hamiltonian field equations, also called the instanton equations, follow
directly as

∂tυ =B(υ)+A(χ), (3.9a)
∂tχ = − (∇υB)∗ (χ), (3.9b)

with boundary conditions υ(x, 0)= U1(x) and υ(x, τ )= U2(x). Solving these equations
yields the instanton υ̃(x, t). The advantage of reformulating the minimisation problem
into (3.9) is that the covariance operatorA no longer needs to be inverted. A disadvantage
of the Hamiltonian framework is that we have one first-order partial differential equation
with an initial value as well as a final condition, while the conjugate momentum equation
has no temporal boundary conditions.

3.2. The instanton equations for the Boussinesq flow
We formulate the instanton equations (3.9) for the SPDE of the Boussinesq flow
(2.2). Let φ(x, z, t)= (ω, T, S)T(x, z, t) be the instanton path, and let θ(x, z, t)=
(θω, θT , θS)

T(x, z, t) be its conjugate momentum. For the covariance operatorA, we find

A= σ ∗σ =

⎛
⎜⎜⎝

0 0 0
0 0 0

0 0
(h(z))2

τ 2
S K

U∗PU

⎞
⎟⎟⎠ , (3.10)

where we used that the adjoint of the basis transformation operator is its inverse (U∗ =
U−1), and that P is a projection operator, so P∗ =P and P2 =P. Note that the covariance
operator is clearly non-invertible, as expected: the noise in our model is degenerate.
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Essentially, A(θ) is a filter that yields the Fourier modes of θS that are constant along
the vertical axis and have a horizontal wavelength A/k for 1 � k � K . The amplitude of
the noise is indicated by ε just as in (3.1). The set of partial differential equations (PDEs)
describing the instanton φ of a tipping of the overturning circulation in (2.2) is

∂tω+ ∂zψ ∂xω− ∂xψ ∂zω= Pr ∇2ω+ Pr Ra (∂x T − ∂x S) , (3.11a)

∂t T + ∂zψ ∂x T − ∂xψ ∂zT = ∇2T + h(z)

τT
(TS(x)− T ) , (3.11b)

∂t S + ∂zψ ∂x S − ∂xψ ∂z S = Le−1 ∇2S + h(z)

τS
SS(x) (3.11c)

+ (h(z))2

τ 2
S K

K∑
k=1

θ
(1)
k (t) cos

(
2π

A
kx

)
+ θ

(2)
k (t) sin

(
2π

A
kx

)
,

where

−∇2ψ =ω with ψ = 0 for (x, z) ∈ ∂Ω, (3.12)

θ
(1)
k (t)= 2

A

∫
Ω

θS(x, z, t) cos
(

2π

A
kx

)
dx dz, (3.13)

θ
(2)
k (t)= 2

A

∫
Ω

θS(x, z, t) sin
(

2π

A
kx

)
dx dz, (3.14)

with spatial boundary conditions

ω= 0 for (x, z) ∈ ∂Ω, (3.15)
∂x T = ∂x S = 0 for x = 0, A, (3.16)
∂zT = ∂z S = 0 for z = 0, 1, (3.17)

and temporal boundary conditions

φ(x, z, 0)= φON, (3.18)
φ(x, z, τ )= φOFF. (3.19)

The set of PDEs for the conjugate momentum θ is derived by first computing the
variational derivatives of the deterministic drift f and their adjoints; see Appendix A.
This results in the equations

∂tθω + ∂zψ ∂xθω − ∂xψ ∂zθω + νω + νT + νS + Pr ∇2θω = 0, (3.20a)

∂tθT + ∂zψ ∂xθT − ∂xψ ∂zθT + ∇2θT − h(z)

τT
θT − Pr Ra ∂xθω = 0, (3.20b)

∂tθS + ∂zψ ∂xθS − ∂xψ ∂zθS + Le−1 ∇2θS + Pr Ra ∂xθω = 0, (3.20c)

where the functions νω, νT , νS : Ω ×R�0 →R obey the Poisson equations

− ∇2νω = ∂xω ∂zθω − ∂zω ∂xθω, (3.21)

− ∇2νT = ∂x T ∂zθT − ∂zT ∂xθT , (3.22)

− ∇2νS = ∂x S ∂zθS − ∂z S ∂xθS, (3.23)

where

νω = νT = νS = 0 for (x, z) ∈ ∂Ω, (3.24)
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with spatial boundary conditions

θω = 0 for (x, z) ∈ ∂Ω, (3.25)
∂xθT = ∂xθS = 0 for x = 0, A, (3.26)
∂zθT = ∂zθS = 0 for z = 0, 1. (3.27)

Altogether, PDEs (3.11) and (3.20) will yield the most likely path φ from ON to OFF state
within time t ∈ [0, τ ] in the low-noise limit as ε→ 0. The associated forcing that brings
this path about is thenA(θ).

3.3. Numerical implementation
As mentioned before, the problem with the previously described PDEs is that (3.11)
describing φ have two temporal boundary conditions, while (3.20) regarding the conjugate
momentum θ have none. To deal with this, we use the augmented Lagrangian method in
which these equations are reformulated as a control problem (Hestenes 1969; Schorlepp
et al. 2022); see Appendix B for more technical details. The PDEs there are solved using
finite difference methods. We use a first-order semi-implicit Euler method to integrate
the path and the conjugate momentum equations in time. The spatial derivatives are
approximated with a second-order central difference approach (Veldman & Rinzema
1992). We use a non-equidistant grid to discretise Ω similarly as in Dijkstra et al. (1995).
There are M + 1 grid points in the horizontal direction, and N + 1 points in the vertical.
The grid points are defined as

xm = m

M
A for m ∈ {0, 1, . . . , M}, (3.28)

zn = 0.5 + tanh
(

q

(
n

N
− 1

2

))/(
2 tanh

(q

2

))
for q = 3 and n ∈ {0, 1, . . . , N }.

(3.29)
This way, we have a finer grid near the surface where the forcing is applied. For the spatial
resolution, we take (M, N )= (40, 80) unless otherwise stated. Here, priority is given
to a high vertical resolution in order to accurately resolve the top boundary layer. Now
the bifurcations of the system will shift under different spatial resolutions, but the same
qualitative structure will remain (Dijkstra & Molemaker 1997). Similarly, the instanton
will show only a quantitative shift under different resolutions, but the physical mechanisms
will remain the same. Hence the following analyses can be carried out similarly for any
resolution. For the time discretisation, we employ a step size �t = 0.01.

In order to verify our method, we compare the computed instanton with several realised
transitions at low noise levels. As it is computationally demanding to generate these
transitions at the standard resolution, we compute the instanton and the realisations at the
lower resolution (M, N )= (15, 30). In figure 2, the resulting instanton is shown in several
projected phase spaces together with multiple realised transitions. The instanton lies at the
centre of the tube of transitions in salinity and streamfunction spaces, which is a good
indication that it is indeed correct and representative of observed stochastic transitions.
However, in the temperature variable, this agreement is less obvious; transitions projected
onto the temperature space are quite erratic compared with those projected onto the salinity
and streamfunction spaces. This illustrates that the underlying quasi-potential is relatively
flat there, which can cause the most likely transition path for finite noise to deviate from
the Freidlin–Wentzell instanton (Börner et al. 2024). If we compare the transitions for
noise level ε= 0.005 to those with ε= 0.0035, then we see that the latter lie closer and
around the instanton. This indicates that for even lower noise, the transition tube and
instanton also agree in temperature space. Generating unbiased transition paths for even
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Figure 2. Instanton (black) and histograms of 55 realised transitions (blue) at noise level ε= 0.005, and 10
realised transitions (red) at noise level ε= 0.0035, both with logarithmic scaling in the various phase spaces
(a) T (4, 0.96), T (2, 0.5), (b) S(4, 0.96), S(2, 0.5) and (c)ψ(4, 0.96), ψ(2, 0.5), with the ON and OFF states
indicated. Model parameters are β = 0.1 and (M, N )= (15, 30).

lower noise levels is, however, unfeasible as for ε= 0.0035, the Monte Carlo estimated
probability of tipping within time τ = 20 is approximately 10−3. All in all, we can justify
that the computed path is indeed the Freidlin–Wentzell instanton from the ON to OFF
states.

In addition to the method’s verification, we also need to argue its validity. The instanton
will be a fair representation of a noise-induced AMOC tipping if two assumptions hold:
(i) the noise is indeed white in time and spatially uniformly represented by the first K
Fourier components; and (ii) the system is in the limit of low noise. Assumption (ii) has
already been argued for the model used in Soons et al. (2024), and the noise compared to
the AMOC strength should not depend too much on the model choice. Moreover, using
the previously mentioned estimates for the variance ε, we find the transition probability in
the low-resolution version of the model to be already less than 10−3. Hence we can safely
assume that the low-noise limit also holds for this model. The choice of noise structure
(i) has already been argued in § 2. A thorough discussion of the noise structure of the
atmospheric temperature and freshwater flux in the Atlantic Basin can be found in Boot &
Dijkstra (2025).

4. The most likely tipping of the overturning circulation
In this section, we present the most likely transition path from the ON to the OFF state
for β = 0.1. The value of β is chosen close to the bifurcation point β = 0.11, because a
noise-induced transition is more probable close to the bifurcation point, and the resulting
trajectory therefore more relevant. We allocated a time interval τ = 20 for the forced part of
the trajectory up to the separatrix. For larger time intervals, our procedure yields identical
dynamics as a result, but with the trajectory initially spending additional time in the ON
state. This is evidence that we are already in the long-time limit, and no further effects are
expected by allowing a longer transition time. The resulting instanton is shown in figure 3,
together with the associated optimal forcing in the Hovmöller diagram in figure 4. Here,
we have restricted the instanton to the interval t ∈ [0, 30], where end and beginning are
sufficiently close to the OFF and ON states.

From these figures, we get a general idea of the tipping. The most likely freshwater
forcing consists of a repeating pattern of first a freshening in the south (x � 1.5) followed
by a salinification, while in the rest of the basin compensation occurs. The largest forcing
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Figure 3. Instanton from φON to φOFF for β = 0.1 at times t ∈ {0.0, 3.75, 7.5, 11.25, 15.0, 18.75,
22.5, 26.25, 30.0} (left to right), with temperature T (top), salinity S (middle) and streamfunction ψ (bottom).
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Figure 4. Hovmöller diagram of the salinity forcing at the surface (A(θ)(x, 1)) for t ∈ [0, 6]. Note that the
colour mapping is nonlinear.

peak is reached at t = 5.38, and the forcing ceases completely at t = 5.5, at which point the
separatrix is reached. At this point, the forcing has created a new additional overturning
cell in the south. From there on, the system is in a symmetric two-cell overturning
configuration. Note that the temperature and salinity distribution are still skewed towards
the north. Only at t ≈ 15 does the instanton approach the saddle state where both tracers
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Figure 5. Instanton from φON to φOFF for β = 0.1 at times t ∈ {4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5} (left to
right), with temperature anomaly T̂ = T − TON (top), salinity anomaly Ŝ = S − SON (second row), density ρ
(third row) and streamfunction ψ (bottom).

and the streamfunction have a symmetric distribution (the latter is actually antisymmetric).
Subsequently, after passing the saddle, the original northern cell collapses, and the new
southern cell grows. Eventually, the system converges to the stable OFF state. We will
discuss this process in more detail, where we distinguish three stages: the forcing to create
the new cell (t ∈ [0, 5.5]), the two-cell configuration leading to the saddle (t ∈ [5.5, 15]),
and the collapse of the original cell (t ∈ [15, 30]). These will be analysed from mechanical
and energetics perspectives.

4.1. Fluid dynamical mechanism of the tipping

4.1.1. The forcing
In figure 4, it is shown that the forcing consists of three repeating sequences. We will
discuss only the last one (t ∈ [4.0, 5.5]), as this is the largest and similar in shape
to the other two. The corresponding instanton trajectory is shown in figure 5, where
salinity and temperature anomalies (Ŝ = S − SON, T̂ = T − TON) and the dimensionless
density (ρ = S − T ) are depicted. Paradoxically, the most likely transition starts off with
a strengthening of the pole-to-pole circulation. For t ∈ [3.8, 4.6], a freshwater pulse is
added to the southern part of the basin, while the rest of the basin is salinified. This
increases the horizontal density gradients and hence the strength of the overturning cell
too, which causes this freshwater anomaly to be transported from the south to north,
and this salinity anomaly is transported to the bottom; see figures 5(b,c). If we take the
minimum of ψ as the overturning strength of the northern cell, then the original strength
is ψmin,ON ≈ −4.25, it peaks at t = 4.3 with ψmin ≈ −4.71, and returns to its original level
at t = 4.74. However, this latter state is a transient state, and its anomalies with respect
to the stable ON state are shown in figures 5(c,d). These show that in this state, the
positive salinity and temperature anomalies have traversed the overturning circulation
partially and are now near the bottom of the southern boundary, while their adverse
anomalies are near the equator. Looking at the dimensionless density, we see that this
transient state is less stable: the vertical density gradient in the south has risen to nearly
zero.

After the initial southern freshwater pulse and strengthening, a strong salinity forcing is
now applied to the southern region for t ∈ [4.6, 5.5], while the rest of the basin is freshened
as compensation. One can see in figure 5(d) that as the initial positive salinity anomaly
upwells in the south, the strong salinity perturbation is applied there at the surface. This
way, a large salinification can be achieved there using multiple smaller perturbations, as we
can see from figure 4, which are evidently more likely to occur than one large perturbation.
Meanwhile, due to the now weakened upwelling in the south, relatively fresh and cool
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water stays behind near the bottom, causing negative anomalies there (figure 5e). The
effects of this large salinification pulse start to appear at t ≈ 5.0 (figure 5e): a positive
temperature and salinity anomaly in the south on top of a negative anomaly. These dipoles
induce a new second overturning cell in the south as the heavier water sinks and the lighter
water rises. Note that this temperature dipole pattern has a dampening effect on the new
cell, while the salinity dipole aids the new cell. At t = 5.5 (figure 5g), the new cell is strong
enough to maintain its own density gradients, and the two-cell configuration is established.
The forcing is no longer needed, and from here on, the system will reach the OFF state in
a deterministic way.

Regarding the applied optimal forcing, we will discuss three aspects: its magnitude, its
timing and its location. As the instanton is the path that is the most efficient to reach
the OFF state in terms of applied forcing, we expect the created density anomalies to be
just large enough to generate the second cell. We consider the volume integrated vorticity
equation (2.1):

d
dt

∫
Ω

ω dx dz = Pr

[∫ 1

0
∂xω

∣∣
x=A − ∂xω

∣∣
x=0 dz +

∫ A

0
∂zω

∣∣
z=1 − ∂zω

∣∣
z=0 dx

]

+ Pr Ra
∫ 1

0
(S − T )

∣∣
x=0 − (S − T )

∣∣
x=A dz, (4.1)

with the two terms on the right-hand side representing diffusion and buoyancy forcing,
respectively. To reach a two-cell configuration, we need a second cell that is approximately
as strong as the first one, i.e. the negative vorticity blob in the north has to be countered
by a similar but positive vorticity blob in the south. Due to this symmetry, the terms
representing the diffusion cancel out, and the volume-integrated vorticity balance for the
two-cell configuration becomes

0 ≈ Pr Ra
∫ 1

0
ρ
∣∣
x=0 − ρ

∣∣
x=A dz, (4.2)

with dimensionless density ρ = S − T . So the required density anomalies are such that
the cumulative density at the southern boundary is as large as that at the northern
boundary. Intuitively, one can argue that equal densities at the meridional boundaries
imply downwelling of equal strength near the poles and hence two overturning cells of
equal strength. In figure 6, these depth-integrated densities near the poles are shown
together with the total forcing 〈θ ,A(θ)〉L2 . It can be seen that as soon as the southern
depth-integrated density is as large as the northern one (at t = 5.35), the forcing rapidly
decreases to zero; the newly formed cell is strong enough, and the forcing is no longer
needed. Note that as the forcing decreases, the southern density overshoots the northern
density, and at t = 5.5 – as the forcing has ceased – the cumulative densities are equal
again. From there on, as the instanton continues deterministically, the southern density is
again lower than the northern density, but it is now significantly higher than originally in
the ON state, as there is now downwelling near the southern pole. This continues until
they are again equal when the saddle state is reached at t ≈ 15, after which the northern
cell collapses.

Note that beforehand we see the previous initial strengthening in action, with the
cumulative density in the south reaching a local minimum at t ≈ 4.3. For t ∈ [5.5, 15], we
have

∫ 1
0 ρx=0 dz <

∫ 1
0 ρx=A dz, which seems to partially contradict the previous reasoning,

but the cause is that the two-cell configuration is still slightly asymmetric in the vorticity,
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Figure 6. The cumulative density Pr Ra
∫ 1

0 ρ dz in the south (x = 0, blue) and the north (x = A, orange) (left-
hand axis), and the total forcing (〈θ,A(θ)〉L2 , green) (right-hand axis) for t ∈ (2, 7) (top) and t ∈ (0, 30)
(bottom).

so the assumptions do not hold completely. During this time interval, the new cell is
slightly smaller than the original one, but it can still sustain itself after its establishment.

Considering the timing of the forcing, it is found that the alternating pulses each last for
approximately 0.90 ± 0.05. As discussed, a positive (negative) salinity anomaly created by
a pulse in the southern part of the basin weakens (strengthens) the original cell, resulting
in an decreased (increased) salinity concentration at the bottom of the southern part. This
upwells as a new alternate pulse is applied to the southern surface. In this way, two
alternating pulses constitute the effect of one big perturbation. As seen in figures 5(b–e),
the upwelling of the anomaly in the south in the ON state takes approximately 0.9 in time,
which explains the observed frequency.

Finally, regarding the location of the forcing, we see that the forcing alternates sign
around x ≈ 1.5, with the eventual goal of creating a large salinity concentration in this part
of the domain (figure 5). Now, in order to create a second overturning cell in the south,
we need a positive vorticity blob, which is induced by strong negative salinity gradients.
For β = 0.11, the deterministic salinity forcing gradient ∂x SS has its minimum for
x ≈ 1.3. The optimal stochastic salinity forcing has its largest gradient also around this
point as it switches sign, exacerbating the negative salinity gradient and hence increasing
the vorticity in the southern part of the basin.

4.1.2. The two-cell configuration
From t = 5.5 to t = 15.5, the instanton persists in a two-cell configuration. An overview
is provided in figure 7, where ψmin and ψmax indicate the strengths of the northern
and southern overturning cells, respectively, and xs is the vertically averaged horizontal
coordinate away from the boundaries where ψ ≈ 0, i.e. it is the approximate boundary
between the two overturning cells. For the saddle state, it can be deduced that xs ≈ 0.49A
for β = 0.1 since at this value, the deterministic salinity forcings to each cell are equal.
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Figure 7. Top: xs(t)/A (green) along the instanton together with saddle-state values xs/A = 0.49 (red, dashed)
on the left-hand axis, and ‖ψmin‖ (purple) and ψmax (yellow) indicating the strength of the northern and
southern cells, respectively, on the right-hand axis. States I, II and III are indicated and visualised in the
columns (left to right respectively), with temperature T (top row), salinity S (second row), density ρ (third
row), and streamfunction ψ (bottom row).

From figure 7, it follows that initially, after the stochastic forcing has ceased, the new
southern cell reaches a local maximum in size and strength before weakening; see state I
at t = 5.6. To start the new cell, the density near the southern surface has been increased
by the salinity forcing. As this sinks, its strength peaks followed by a peak in cell size.
Now this surface water is not directly replaced by new equally dense water, as can be seen
in the density distribution of state I, where dense water has sunk to the bottom in the south
without dense water following. This causes the intermediate weakening. Once at t ≈ 6, the
densities in the southern cell have redistributed into this persistent state II.
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Interestingly, at state II, the southern cell is both smaller and weaker than the northern
cell, but it nevertheless grows, so that eventually the instanton reaches the symmetric
saddle state III at t = 15. Note that in state II, the salinity and temperature distribution
are still skewed towards the north, but they complement each other such that the density
distribution and consequently the streamfunction are approximately symmetric around the
equator. Moreover, the overall density is lower than in the saddle state III. To examine
how the weaker and smaller southern cell can grow, we formulate the various transports
of density into both cells. With ΩS = [0, xs] × [0, 1] and ΩN =Ω −ΩS , we denote the
southern and northern cells, respectively, and Fi and Qi stand for the salinity and heat
transport into cell i . For the salinity transports we have

deterministic surface salinity transport F S
d = 1

τS

∫
ΩS

h(z) SS(x) dx dz

≈ δ

τS

∫ xs

0
SS(x) dx, (4.3)

advective salinity transport F S
a =

∫ 1

0
∂zψS

∣∣
x=xs

dz, (4.4)

diffusive salinity transport F S
f =

∫ 1

0
∂x S

∣∣
x=xs

dz, (4.5)

stochastic salinity transport F S
s =

∫
ΩS

A(θ) dx dz, (4.6)

where it holds that F S
j = −F N

j due to conservation of salinity, where j ∈ {d, a, f, s}
indicates the transport process. Moreover, as ψ(x = xs)≈ 0, we have that the advective
transport is negligible. For the heat transports Q, we have similar formulations. Note that
here we can also neglect advective transport, and QS

f = −QN
f , but QS

d and QN
d do not

necessarily sum to zero due to the nature of the restoring boundary condition. The total
salinity and heat transport intoΩN are then F N = −F S

d − F S
f − F S

s and QN = QN
d − QS

f .
The results are shown in figure 8, which illustrates that the salinity dynamics is

responsible for reaching the two-cell configuration of state I, while the temperature
dynamics is the most significant in reaching the saddle state III. Examining figure 8(a)
shows that during the two-cell interval (t ∈ [5.5, 15]), there is diffusive transport of salt
from north to south (as most of the salt is still left in the northern part of the basin),
which is almost completely compensated by the deterministic salinity flux at the surface (as
xs < 0.49A). As the cell grows, the deterministic salt flux at the surface and the diffusive
exchange approach zero and then switch sign, where the former slightly outpaces the latter,
so that eventually there is a net salt influx from the north to the south. However, the almost
zero net salinity exchange (F S ≈ 10−4) between the two cells during the bigger part of
the interval cannot cause the growth of the southern overturning cell. The temperature
dynamics in figure 8(b) are therefore more interesting, where we can see that from II to
III, there is a net southward diffusive transport of heat as most of it is still in the north
as a remnant of the original ON state, similar to salinity. However, the southern cell sees
a cooling by the surface forcing, while the northern cell heats up, which for both cells
outweighs the diffusive transport. This is a result of the northern cell’s surface being
exposed to the hot equator, with only the north pole cooling it, whereas the southern cell
is exposed only to the cold south pole. As the latter cell grows, we see that both QS

d and
QN

d approach zero and then switch signs.
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Figure 8. (a) The salinity transports into ΩS with diffusive transport F S
f (green), deterministic transport F S

d

(blue), stochastic transport F S
s (red) and the total F S (black dashed). (b) The heat transports into ΩS with

diffusive transport QS
f (green), deterministic transport QS

d (blue) and total QS (black dashed), and into ΩN

with deterministic transport QN
d (red) and total QN (brown dashed). (c) The total transport of density into the

northern cell F N − QN (yellow) and into the southern cell F S − QS (purple). States I, II and III as in figure 7
are indicated.

The net effect of both heat and salinity transports is that already starting at state II
there is a net density input into the southern cell and a slight density transport out of the
northern cell. The smaller southern cell has a disadvantage with regard to the freshwater
surface forcing, but this is completely compensated by the diffusive southward salinity
transport. The surface heating, on the other hand, will increase the smaller cell’s density,
and decrease that of the larger cell. This forcing cannot be compensated by diffusive
transport. The key difference is that the salinity forcing is a constant flux applied to the
surface, whereas the surface heating is a restoring force. All in all, the new weaker cell
sees a net mass import, hence it can grow in size and strength. Eventually, the cumulative
densities at each pole grow to be equal (see figure 6) and the saddle state is reached.

Interestingly, note that at II, the most destabilising tracer is temperature. The
streamfunction is close to the symmetric two-cell configuration, and the salt disparity
between the two cells is held up by the constant surface forcing. Only the restoring
temperature forcing nudges the state towards the saddle. Moreover, as we approach the
saddle, there has been an overall mass increase. Due to the two-cell state, less flow has
passed through the equator, hence the heating has been less effective, so the whole basin
in total experiences a net cooling. Indeed, as seen in figure 7, the density distribution in III
is still symmetric but elevated.

4.1.3. The collapse of the northern cell
At t ≈ 15, the instanton passes near the saddle state. Beforehand, this cannot necessarily
be expected: as discussed in Soons et al. (2024) the finite-time instanton might be a better
representation of the transition path in the low-noise limit than the infinite-time instanton.
This latter one will pass through the saddle, but – in case the transitions avoid the saddle
(Börner et al. 2024) – is not necessarily a good exemplar. For this model, the transitions
nicely follow the instanton as it passes near the saddle, which can be seen in figure 2,
where the three distinct equilibria are the regions where the realisations linger. Therefore,
saddle-avoidance is no issue here, and the saddle state indeed mediates the transition.

Around t ≈ 18, the original northern cell collapses as xs → A. In figures 8(a,b), we can
see that leading up to this collapse, now both heat and salt transport play a role. As the
southern cell expands beyond the equator, the surface salinity forcing aids it, while the
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surface heating inhibits it. Both are again countered by diffusive transports, but now the
diffusive salt transport cannot keep up with the surface forcing as the salinity distribution
is no longer skewed but symmetric, unlike earlier (during t ∈ [5.5, 15]). So as the southern
cell grows, more salt and heat are transported southwards, and their distributions get
more skewed, as is visible in figure 3. The salinity contribution is larger (F S > |QS|),
so the southern surface densifies, which aids downwelling there and hence increases the
southward transport, which is a signature of the salt-advection feedback. Eventually, the
southern cell has grown to fill the whole basin, and the OFF state is almost reached, with
upwelling in the north where the water is cold and fresh, and downwelling in the south
where the water is warm and saline.

From t ≈ 18, the pole-to-pole circulation converges to the OFF state by a net heating
(QS > 0). During the two-cell configuration, less water passed through the equator, which
provided a net cooling of the whole basin. Now that there is again a cross-equatorial flow,
a net heating occurs, and the overall density of the system decreases (see figure 8c). The
overall strength of the OFF state is slightly larger than that of the ON state (ψmax

∣∣
t=30 ≈

4.77 versus |ψmin|
∣∣
t=0 ≈ 4.42) as the salinity forcing is skewed towards the south.

Finally, note that after the collapse of the northern cell, there is a slight overshoot
in overturning strength, with a local maximum ψmax

∣∣
t=18.4 ≈ 4.65 that drops to

ψmax
∣∣
t=18.9 ≈ 4.59 before reaching the OFF state. This decrease is caused by the relatively

flat isopycnals in the north just after the collapse, which inhibit upwelling there. Once these
anomalies are mixed out, and a net heating has taken place, the OFF state is attained.

4.2. Energetics of the tipping
The instanton trajectory is also analysed in terms of its energetics. We use the framework
devised by Winters et al. (1995) for density-stratified Boussinesq fluid flows. Similar
approaches have been applied to the meridional overturning circulation (Hughes et al.
2009; Hogg et al. 2013). We derive the following energy balances:

d
dt

Ek =Φz −D, (4.7)

d
dt

E p =Φi −Φz − QT , (4.8)

d
dt

Eb =Φa +Φd , (4.9)

d
dt

Ea =Φi −Φz −Φa −Φd − QT , (4.10)

where Ek , E p, Eb and Ea are the kinetic energy, potential energy, background potential
energy and available potential energy, respectively, with Φz , D, Φi , QT , Φa and Φd
indicating the buoyancy flux, the dissipation, the conversion of internal energy to potential
energy, surface heating, rate of change of Eb due to surface forcings, and the energy
flux by diapycnal mixing, respectively. Their definitions and derivations can be found
in Appendix C.

An overview of these energies and fluxes along the transition is shown in figure 9. The
kinetic energy is driven solely by the buoyancy forcing (Φz), which is followed by a slightly
delayed dissipation (D). Initially, it peaks at t = 4.3 as the original pole-to-pole circulation
is strengthened, followed by another peak at t = 5.5 as the second cell has just formed.
Both peaks coincide with the peaks in the forcings Φz and A(θ) (figure 6). As these
cease, Ek falls and state I is reached. A slight adjustment follows to state II, and from here
on, both the buoyancy forcing and dissipation decrease slowly as the tracers become more
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(brown) with (d) zoomed-in portion with Φz , Φi , Φd andD. States I, II and III as in figure 7 are indicated.

evenly distributed. The kinetic energy stays level, and is lower in the two-cell configuration
than in the pole-to-pole setting as flow speeds are generally reduced. The kinetic energy
budget does not change as the saddle is passed. When the northern cell collapses, the
buoyancy forcing rises and overshoots since now the circulation is again thermally and
haline driven. With it, the dissipation and kinetic energy also follow.

The evolution of the potential energy E p is relatively simple. At the beginning (t = 4.7),
it attains a minimum during the transient state as the vertical density gradients in the
south approach zero. From there on, it rises steadily until the collapse of the northern
cell at t ≈ 18. Looking at the fluxes, we can conclude that the initial minimum is caused
by a rise in heating QT , while the increasing buoyancy forcing and internal mixing Φi
approximately cancel each other out. This rise in heating is caused by the surface water
being cooler than in the ON state (figure 5(d), at approximately t = 4.7). From there on
– because there is no cross-equatorial flow– a net cooling occurs, so the overall basin
mass and E p increase. The slightly lower Φz and Φi play a lesser role in this rise. The
internal mixing Φi is lowered as diffusion is not as large when the basin contains two
overturning cells. At approximately t = 18, this build-up reservoir of potential energy is
released in the collapse. Via the risen Φi , part of this reservoir is converted into internal
energy (Batchelor 2000), while the increased Φz converts another part into kinetic energy,
and a final part is lost to the atmosphere via surface heating QT > 0. We note that the
increase in potential energy of the buoyancy-driven flow near its separatrix has also been
found for more complex AMOC models (Lohmann & Lucarini 2024).

A more detailed view of the energy transfer is obtained by the split of the potential
energy into available and background potential energy. The background potential energy
has approximately the same evolution as the potential energy, meaning that indeed most
of the E p variation is caused by changes in the basin’s mass. This is turn is caused by
changes in the energy flux from the surface Φa , which includes the atmospheric heating.
And for the diffusive flux Φd , we see similar behaviour as for the internal mixing Φi : both
peak during the forcing stage and are lowered during the two-cell stage as diffusion is
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less prevalent. The build-up of Eb is released during the collapse via the atmosphere and
diffusive mixingΦa +Φd as available potential energy. The available potential energy Ea
shows a peak when Eb has a minimum at t = 4.7 as the vertical density gradients in the
south are small, i.e. there is relatively dense water near the surface. This build-up of Ea
is released when the second overturning cell is formed and state I is reached. During the
two-cell stage, Ea slowly decreases as the density distribution becomes more symmetric
and the isopycnals become sharper. At the collapse and the emergence of the pole-to-pole
circulation, we see dense water moving across the equator, and Ea increases.

In summary, the main energetics during the equilibria are an energy input from the
atmosphere as available potential energy via surface fluxΦa and via the same flux removal
of background potential energy to the atmosphere. Then via diffusive fluxes Φi and
Φd , available potential energy is again removed as either internal energy or background
potential energy. A last part is removed as buoyancy forcingΦz , which then finally sustains
the actual circulation and provides kinetic energy. This last one is then again dissipated
away as internal energy. Now the forcing puts this system in an imbalance as there is
now additional input from the surface via Φa and heating QT that cannot be removed
fast enough via either diffusive processes or buoyancy fluxes. Eventually, right before
the collapse, an unstable balance is reached where the surface input has decreased to
a level that can be upheld again by diffusion and buoyancy fluxes. However, a small
perturbation to this two-cell configuration increases diffusion, which in turn releases the
built-up potential energy, which is converted into kinetic energy and eventually causes the
collapse.

The effects of both tracers on the energetics of the collapse can be determined by
splitting the fluxes Φz , Φi and Φa into contributions due to salinity S and temperature
T , where Φa also has deterministic and stochastic salinity components Φa,S and Φa,S̃ . We
denote them as

Φz =Φz,T −Φz,S, (4.11)
Φa =Φa,S −Φa,T +Φa,S̃, (4.12)

Φi =Φi,T −Φi,S, (4.13)

and their dynamics is shown in figure 10. During the pole-to-pole circulations, we have
Φz,T > 0 and Φz,S < 0, confirming that these circulations are driven by both salinity
and temperature. Salinity aids the upwelling near one pole, while temperature aids the
downwelling near the other. During the two-cell configuration both cells are only thermally
driven, and indeed the salinity componentΦz,S has switched sign, opposing the creation of
kinetic energy. For the components of Φi , we observe similar behaviour. The diffusion of
salt (heat) aids the transfer of internal energy to potential energy whenΦi,S > 0 (Φi,T < 0),
and vice versa. So during the pole-to-pole circulations, both components help, while for
two cells, only heat diffusion aids. During the two-cell stage, the surface is (spatially
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averaged) much saltier than the bottom as less salt is transported downward by the cells
from the equator. Therefore, vertical diffusion of salt would reduce the potential energy
of the system, hence less energy would be available for the driving buoyancy flux. On the
other hand, the surface is much cooler, so vertical diffusion of heat would still aid the
potential energy. For the pole-to-pole case, both salt and heat diffusion help as apparently
enough salt is transported downwards while the surface remains on average slightly cooler
than the bottom. Now for both Φz,T and Φi,T , the only time they work against the
conversion to either Ek or E p is during the initial strengthening (t ≈ 4.3). At that moment,
there is increased upwelling in the south due to the added freshwater flux, while at the same
time the upwelling is inhibited by the cooling of the surface there. Regarding Φa , we see
that during all stages, background energy is added via salinity and removed via heat. This
follows from the fact that the freshwater surface forcings always add density (salinity) to
the light water away from the downwelling regions, while the surface heating always adds
density (cooling) to the heavy water in the downwelling region. The effect is especially
pronounced for the two overturning cells. Finally, the stochastic component Φa,S̃ only
removes a little background energy by salinifying the southern downwelling region. It is
striking that the total energy perturbed by the stochastic component | ∫ Φa,S̃ dt | ≈ 575 is
only minor compared to the other energy fluxes.

5. Ratios of tipping probabilities
Our bifurcation parameter β describes the asymmetry of the freshwater forcing, hence a
different instanton, i.e. most likely transition, and optimal forcing have to be found for
every value of β. While we do not necessarily expect qualitative changes in physical
mechanisms mediating the transition, its likelihood will be strongly affected by β. It
is therefore instructive to compare the transition probabilities for different values of the
bifurcation parameter.

The leading-order term of the ratios of probabilities in the small noise limit can be
determined using the large deviation principle (3.2). Consider two trajectories φA(x, z, t)
and φB(x, z, t) obeying the same model (3.1) with Freidlin–Wentzell actions SA and SB ,
respectively. Their relative likelihood is given by

P
(
φB
)

P
(
φA
) � exp

[
(SA − SB)/ε

]
. (5.1)

A derivation can be found in the appendix of Soons et al. (2024). Now the actions as well
as the ratios of transition probabilities for various values of bifurcation parameter β are
shown in figure 11 for a range of noise amplitudes ε. The actions are computed as

S [θ(x, z, t)] =
∫ τ

0
〈θ(x, z, t),A(θ)(x, z, t)〉L2(ω) dt. (5.2)

In figure 11, one can see a monotone decrease in the action as the deterministic salinity
forcing freshens the north of the basin as β increases. This can be expected; as more
freshwater is added to the southern surface, the stochastic salinity forcing has to increase in
order to get the surface water sufficiently dense for downwelling. Note that the downward
trend of S[θ ] is gradual; there are no qualitative changes in the instanton trajectory as β
varies, and all trajectories show the same dynamics, as described in the previous section.

Regarding the probability ratios, we see that the probability of a tipping increases steeply
as we approach the bifurcation point. A similar result has been found by Baars et al. (2021)
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Figure 11. (a) The actions S[θ(x, z, t)] of the instanton trajectory of the AMOC tipping for several β ∈
[−0.1, 0.1]. (b) The resulting probability ratios of these tippings with respect to the tipping under β = 0.1
for various noise levels ε.

in a comparable model, where the probabilities were computed numerically using a rare-
event algorithm. For example, here a small rise in β from 0.09 to 0.1 increases the tipping
probability with factor 1.2, 7.3, 4.9 × 108 and 7.2 × 1086 for the respective noise levels
ε ∈ {10−1, 10−2, 10−3, 10−4}, where only the last noise value can be considered realistic.
So a small but permanent shift in the large-scale precipitation or evaporation patterns
above the Atlantic can alter the probability of a noise-induced transition of the AMOC
greatly.

6. Summary and discussion
The most likely paths of a tipping of the overturning circulation in a two-dimensional (2-D)
Boussinesq fluid model for various asymmetric surface salinity forcings were determined.
This model is a member of the hierarchy of models of the Atlantic Meridional Overturning
Circulation (AMOC) where the zonally averaged Atlantic Ocean flow is represented with
constant eddy diffusivities and small stochastic freshwater surface forcing (Quon & Ghil
1992; Thual & McWilliams 1992). Using large deviation theory, the most probable noise-
induced transitions from a northern overturning circulation (mimicking an AMOC ON
state) to a southern overturning circulation state in the low-noise limit were computed.

1009 A53-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

24
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.248


J. Soons, T. Grafke and H.A. Dijkstra

Curiously, this transition starts with a strengthening of the northern overturning cell.
This phenomenon was also found in previous work (Soons et al. 2024) studying the
instanton of an AMOC collapse in the box model by Wood et al. (2019). For both models,
the strengthening puts the system in a less stable transient state by transporting salt
quickly to the bottom of the domain. In this way, in the box model, a smaller surface
salinity perturbation is needed to tip the AMOC, whereas in this spatially continuous
Boussinesq model, the upwelling salinity anomaly is combined with a surface forcing
to create one bigger surface perturbation. The net effect is strong enough vertical salinity
gradients to induce a second overturning cell in the south. This two-cell configuration is
in energy imbalance, where the elevated atmospheric energy input cannot be sufficiently
diffused away. This causes a build-up of background potential energy, which is released
rapidly as the original northern overturning cell collapses and puts the system into the
reversed pole-to-pole circulation. Not only does this method provide these rare transitions,
but it also allows us to compare probabilities in the low-noise limit between various
forcing scenarios. It shows the steep increase in probability of a noise-induced overturning
circulation tipping in the low-noise limit as the bifurcation point is approached.

The advantages of our method are that the problem of finding these rare stochastic events
is transformed into a deterministic optimisation problem where no choices regarding
surface salinity forcing protocols need to be made. The step forward compared to the
instantons on box models (Soons et al. 2024) is that spatial patterns are now identified,
and the fluid dynamical mechanisms and energetics of these transitions can be more clearly
determined.

Obviously, this 2-D model is still a low member in the hierarchy of AMOC models, as
the overturning here is driven solely by buoyancy forcing and interior mixing, while for the
AMOC, also wind and tidal forcings are important (Kuhlbrodt et al. 2007). Moreover, in
order to reproduce the required present-day ocean stratification, an open zonal channel in
the southern hemisphere is essential (Henning & Vallis 2005; Wolfe & Cessi 2010). As a
consequence of these omissions, we have had to adopt highly unrealistic parameter values
in order to still have an overturning circulation. In particular, the aspect ratio A and thermal
Rayleigh number Ra are off by several orders of magnitude from values that are realistic for
the Atlantic Basin and seawater. As a result, our circulation is completely diabatic and non-
hydrostatic, as opposed to the actual AMOC. Therefore, we need to stress that this model
is only informative for the AMOC, in that it only captures the thermal and salt-advection
feedback well, with the latter being the responsible mechanism for the multi-stability of
the AMOC (Weijer et al. 2019). Consequently, our results provide insight into how these
feedbacks function during a noise-induced transition. Since these feedbacks are relevant
throughout the model hierarchy (Dijkstra 2024), our results can in turn be relevant for
noise-induced collapses in more detailed AMOC models.

Regarding the stochastic salinity surface forcing, a number of assumptions had to be
made. In particular, its spatial spectrum was taken to be uniform up to a cut-off frequency,
where the cut-off is heuristically based on annual synoptic precipitation patterns. For its
temporal structure we chose additive white noise, as this is conceptually the most simple
and a common assumption in stochastic AMOC models (Cessi 1994; Timmermann &
Lohmann 2000). However, the noise may be coloured and multiplicative, especially under
climate change (Boot & Dijkstra 2025). The Freidlin–Wentzell theory can be extended to
include this type of noise (Grafke & Vanden-Eijnden 2019). The computed instantons are,
of course, a representable trajectory of the noise-induced tipping only if the noise is indeed
small. As this is the case in other AMOC models (Castellana et al. 2019; Soons et al. 2024),
and since the noise amplitude relative to the AMOC strength should not depend too much
on model choice, we can justify this to be the case for the model used here.
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All in all, the merits of this study are the direct computation of a rare overturning tipping
in a Boussinesq fluid and the associated probability ratios between various surface forcings
in the low-noise limit. As our employed model has severe limitations to represent the
AMOC, these results should be viewed as only a stepping stone towards understanding a
noise-induced AMOC collapse. We showed that the Freidlin–Wentzell theory can also be
applied to spatially continuous models of buoyancy-driven flows where the salt-advection
feedback causes a bistable bifurcation structure. A next step would be to apply it to a more
representative AMOC model such as a three-dimensional ocean-only model, implemented
in e.g. Dijkstra (2007). Furthermore, large deviation theory can be used to investigate
the distinct ways in which a combined rate- and noise-induced tipping event can occur
(Slyman & Jones 2023), and it would be interesting to examine this in AMOC models of
varying complexity.
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Appendix A. The variational derivatives and their adjoints

A.1 Variational derivatives of the deterministic drift
Consider the deterministic drift functions

f1[φ] = ∂xψ[ω] ∂zω− ∂zψ[ω] ∂xω+ Pr ∇2ω+ Pr Ra (∂x T − ∂x S), (A1)

f2[φ] = ∂xψ[ω] ∂zT − ∂zψ[ω] ∂x T + ∇2T + h(z)

τT
(TS(x)− T ), (A2)

f3[φ] = ∂xψ[ω] ∂z S − ∂zψ[ω] ∂x S + Le−1 ∇2S + h(z)

τS
SS(x), (A3)

where φ : Ω ×R�0 →R
3 with φ(x, z, t)= (ω, T, S)T(x, z, t) and spatial boundary

conditions as in § 2. The variational derivatives with respect to ω acting on a function
v1 : Ω ×R�0 →R are

Dω f1[φ](v1)= ∂xψ[ω] ∂zv1 + ∂xG(v1) ∂zω− ∂zψ[ω] ∂xv1 − ∂zG(v1) ∂xω+ Pr ∇2v1,
(A4)

Dω f2[φ](v1)= ∂xG(v1) ∂zT − ∂zG(v1) ∂x T, (A5)
Dω f3[φ](v1)= ∂xG(v1) ∂z S − ∂zG(v1) ∂x S, (A6)

where we have boundary condition v1(x, z, t)= 0 for (x, z) ∈ ∂Ω . The variational
derivatives with respect to T acting on a function v2 : Ω ×R�0 →R are

DT f1[φ](v2)= Pr Ra ∂xv2, (A7)
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DT f2[φ](v2)= ∂xψ[ω] ∂zv2 − ∂zψ[ω] ∂xv2 + ∇2v2 − h(z)

τT
v2, (A8)

DT f3[φ](v2)= 0, (A9)

where we have boundary conditions ∂xv2(x, z, t)= 0 for x = 0 or x = A, and
∂zv2(x, z, t)= 0 for z = 0 or z = 1. The variational derivatives with respect to S acting
on a function v3 : Ω ×R�0 →R are

DS f1[φ](v3)= −Pr Ra ∂xv3, (A10)
DS f2[φ](v3)= 0, (A11)

DS f3[φ](v3)= ∂xψ[ω] ∂zv3 − ∂zψ[ω] ∂xv3 + Le−1 ∇2v3, (A12)

where we have boundary conditions ∂xv3(x, z, t)= 0 for x = 0 or x = A, and
∂zv3(x, z, t)= 0 for z = 0 or z = 1.

A.2 The adjoints of the variational derivatives
The adjoints of the derivatives of the first component acting on a function u1 : Ω ×
R�0 →R are

(Dω f1[φ])∗ (u1)= ∂zψ[ω] ∂x u1 − ∂xψ[ω]∂zu1 −G (∂x u1 ∂zω− ∂zu1 ∂xω)+ Pr ∇2u1,
(A13)

(DT f1[φ])∗ (u1)= −Pr Ra ∂x u1, (A14)
(DS f1[φ])∗ (u1)= Pr Ra ∂x u1, (A15)

where we have boundary condition u1(x, z, t)= 0 for (x, z) ∈ ∂Ω . The adjoints of
the derivatives of the second component acting on a function u2 : Ω ×R�0 →R are

(Dω f2[φ])∗ (u2)=G (∂zu2 ∂x T − ∂x u2 ∂zT ) , (A16)

(DT f2[φ])∗ (u2)= ∂zψ[ω] ∂x u2 − ∂xψ[ω] ∂zu2 + ∇2u2 − h(z)

τt
u2, (A17)

(DS f2[φ])∗ (u2)= 0, (A18)

where we have boundary conditions ∂x u2(x, z, t)= 0 for x = 0 or x = A, and
∂zu2(x, z, t)= 0 for z = 0 or z = 1. The adjoints of the derivatives of the third component
acting on a function u3 : Ω ×R�0 →R are

(Dω f3[φ])∗ (u3)=G (∂zu3 ∂x S − ∂x u3 ∂z S) , (A19)
(DT f3[φ])∗ (u3)= 0, (A20)

(DS f3[φ])∗ (u3)= ∂zψ[ω] ∂x u3 − ∂xψ[ω] ∂zu3 + Le−1 ∇2u3, (A21)

where we have boundary conditions ∂x u3(x, z, t)= 0 for x = 0 or x = A, and
∂zu3(x, z, t)= 0 for z = 0 or z = 1.
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Appendix B. The augmented Lagrangian method
Using the augmented Lagrangian method (ALM), (3.11) and (3.20) are solved. We define
the cost function

J [φ(x, z, t), θS(x, z, t),μ(x, z, t), γ , λ]

=
∫ τ

0

∫
Ω

(h(z))2

2K τ 2
S

θSU∗PU(θS) dx dz dt +
∫ τ

0

∫
Ω

(
μω (∂tω− f1(φ))

+μT (∂t T − f3(φ))+μS

(
∂t S − f2(φ)− (h(z))2

K τ 2
S

U∗PU(θS)

))
dx dz dt

+ λ〈φ(x, z, τ ), φOFF(x, z)〉L2 + 〈γ , φ(x, z, τ )− φOFF(x, z)〉L2, (B1)

where μ : Ω ×R�0 →R
3 with μ(x, z, t)= (μω, μT , μS)

T(x, z, t) is our control
variable, and λ ∈R�0 and γ : Ω →R

3 with γ (x, z)= (γω, γT , γS)
T(x, z) are penalty

parameters to enforce the end conditions. The conjugate momenta θω and θT are omitted
as there is no direct stochastic forcing onto the vorticity or the temperature, so no cost is
assigned to them. Now, minimising the cost function is equivalent to solving the instanton
equations, since we have

∂φ J = 0 ⇐⇒ ∂tμ = −(∇φ f
)∗

μ, (B2)

∂μ J = 0 ⇐⇒ ∂tφ = f (φ)+ (h(z))2
/

K
(
0, 0, U∗PU(θS)

)T
, (B3)

∂θS J = 0 ⇐⇒ θS =μS, (B4)
∂γ J = 0 ⇐⇒ φ(x, z, τ )= φOFF(x, z), (B5)
∂λ J = 0 ⇐⇒ φ(x, z, τ )= φOFF(x, z), (B6)

together with the initial condition φ(x, z, 0)= φON(x, z). The end condition for the
control variable is found by

∂μ(x,z,τ ) J = 0 ⇐⇒ μ(x, z, τ )= − (
2λ
(
φ(x, z, τ )− φOFF

)+ γ
)
. (B7)

In order to minimise this cost function, and hence find the minimising arguments, i.e. the
instanton φ̃ and its associated forcing θ̃S , we employ the following protocol. First, we pick
the penalty parameters λ and γ and then reiterate the following scheme:

(i) forward integration⎧⎪⎨
⎪⎩
∂tφ = f (φ)+ (h(z))2

τ 2
S K

(
0, 0, U∗PU(θS)

)T
φ(x, z, 0)= φON(x, z)

(B8)

(ii) backward integration{
∂tμ = − (∇φ f

)∗
μ

μ(x, z, τ )= − (
2λ
(
φ(x, z, τ )− φOFF(x, z)

)+ γ (x, z)
) (B9)

(iii) gradient computation

∂θS J = θS −μS (B10)

(iv) updating the conjugate momentum

θnew
S = θS + α ∂θS J (B11)
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with step size α ∈R>0 such that J [φnew, θnew
S ,μ, γ , λ]< J [φ, θS,μ, γ , λ], where φnew is

the trajectory forced by θnew
S . This is repeated until it can be concluded that J is minimised

for the given λ and γ , which can be indicated by e.g. ‖∂θS J‖L2 being sufficiently small.
These penalty parameters are then updated as:

(i) γ new(x, z)= −μ(x, z, τ )
(ii) λnew = fλλ with a constant parameter fλ > 1,

then the first scheme is reiterated again. This process is repeated until φ(x, z, τ ) is
sufficiently close to φO F F .

The instanton is now computed as follows. A trajectory is computed using the ALM, and
this trajectory is relaxed as early as possible. This is done as the ALM converges slowly to
the needed relaxation after the trajectory has crossed the separatrix. Then the ALM is used
again, but now to a point on the relaxed trajectory after the separatrix instead of running
it to φO F F . This newly computed trajectory can now continue unforced until the stable
state φO F F . This yields the instanton that we will use. The advantage here is that we now
only optimise the initial forced part of the trajectory using ALM. For the instantons in this
work, τ = 10 was sufficient for the duration of the forced part. Any higher τ results in a
trajectory with the same dynamical behaviour, but just shifted in time, where the additional
time is simply spent in the initial ON state.

Our termination conditions for the above-mentioned iterations are as follows. The
minimisation for a given λ and γ is terminated when the cost function has decreases by
less than 1 %, and the whole algorithm is terminated when φ(x, z, τ ) is sufficiently close
to φend. This is defined by

max
(x,z)∈Ω

‖φi (x, z, τ )− φend,i (x, z)‖/φend,i < 10−3 for all i ∈ {1, 2, 3}, (B12)

where φi indicates the spatial mean of φi .

Appendix C. Energetics of a density-stratified fluid
The non-dimensional volume-integrated kinetic and potential energy are

Ek = 1
2

∫
Ω

u2 +w2 dx dz = 1
2

∫
Ω

ψω dx dz, (C1)

E p = Pr Ra
∫
Ω

ρz dx dz, (C2)

where the kinetic energy has been rewritten to avoid derivatives of the streamfunction
so numerical discretisation errors are minimised. We also use the background potential
energy Eb, i.e. the minimum potential energy attainable through an adiabatic redistribution
of the density. Let z∗(x, z, t) indicate the vertical position in this reference state of the fluid
(the background state). The available potential energy Ea is the potential energy released
in an adiabatic transition to this background state. So

Eb = Pr Ra
∫
Ω

ρz∗ dx dz, (C3)

Ea = E p − Eb = Pr Ra
∫
Ω

ρ(z − z∗) dx dz. (C4)

This reference position z∗(x, z, t) – i.e. the vertical position of the infinitesimal element
at (x, z, t) with density ρ(x, z, t) after an adiabatic reshuffle to the background state – is
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computed as

z∗(x, z, t)= 1
A

∫
Ω

H (ρ(x ′, z′, t)− ρ(x, z, t)
)

dx ′ dz′, (C5)

with the Heaviside step function

H (ρ′ − ρ
)=

⎧⎪⎨
⎪⎩

0, ρ′ <ρ,
1
2 , ρ′ = ρ,

1, ρ′ >ρ.
(C6)

The energy balances are then found by applying the same method as in Winters et al.
(1995) to our model equations. The kinetic energy obeys

d
dt

Ek =Φz −D, (C7)

Φz = Pr Ra
∫
Ω

ψ ∂xρ dx dz, (C8)

D= Pr
∫
Ω

ω2 dx dz, (C9)

whereΦz denotes the buoyancy flux, andD� 0 is the dissipation. For the potential energy,
we have

d
dt

E p =Φi −Φz − QT , (C10)

Φi = −Pr Ra
(

1
Le

∫ A

0
(S(x, 1)− S(x, 0)) dx −

∫ A

0
(T (x, 1)− T (x, 0)) dx

)
,

(C11)

QT = 1
τT

∫
Ω

z h(z) (TS(x)− T ) dx dz

≈ δ

τT

∫ A

0
(TS(x)− T (x, z)) dx, (C12)

where Φi is the conversion rate of internal energy to potential energy, and QT is the net
heating by the surface forcing. Then for the background potential energy we have

d
dt

Eb =Φa +Φd , (C13)

Φa = Pr Ra
∫
Ω

z∗
(

h(z)

τS
SS(x)+A(θ)− h(z)

τT
(TS(x)− T )

)
dx dz

≈ Pr Ra

(
δ

τS

∫ A

0
z∗(x, 1) SS(x) dx − δ

τT

∫ A

0
z∗(x, 1) (TS(x)− T (x, 1)) dx

+
∫
Ω

z∗A(θ) dx dz

)
, (C14)

Φd = Pr Ra
∫
Ω

∂T z∗‖∇T ‖2 − 1
Le
∂Sz∗‖∇S‖2 dx dz, (C15)

where Φa is the rate of change of Eb due to addition of salinity or heat near the surface,
while Φd denotes its increase due to diapycnal mixing. Note that ∂T z∗ > 0 and ∂Sz∗ < 0
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as z∗ is the stably stratified reference state, hence Φd � 0 means that due to mixing, the
background potential energy always increases. For the available potential energy budget,
we simply subtract the background budget from the potential energy budget, yielding

d
dt

Ea =Φi −Φz −Φa −Φd − QT . (C16)

All fluxes and energies are computed directly apart from Φd , which we compute as a
residual from the background potential energy budget.
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