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Abstract. We denote by FPMC the class of all non-singular projective alge-
braic surfaces X over C with finite polyhedral Mori cone NE(X) ⊂ NS(X)⊗R.
If ρ(X) = rk NS(X) ≥ 3, then the set Exc(X) of all exceptional curves on
X ∈ FPMC is finite and generates NE(X). Let δE(X) be the maximum of
(−C2) and pE(X) the maximum of pa(C) respectively for all C ∈ Exc(X). For
fixed ρ ≥ 3, δE and pE we denote by FPMCρ,δE,pE

the class of all algebraic
surfaces X ∈ FPMC such that ρ(X) = ρ, δE(X) = δE and pE(X) = pE. We
prove that the class FPMCρ,δE,pE

is bounded in the following sense: for any
X ∈ FPMCρ,δE ,pE

there exist an ample effective divisor h and a very ample di-
visor h′ such that h2

≤ N(ρ, δE) and h′2
≤ N ′(ρ, δE , pE) where the constants

N(ρ, δE) and N ′(ρ, δE , pE) depend only on ρ, δE and ρ, δE, pE respectively.
One can consider Theory of surfaces X ∈ FPMC as Algebraic Geometry

analog of the Theory of arithmetic reflection groups in hyperbolic spaces.

§1. Introduction

Let X be a non-singular projective algebraic surface over algebraically

closed field with finite polyhedral Mori cone NE(X) ⊂ NS(X) ⊗ R where

NS(X) is the Neron–Severi lattice of X. If ρ = rk NS(X) ≥ 3, then the set

Exc(X) of exceptional curves of X is finite and generates the cone NE(X).

Further we assume that ρ ≥ 3. One can introduce natural invariants of X:

ρ = rk NS(X), δE = max
C∈Exc(X)

(−C2), pE = max
C∈Exc(X)

pa(C).

The main result of the paper (Theorem 1.1) is that the class of surfaces X

with finite polyhedral Mori cone and fixed invariants ρ ≥ 3, δE and pE is

bounded: there exists an effective ample divisor h and a very ample divisor

h′ on X such that h2 ≤ N(ρ, δE) and h′2 ≤ N(ρ, δE , pE).
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The key step in the proof the theorem is using the old result of the

author [N4] on “narrow parts” of convex finite polyhedra of finite volume

in hyperbolic spaces (for the special case of Theorem 1.1 it is formulated

in Lemma 1.1). It was used in [N4] to prove some finiteness results on

arithmetic reflection groups in hyperbolic spaces. We also use some standard

results about symmetric matrices with non-negative coefficients (Perron–

Frobenius Theorem) and Reider’s Theorem [R] on very ample divisors of

surfaces. These considerations permit to write down the h and h′ as linear

combination of exceptional curves on the X.

In Example 1.2 we show that Theorem 1.1 is not valid if one of the

invariants ρ ≥ 3, δE ≥ 3 and pE is not fixed.

Because of Theorem 1.1, one can ask about classification of surfaces X

with finite polyhedral Mori cone and small invariants ρ, δE and pE.

In Example 1.3 we consider classification for δE = 1. Using results of

[N2] and [N3], we then have ρ ≤ 9. In Example 1.3.1 we additionally to

δE = 1 suppose that pE = 0. Then one gets non-singular Del Pezzo surfaces

whose classification is well-known, e. g. see [Ma].

In Example 1.4 we consider classification for δE = 2. Using results of

[V1] and [E], we have ρ ≤ 22. In Example 1.4.1 we additionally to δE = 2

suppose that pE = 0. Then one gets (minimal) K3 surfaces, (minimal)

Enriques surfaces, minimal resolutions of singularities of Del Pezzo surfaces

with Du Val singularities, and rational surfaces with K2 = 0 and nef −K.

Classification of the last class of surfaces with finite polyhedral Mori cone

was not considered in literature, and we give this classification. It uses Ogg–

Shafarevich theory of elliptic surfaces and results [Hal], [D] and [CD] about

rational elliptic surfaces. It is interesting that not all rational surfaces with

K2 = 0, nef −K and finite polyhedral Mori cone are elliptic.

It seems, nobody tried to classify surfaces X with finite polyhedral Mori

cone and pE ≥ 1.

It Sect. 2 we consider generalization of the main theorem 1.1 above to

some surfaces with locally finite polyhedral Mori cone.

I am grateful to I.V. Dolgachev and I.R. Shafarevich for very useful

discussion on elliptic surfaces.

§1. Algebraic surfaces with finite polyhedral Mori cone

Let X be a non-singular projective algebraic surface over an alge-

braically closed field. Let NS(X) be Neron–Severi lattice of X (i. e. the

group of divisors on X by numerical equivalence considered together with
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the intersection pairing). By Hodge Index Theorem, the lattice NS(X) is

hyperbolic: it has signature (1, ρ − 1) where ρ = rk NS(X). We denote

by NE(X) ⊂ NS(X) ⊗ R the Mori cone of X generated over R+ = {t ∈

R | t ≥ 0} by all effective curves on X. By definition, a surface X has a

finite polyhedral Mori cone NE(X) if NE(X) is generated by a finite set of

rays (we denote by FPMC the class of all these surfaces). The minimal set

of these rays is called the set of extremal rays. We denote by V +(X) the

half-cone containing a polarization (i. e. an ample divisor) of the light cone

V (X) = {x ∈ NS(X)⊗R | x2 > 0}. By Riemann–Roch Theorem, the cone

NE(X) contains the half-cone V +(X). It follows that for ρ(X) ≥ 3, the

set of extremal rays of X ∈ FPMC is equal to R+E, E ∈ Exc(X), where

Exc(X) is the set of all exceptional (i. e. irreducible and having negative

square) curves of X. In particular, the set Exc(X) is finite. Thus, we can

introduce natural invariants of X ∈ FPMC:

ρ(X) = rk NS(X),(1.1)

δE(X) = max
C∈Exc(X)

(−C2),(1.2)

pE(X) = max
C∈Exc(X)

pa(C),(1.3)

where pa(C) = C2+C·K
2 + 1 is the arithmetic genus of a curve C, K is the

canonical divisor of X.

Surfaces X ∈ FPMC are interesting because of the following reasons:

1) Polyhedrality of the Mori cone NE(X) is very important in Mori

Theory (see [Mo]). It is interesting and curious to ask what will be if one

requires the only this condition.

2) We consider surfaces X ∈ FPMC as Algebraic Geometry analog of

arithmetic groups generated by reflections in hyperbolic spaces (e. g. see

[N4], [N5] and [N8]). We also expect that they are connected with some

analog of automorphic products introduced by R. Borcherds (see [B1], [B2],

[GN]–[GN7] and [N10]–[N12]).

3) We expect that quantum cohomology related with surfaces X ∈

FPMC are very interesting: one can consider the set Exc(X) as analog of

a system of simple real roots. Here “related” means that not necessarily the

quantum cohomology of X itself, but e. g. quantum cohomology of varieties

fibrated by X ∈ FPMC might be interesting ones. See some examples in

[CCL], [HM], [Ka], [Moo] and also [GN3], [GN7].
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4) A generalization of results of this paper to 3-folds (e. g. to Calabi-Yau

3-folds) would be very interesting.

Example 1.1. (Basic example) We have the following basic example

of surfaces X ∈ FPMC. It shows that there are plenty of surfaces X ∈

FPMC. For this example, let Y be a normal projective algebraic surface

such that −KY is nef and K2
Y > 0 (in particular, one can take Y to be

a numerical Del Pezzo surface with normal singularities). Let X be the

minimal resolution of singularities of Y . Then X ∈ FPMC if ρ(X) ≥

3. This follows from the Mori Theory [Mo] applied to the non-singular

projective algebraic surface X. E. g. see [N9].

For fixed invariants ρ ≥ 3, δE , pE, we denote by FPMCρ,δE ,pE
the class

of all algebraic surfaces X ∈ FPMC such that ρ(X) = ρ, δE(X) = δE and

pE(X) = pE.

In Theorem 1.1 below we want to show that the class FPMCρ,δE ,pE
is

bounded. We remind that any non-singular projective algebraic surface has

a linear projection embedding into P5 (e. g. see [Sh2]). This projection keeps

the degree. Surfaces in P5 of the fixed degree depend on a finite number of

Chow coordinates (e. g. see [Sh2]).

Theorem 1.1. For ρ ≥ 3, there are constants N(ρ, δE) and N ′(ρ, δE ,

pE) depending only on (ρ, δE) and (ρ, δE , pE) respectively such that for

any X ∈ FPMCρ,δE ,pE
there exists an ample effective divisor h such that

h2 ≤ N(ρ, δE), and if the ground field is C, there exists a very ample divisor

h′ such that h′2 ≤ N ′(ρ, δE , pE).

Proof. Let NEF(X) = NE(X) ∗ be the dual nef cone. We have NEF(X)

⊂ V +(X) = V +(X)
∗
⊂ NE(X). Therefore, the nef cone defines a finite

polyhedron M = NEF(X)/R+ of finite volume in the hyperbolic space

L(X) = V +(X)/R++, where R++ = {t ∈ R | t > 0}. The set Exc(X) is the

set of orthogonal vectors to faces (of the highest dimension) of M. By [N4],

Appendix, Theorem 1 (see also [N14] about much more exact statements),

we have the following

Lemma 1.1. There exist exceptional curves E1, . . . , Eρ ∈ Exc(X) such

that the conditions (a), (b) and (c) below are valid:

(a) E1, . . . , Eρ generate NS(X) ⊗ Q;
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(b)
2 (Ei·Ej)√

E2
i
E2

j

< 62;

(c) The dual graph of E1, . . . , Eρ is connected, i. e. one cannot divide this

set in two non-empty subsets orthogonal to one another.

Let us consider the ρ×ρ matrix Γ = (γij) = (Ei ·Ej) where 1 ≤ i, j ≤ ρ.

By conditions of Theorem 1.1 and by Lemma 1.1, we have −δE ≤ γii < 0 for

any 1 ≤ i ≤ ρ, and 0 ≤ γij < 31δE for any 1 ≤ i, j ≤ ρ and i 6= j. It follows

that the set of possible matrices Γ is finite. Thus, in further considerations

we can fix one of the possible matrices Γ.

The matrix Γ has non-negative coefficients except its diagonal. More-

over, it is symmetric and indecomposable (by the condition (c)). Thus, by

Perron-Frobenius Theorem, its maximal eigenvalue λ has multiplicity one

and has the eigenvector v = b1E1 + · · · + bρEρ with positive coordinates

bi > 0. Since the lattice NS(X) is hyperbolic, the eigenvalue λ > 0. It fol-

lows that Γv = λv and Ej · v = λbj > 0 for any 1 ≤ j ≤ ρ. Moreover,

v2 = λ(b2
1 + · · · + b2

ρ) > 0.

We can replace real numbers bi by very closed positive rational numbers

b′i keeping the inequalities Ej ·(b
′
1E1+· · ·+b′ρEρ) > 0 for any 1 ≤ j ≤ ρ, and

(b′1E1+· · ·+b′ρEρ)
2 > 0. Multiplying numbers b′i by an appropriate positive

natural number N , finally we find natural numbers ai = Nb′i such that

Ej ·(a1E1 + · · ·+aρEρ) > 0 for any 1 ≤ j ≤ ρ, and (a1E1 + · · ·+aρEρ)
2 > 0.

It follows

Lemma 1.2. Under the conditions (a) and (c) of Lemma 1.1, there

exist ai ∈ N, i = 1, . . . , ρ, depending only on the matrix Γ = (Ei · Ej),

1 ≤ i, j ≤ ρ, such that for h = a1E1 + · · · + aρEρ one has

Ej · h > 0

for any 1 ≤ j ≤ ρ, and h2 > 0.

Suppose that C is an irreducible curve on X different from E1, . . . , Eρ.

Then C defines a non-zero element in NS(X) because C · H > 0 for a

hyperplane section H. It follows that C · Ei ≥ 0 for any 0 ≤ i ≤ ρ, and at

least one of these inequalities is strong because E1, . . . , Eρ generate NS(X)⊗

Q. Thus, C · h > 0. It follows that C · h > 0 for any effective curve C.

Since h2 > 0, by Nakai–Moishezon criterion, the divisor h is ample. By the

construction, h is effective. Since for the fixed (ρ, δE) the set of possible
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matrices Γ is finite, h2 ≤ N(ρ, δE) for a constant N(ρ, δE) depending only

on (ρ, δE). It proves the first statement of Theorem 1.1.

To prove second statement, let us additionally fix pa(Ei), 1 ≤ i ≤ ρ.

Since 0 ≤ pa(Ei) ≤ pE, there exists only a finite number of possibilities. Let

K = d1E1 + · · · + dρEρ be the canonical class of X where di ∈ Q. One can

find d1, . . . , dρ from equations
E2

i
+(Ei·K)

2 + 1 = pa(Ei), 1 ≤ i ≤ ρ. Since the

lattice NS(X) is non-degenerate and E1, . . . , Eρ give a bases of NS(X)⊗Q,

these equations define d1, . . . , dρ uniquely.

Suppose that the ground field is C. By Reider’s Theorem [R] (see also

[L]), we have h′ = K +4h is very ample. It follows that h′2 ≤ N ′(ρ, δE , pE)

where N ′(ρ, δE , pE) is bounded by a constant depending on (ρ, δE , pE).

(We remark that this is the only place in the proof of Theorem 1.1 where

we use that the ground field is C.) This finishes the proof of Theorem 1.1.

Remark 1.1. The same proof shows that surfaces X ∈ FPMCρ,δE ,pE

belong to a finite set of Hilbert schemes determined by a finite set of Hilbert

polynomials (for the fixed invariants ρ, δE , pE). By this argument, one can

proof Theorem 1.1 for any characteristic p of the ground field, avoiding

using of the Reider’s Theorem.

In Theorem 1.1, we fixed invariants ρ, δE and pE. In Example 1.2 below,

we show that Theorem 1.1 is not in general true if one does not fix one of

these invariants.

Example 1.2. Let us consider a non-singular curve Cg of genus g and

an invertible sheaf L on Cg of the degree −n where n ∈ N. The ruled surface

π : Y = P(OCg ⊕ L) → Cg has the exceptional section Cg of genus g such

that (Cg)
2 = −n (e. g. see [Har], Ch. V, Example 2.11.3). Let E0 be a fiber

of π and X the blow up of Y in a point of E0 which does not belong to the

section Cg. Let F0 be the exceptional curve of the blow up. We get three

exceptional curves Cg, E0 and F0 on X of the genus g, 0 and 0 respectively

and with the intersection matrix




−n 1 0

1 −1 1

0 1 −1




Using this matrix, it is easy to prove that the cone R+Cg + R+E0 + R+F0

contains the cone V +(X). (One needs to show that the Gram matrix of any
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two of these three curves is either negative or semi-negative definite.) It fol-

lows that NE(X) = R+Cg +R+E0 +R+F0, and X ∈ FPMC3,n,g where the

numbers n > 0 and g ≥ 0 can be arbitrary. The surfaces X give the infinite

dimensional family of surfaces in FPMC3,δE=n = ∪pE≥0FPMC3,n,pE
. This

shows that Theorem 1.1 is not true if one does not fix the invariant pE . The

same example shows that Theorem 1.1 is not true if one does not fix the

invariant δE .

Now let us show that ρ is not bounded for X ∈ FPMCδE ,pE
=

∪ρ≥3FPMCρ,δE ,pE
for any fixed δE ≥ 3 and pE ≥ 0. Let us consider the

surface X above with n = δE ≥ 3 and g = pE. It has three exceptional

curves Cg, E0 and F0. Curves E0 and F0 (different from Cg) define a con-

nected tree of curves and have one intersection point of the curves. Consider

the blow up X1 of X in the intersection point. Then X1 has four excep-

tional curves Cg, E0, F0 and F1 where F1 is the exceptional curve of the

blow-up. Like for Example 1.1, one can show that X1 ∈ FPMC and Cg,

E0, F0 and F1 are all exceptional curves of X1. It has ρ(X1) = 4. Curves E0,

F0 and F1 (different from Cg) also define a tree and have two intersection

points. We can repeat this procedure considering blow up X2 of X1 in one

of these two points. Repeating this procedure, we get an infinite sequence

Xk, k ≥ 0, of surfaces with ρ(Xk) = 3 + k. We have: Xk ∈ FPMC and

Xk has exactly 3 + k exceptional curves where 2 + k of them are proper

preimages of exceptional curves of Xk−1 and one is the exceptional curve

of the blow-up in an intersection point of two exceptional curves (differ-

ent from Cg) of Xk−1. One can see that this sequence contains an infinite

sequence of surfaces Xk ∈ FPMCρ=3+k,δE ,pE
. Actually one can find an in-

finite sequence Xk such that the curve Cg of Xk has (Cg)
2 = −n = −δE ,

and all other exceptional curves E of Xk have −3 ≤ E2 < 0. It follows, that

Xk ∈ FPMCδE ,pE
since we assume that δE ≥ 3.

Because of Theorem 1.1, one can ask about classification of surfaces

X ∈ FPMCρ,δE ,pE
for small invariants ρ, δE and pE.

Example 1.3. For this example, we suppose that δE = 1. Then ρ ≤ 9.

Really, for δE = 1 any exceptional curve E ∈ Exc(X) has E2 = −1 and

defines a reflection of NS(X) which maps E → −E and is identical on

E⊥. It is given by the formula x 7→ x + 2(E · x)E, x ∈ NS(X). All E ∈

Exc(X) generate a reflection group W ⊂ O(NS(X)) with the fundamental

chamber NEF(X)/R+ ⊂ L(X) of finite volume. It follows that [O(NS(X)) :
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W (−1)(NS(X))] < ∞ where W (−1)(NS(X)) is generated by reflections in all

α ∈ NS(X) with α2 = −1. It was shown in [N2], [N3] that rk S ≤ 9 for

any hyperbolic lattices S with [O(S) : W−1(S)] < ∞, and all hyperbolic

lattices S with this property were found; see also [N6], [N8]. From Theorem

1.1, it then follows that the family FPMCδE=1,pE
is bounded and may be

described (in principle) for a fixed pE. Here we denote FPMCδE=k,pE
=

∪ρ≥3FPMCρ,k,pE
.

Example 1.3.1. Let us additionally (to the condition δE = 1) assume

that pE = 0. We have: The family X ∈ FPMCδE=1,pE=0 consists of all non-

singular Del Pezzo surfaces X and is well-known (e. g. see [Ma]). Really,

we have that −K · E = 1 > 0 for any E ∈ Exc(X). Since Exc(X) is finite

and generates NE(X), it then follows that (−K)2 > 0, and −K is ample

by Nakai–Moishezon criterion. The opposite statements is a very particular

case of Basic Example 1.1. One can get Del Pezzo surfaces as blow up

of P2 in ≤ 8 points in “general” position. It follows that they define a

bounded family of algebraic surfaces and illustrates Theorem 1.1 for this

very particular case. We even have more: their moduli have finite number

of connected components.

It seems, nobody tried to classify FPMCδE=1, pE
for pE ≥ 1.

Example 1.4. For this example, we suppose that δE = 2. Thus, E2 =

−1 or −2 for any E ∈ Exc(X). Then again any E ∈ Exc(X) defines re-

flection of NS(X). It is given by the formula x 7→ x −
(
2(E · x)/E2

)
E,

x ∈ NS(X). The same arguments as above show that ρ ≤ 22; see [V1], [V2]

and [E]. We mention that the same result is valid for X ∈ FPMC if all

E ∈ Exc(X) define reflections of NS(X). We also remark that if E2 = −2

for any E ∈ Exc(X), then ρ ≤ 19, see [N2], [N3]. By Theorem 1.1, it then

follows that the class FPMCδE=2, pE
is bounded for a fixed pE.

Example 1.4.1. Let us additionally (to the condition δE = 2) assume

that pE = 0. Let X ∈ FPMCδE=2, pE=0. Then E2 = −1 or −2 and E

is non-singular rational for any E ∈ Exc(X). By the formula for genus of

curve, −K · E = 1 if E2 = −1, and −K · E = 0 if E2 = −2. It follows that

−K is nef and K2 ≥ 0. Vice versa, by the formula for genus of curve, any

surface X with nef −K has only non-singular rational exceptional curves E

with E2 = −1 or −2. Considering these surfaces X ∈ FPMC, we get one

of cases below where we for simplicity suppose that the basic field k = C

(one can consider arbitrary k using results from [CD]).
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Case 1. Suppose that E2 = −2 for any E ∈ Exc(X). Then K ≡ 0 and

X is minimal. By classification of surfaces (e. g. see [Sh1]), we then have

mK = 0 for some m ∈ N. We can suppose that m is minimal with this

property. Then K defines the cyclic m-sheeted covering π : X̃ → X where

K
X̃

= 0 and X̃ is either K3 or Abelian surface. The preimage π−1(E) of

an exceptional curve E of X contains an exceptional curve of X̃ because

π−1(E)2 = mE2 < 0. Abelian surfaces do not have exceptional curves.

Thus, X̃ is K3 surface and m = 1 or 2. It follows that X is either K3

(if m = 1), or Enriques (if m = 2) surface. Thus we get K3 or Enriques

surfaces X. All K3 and Enriques surfaces with finite polyhedral Mori cone

(equivalently, when their automorphism group is finite [P-S̆S̆] were classified

in [N2], [N3], [N6], [N7], [N8] and [Ko]. Their moduli have finite number

of connected components. It is interesting that to get this classification,

general arguments of Lemma 1.1 were used in some cases (see [N6]).

Case 2. Suppose that there exists E ∈ Exc(X) with E2 = −1. Then

K ·E = −1 and K is not numerically zero. Since −K is nef, it follows that

linear systems |nK| are empty for all n > 0. By classification of surfaces,

X is either ruled or rational. Suppose that X is ruled and π : X → C is a

morphism on a curve C. Since Exc(X) generates NS(X) ⊗ Q, the image of

one of exceptional curves E is equal to C. Since E is rational, the curve C

is rational. It follows that X is a rational surface with nef −K.

Case 2a. Suppose that X is rational, −K is nef and K2 > 0. Since

E · K = 0 for any E ∈ Exc(X) with E2 = −2, the intersection matrix of

these curves is negative definite. It follows that these curves define several

disjoint configurations of the Dynkin type An, Dn or En. It follows that

there exists the contraction map π : X → Y of these curves where Y is

a surface with Du Val singularities. We then have KX = π∗KY . It follows

that (−KY ) is numerically ample, and Y is Del Pezzo surface with Du Val

singularities. It is a particular case of Basic Example 1.1. Thus, we get

that the surfaces X are minimal resolutions of singularities of Del Pezzo

surfaces with Du Val singularities. Classification of these surfaces as blow-

ups of P2 in ≤ 8 points in “general” position was obtained by Nagata [Na].

See also [Ma]. It follows that these surfaces define a bounded family of

algebraic surfaces and illustrates Theorem 1.1 for this very particular case.

Their moduli have finite number of connected components. Classification

of all possible graphs Γ(Exc(X)) of exceptional curves on X was obtained

in [AN1] and [AN2].
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Case 2b. Suppose that X is rational, −K is nef and K2 = 0. By

Noether formula, ρ = rk NS(X) = 10. Since NE(X) is finite polyhedral, the

dual cone NEF(X) ⊂ V +(X) is also finite polyhedral and the polyhedron

M(X) = NEF(X)/R+ is a finite polyhedron in the hyperbolic space L(X).

The polyhedron M(X) has R++(−K) as its infinite vertex and should be

finite in a neighbourhood of this vertex. It follows that the set of exceptional

curves E ∈ Exc(X) which are orthogonal to −K is parabolic and has the

rank 8. It means that any connected component Γi of the dual graph Γ of

the set of these curves has semi-negative definite Gram matrix of the rank

ri and the sum
∑

i ri = 8. Since E2 = −2 if E ∈ Exc(X) and E · K = 0, it

follows that the graphs Γi are extended Dynkin diagrams of types Ãri
, D̃ri

or Ẽri
where

∑
i ri = 8.

Let us show that the opposite statement is also true. Suppose that X

is rational, −K is nef, K2 = 0, any connected component of the set of

exceptional curves E ∈ Exc(X) with E2 = −2 is extended Dynkin diagram

of the rank ri and
∑

i ri = 8. We claim that then X ∈ FPMC.

Since −K is nef, K2 = 0 and K is not numerically zero, the polyhedron

M(X) = NEF(X)/R+ ⊂ L(X) is parabolic relative to R++(−K). E. g. see

[N9] (this follows from the Mori Theory applied to non-singular surfaces).

This means that M(X) is finite in any angle of the hyperbolic space L(X)

with the vertex R++(−K). (This is example of surfaces with almost finite

polyhedral Mori cone which we shall consider in Sect. 2). Let Q be the

set of all exceptional curves E ∈ Exc(X) with E2 = −2 and H+
E = {0 6=

x ∈ NS(X) ⊗ R | x · E ≥ 0}/R++. We have M(X) ⊂
⋂

E∈Q H+
E . Curves

E ∈ Q are all orthogonal to −K, and by the condition on the set of these

curves, the set
⋂

E∈Q H+
E is a finite polyhedral angle in L(X) with the vertex

R++(−K). It follows that M(X) is finite polyhedral in a neighbourhood

of R++(−K) in L(X). It follows that M(X) and NEF(X) are finite. Thus,

the dual cone NE(X) is also finite. This proves the statement.

(∗) Thus, the surfaces X are rational surfaces with nef −K, K2 = 0, and

such that any connected component of the set of exceptional curves E ∈

Exc(X) with E2 = −2 is an extended Dynkin diagram Γi of the rank ri and∑
i ri = 8.

Classification of surfaces from (*) was not considered in literature. So,

we are forced to give this classification below.

Suppose that X satisfies (*). Let Ej , j = 1, . . . , ri + 1 are exceptional

curves with E2
j = −2 which give an extended Dynkin diagram Γi. There are
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natural aj , j = 1, . . . , ri + 1 such that Di =
∑

j ajEj has D2
i = 0 and one

of coefficients aj is equal to one. Obviously, Di ∈ | − miK| where mi is the

invariant of the divisor Di and of the connected component Γi of the set of

exceptional curves with square −2 of X. By Riemann–Roch Theorem, the

linear system |−K| is not empty and contains a divisor D. If D is different

from one of divisors Di, the linear system | −miK| has positive dimension.

It follows that for some natural m the linear system | − mK| is a pencil.

By Bertini Theorem, this pencil contains a non-singular curve which is an

elliptic curve. Thus, | − mK| is elliptic pencil, and the surface X is then

rational minimal elliptic surface (see [D] and [CD] about theory of rational

elliptic surfaces). We shall consider classification of elliptic surfaces from

(*) in more details below. Our consideration also shows that X might be

not elliptic only if there exists exactly one extended Dynkin diagrams Γ1,

it has rank 8 and the divisor D1 ∈ | − K|.

Thus, the set of surfaces from (*) and its classification is divided in two

parts: Elliptic surfaces from (*), and

(∗∗∗) rational surfaces X with nef −K and K2 = 0 such that all exceptional

curves Fj with F 2
j = −2 of X define a connected extended Dynkin diagram

of the rank 8. There exist natural aj such that one of aj is equal to one and

D =
∑

j ajFj ∈ | − K|.

First we consider classification of surfaces (***). The graph Γ of F1, . . . ,

F9 has type Ẽ8, D̃8 or Ã8. Since X is not relatively minimal, there exists

an exceptional curve E of the first kind. We have E ·D = 1. It follows that

E · Fj0 = 1 for one of curves Fj0 having aj0 = 1, and E · Fj = 0 if j 6= j0.

Suppose that the graph Γ = Ẽ8. Then the exceptional curves Fj and

E have the dual graph HẼ8 below where black vertices correspond to the

curves Fj with F 2
j = −2. An edge of the graph means transversal intersec-

tion of curves in one point. Analyzing the graph HẼ8, one can see that the

dual cone {x ∈ NS(X) ⊗ R | x · Ei ≥ 0} of curves E1, . . . , E10 is contained

in V +(X). It follows that X ∈ FPMC, and the curves E1, . . . , E10 are all

exceptional curves of X. Thus, HẼ8 is the graph of all exceptional curves

on X if Γ = Ẽ8.

If Γ = D̃8, considerations are a little bit more complicated. Curves Fj

and E define a subgraph of the graph HD̃8 below with vertices E1, . . . , E10.

Curves E2, E4, E6, E8 and E9 of the subgraph define an extended Dynkin

diagram of the type B̃4. The divisor C = E2 + E4 + 2E6 + 2E8 + 2E9 is nef

and has C2 = 0. Curves E10, E1, E7 and E5 of the subgraph are orthogonal
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to C and define Dynkin diagram of type D4. The nef cone NEF (X) should

be finite in a neighbourhood of R+C. It follows that there exists another

exceptional curve E′ of the first kind such that E′ together with the curves

E10, E1, E7 and E5 defines an extended Dynkin diagram of the type B̃4.

It follows that X has exceptional curves with the graph HD̃8. Analyzing

this graph, one can see that X ∈ FPMC, and the graph HD̃8 gives all

exceptional curves of X. Here one should use some elementary facts about

polyhedra with acute angles in hyperbolic spaces (e. g. see [V2]).

Similarly one can prove that all exceptional curves of X have graph

HÃ8 below if curves with square −2 of X from (***) have the extended

Dynkin diagram Ã8.

This gives: Classification of surfaces (∗ ∗ ∗): The set of all exceptional

curves of the surfaces X has one of dual graphs HẼ8, HD̃8 or HÃ8 given

below. Here a black vertex Ei has E2
i = −2, and a white vertex Ei has

E2
i = −1. An edge Ei, Ej of the graph means that Ei · Ej = 1. General

surfaces X of these type are not elliptic (we shall show this below).

E10

c

E9

s

E8

s

E7

s

E6

s

E5

s

s

E1

E4

s

E3

s

E2

s

Graph HẼ8

E11

c

E10

s

E7

s

s
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E5
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s
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Graph HD̃8

E12

c

E9

s

sE1

s

E4
s

E7

c
E10

E6

s

E3

s

E8

s

s E5

s

E2

E11

c

Graph HÃ8

Considering a sequence of contractions of exceptional curves of the first

kind of the surfaces X (their preimages are numerated in descending order

by vertices Ei of the graphs HẼ8, HD̃8 and HÃ8), one obtains existence

and description of parameters of the surfaces X. Surfaces X with graphs

HẼ8, HD̃8 or HÃ8 are obtained from a line E1, two different lines E1, E2

and three non-collinear lines E1, E2, E3 respectively on a plane P2 by blow

up of appropriate sequences of 9 points. They correspond to vertices of the

graphs HẼ8, HD̃8 and HÃ8 respectively in increasing order.

Let us show that general surfaces from (***) are not elliptic: for any

natural m the linear system | −mK| contains only the divisor −mD and is

zero-dimensional. First, let us consider m = 1. Suppose that for a surface

X from (***) the linear system | − KX | is 1-dimensional. To be concrete,

assume that X has the graph HÃ8 of exceptional curves. Let X1 be the

surface obtained by contraction of the curve E10. Then | −KX1
| contains a

nef divisor D1 = E1 +E4 +E7 +E2 +E5 +E8 +E3 +E6 +E9 with D2
1 = 1.

By Kawamata-Viehweg vanishing [Kaw], [Vie] and Riemann-Roch theorem,

one than gets dim |−KX1
| = 1. Since |−KX1

| contains the image of |−KX |

with dim | −KX | = 1, we obtain that the linear system | −KX1
| = | −KX |

is one-dimensional with the base point on the curve E7. This base point is

equal to the image of E10. Let X ′ be a surface which is blow up of X1 in a
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point of the curve E7 which is different from the base point of |−KX1
|, and

from points E7 ∩E4 and E7 ∩E2. The surface X ′ belongs to (***), has the

same graph HÃ8 of exceptional curves, and dim | − KX′ | = 0. This shows

that surfaces (***) have one additional parameter to elliptic surfaces X

from (***) with not zero-dimensional | − KX |. Now suppose that | − mK|

is not zero-dimensional, but | − (m − 1)K| is zero-dimensional for some

m > 0. Then | − mK| is elliptic pencil with the fiber mD of multiplicity

m where D has the type Ã8. Below we shall see that for any fixed m ≥ 1

these elliptic surfaces have the same number of parameters as for m = 1.

Thus, our consideration above for m = 1 shows that general surfaces X

from (***) are not elliptic: they have one additional parameter to elliptic

surfaces from (***).

Now let us consider classification of elliptic surfaces X from (*). We

denote this class of surfaces by (**). It consists of:

(**)Rational surfaces X with K2 = 0 having an elliptic pencil | − mK| for

some m > 0 (equivalently, X is rational minimal elliptic surface) and such

that the sum
∑

i ri = 8 for ranks ri of reducible fibers of the pencil (these

rational minimal elliptic surfaces are called maximal). The invariant m is

called index (it was first observed in [Hal]). See [D] and [CD], Sect. 5.6 about

these surfaces.

Classification of surfaces from (**) can be obtained using general Ogg–

Shafarevich theory of elliptic surfaces [O], [Sh3] , applied to the special case

of rational elliptic surfaces. This was done in [D] and [CD]. In fact, below,

we just review these results.

Suppose that the index m = 1. Then the elliptic pencil | − KX | is

Jacobian, it has a section which is defined by an exceptional curve E of

the first kind. For this case, there exists a sequence of contractions of 9

exceptional curves of the first kind π : X → P2 such that image of the

pencil | − KX | is a pencil of plane cubics. Condition
∑

i ri = 8 is then

equivalent to finiteness of the Mordell–Weil group defined by sections (i.

e. exceptional curves of the first kind of X). Using this description, one

can classify these surfaces X according to Dynkin diagrams Γi of reducible

fibers. It is known [CD] that there are the following and the only following

possibilities for Γi with
∑

i ri = 8, and Mordell–Weyl groups, see [CD],

Corollary 5.6.7:

https://doi.org/10.1017/S0027763000007194 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007194


ALGEBRAIC SURFACES AND MORI CONE 87

Types of fibers Mordell–Weil groups

Ẽ8 (1)

D̃8 Z/2Z

Ã8 Z/3Z

Ẽ7 + Ã1(Ã
∗
1) Z/2Z

Ã7 + Ã1(Ã
∗
1) (Z/2Z)2

Ẽ6 + Ã2(Ã
∗
2) Z/3Z

D̃5 + Ã3 Z/4Z

2D̃4 (Z/2Z)2

2Ã4, Z/5Z

D̃6 + 2Ã1(Ã
∗
1) (Z/2Z)2

Ã5 + Ã1(Ã
∗
1) + Ã2(Ã

∗
2) (Z/3Z) ⊕ (Z/2Z)

2Ã3 + 2Ã1(Ã
∗
1) (Z/4Z) ⊕ (Z/2Z)

4Ã2(Ã
∗
2) (Z/3Z)2.

It is not difficult to extend these possible diagrams of exceptional curves

with square −2 adding exceptional curves of the first kind. Their number

is equal to the order of the Mordell–Weil group. E. g. for diagrams Ẽ8, D̃8

and Ã8 one gets graphs HẼ8, HD̃8 and HÃ8 respectively given above.

Now assume that the index m > 1. Then the elliptic pencil | − mKX |

has a unique multiple fiber mD where D ∈ |−KX |. The Jacobian fibration

J of X is also a rational minimal elliptic surface (see [CD], Proposition

5.6.1) with the same base and the same fibers as X. We have considered

rational Jacobian fibrations J above. The multiple fiber mD of | − mKX |

fixes a point xD ∈ D of order m of the corresponding fiber D of J . By

Ogg–Shafarevich theory [O] and [Sh3], the triplet (xD ∈ D ⊂ J) defines the

elliptic pencil | − mKX | uniquely, any triplet (xD ∈ D ⊂ J) (where J is a

Jacobian rational minimal elliptic surface, D its fiber and xD ∈ D its point

of order m) is possible and defines a rational elliptic surface X with elliptic

pencil | − mKX | of index m, multiple fiber mD and the Jacobian fibration

J . See [D] and [CD], Ch. 5 for details. In particular, considering of the X

with a multiple fiber mD where D has the type Ã8 (this case has been

considered above), is equivalent to considering of triplets (xD ∈ D ⊂ J)

with the reducible fiber D of the type Ã8 and the point xD ∈ D of order

m. For the fixed J , the set of possible xD ∈ D is obviously finite, and the

number of parameters of the X is equal to the number of parameters of the

J . We have used this above.
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We emphasize that the index m of a surface X from (**) can be arbi-

trary m ∈ N. It follows that the number of connected components of the

moduli space of surfaces X in (**) is infinite. It follows that number of

connected components of moduli space of surfaces X ∈ FPMCδE=2,pE=0 of

the case 2b is infinite: it has three connected components with non-elliptic

general X and infinite number of connected components with elliptic X cor-

responding to infinite number of possible indexes m ∈ N of X.

It seems, nobody tried to classify surfaces X ∈ FPMCδE=2, pE
for

pE ≥ 1.

For a surface X ∈ FPMCρ≥3, the very important invariant is the dual

graph Γ(Exc(X)) of the set Exc(X) of exceptional curves of X. Here we

mark vertices E ∈ Exc(X) of this graph by the pair (E2, pa(E)), and edges

(Ei, Ej) of the graph by Ei · Ej if Ei · Ej > 0.

Using considerations in the proof of Theorem 1.1, we can prove:

Theorem 1.2. For fixed invariants ρ ≥ 3, δE and pE, the set of pos-

sible graphs Γ(Exc(X)) of X ∈ FPMCρ,δE ,pE
is finite if K2

X > 0.

Proof. We argue as in the proof of Theorem 1.1. For the fixed matrix

Γ (one from a finite set) we have that the hyperbolic lattice NS(X) is

an intermediate lattice [E1, . . . , Eρ] ⊂ NS(X) ⊂ [E1, . . . , Eρ]
∗ where the

lattice [E1, . . . , Eρ] is fixed by Γ. Thus there exists only a finite number of

possibilities for the overlattice [E1, . . . , Eρ] ⊂ NS(X). We fix one of them.

We also fix one of finite possibilities for the canonical class K = KX ∈

NS(X). If K2 > 0, there exists only a finite set of elements e ∈ NS(X) such

that −δE ≤ e2 < 0 and 0 ≤ e2+e·K
2 + 1 ≤ pE because the lattice NS(X)

is non-degenerate and hyperbolic. It shows that number of possible graphs

Γ(Exc(X)) is finite. This finishes the proof.

The condition K2
X > 0 of Theorem 1.2 is necessary. Surfaces X of the

case 2b of Example 1.4.1 have K2
X = 0, have infinite number of connected

components of the moduli space and infinite number of possible graphs

Γ(Exc(X)).

§2. Algebraic surfaces with some locally polyhedral Mori cone

Here we want to outline some generalization of results of Sect. 1 for

more general class of surfaces (we hope to give details in forthcoming publi-
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cations). They are Algebraic Geometry analog of reflection groups of hyper-

bolic lattices of elliptic, parabolic or hyperbolic type (see [N8], [N9], [N11],

[N13], [N14]).

For surfaces X ∈ FPMCρ≥3 the nef cone defines an elliptic (i. e. finite

and of finite volume) polyhedron NEF(X)/R+ ⊂ L(X). The key Lemma

1.1 which we used in the proof of Theorem 1.1, can be generalized (with

some bigger absolute constant instead of 62) for locally finite polyhedra

of restricted parabolic or restricted hyperbolic type in hyperbolic spaces.

See [N11], [N13], [N14]. Thus, we shall have Theorem 1.1 for surfaces with

NEF(X)/R+ of these types. Below we introduce surfaces for which this is

true.

Like in Sect. 1, we consider only non-singular projective algebraic sur-

faces X over algebraically closed field.

Definition 2.1. Definition 2.1 Let ρ = ρ(X) ≥ 3. We say that X has

almost finite polyhedral Mori cone NE(X) if (1), (2) and (3) below hold:

(1) There exist finite maximums:

δE(X) = max
C∈Exc(X)

−C2 and pE(X) = max
C∈Exc(X)

pa(C).

(2) There exists a non-zero r ∈ NS(X) such that any extremal ray

of NE(X) is either generated by an exceptional curve E ∈ Exc(X) or by

c ∈ NS(X) ⊗ R such that c2 = 0 and c · r = 0.

(3) The set Exc(X) ·r is bounded: −R ≤ Exc(X) ·r ≤ R for some finite

R > 0.

We remark that if K 6≡ 0, one can always put r = K. Then (3) follows

from (1).

There are plenty of surfaces X with almost finite polyhedral Mori cone.

Let Y be a normal projective algebraic surface with nef anticanonical class

−KY and with at least one non Du Val singularity if −KY ≡ 0. Then the

minimal resolution X of singularities of Y has almost finite polyhedral Mori

cone (e. g. see [N9]).

One can show that surfaces X with almost finite polyhedral Mori cone

have the polyhedron NEF(X)/R+ ⊂ L(X) either of elliptic or restricted

parabolic or restricted hyperbolic type. For polyhedra M of this type one

can prove Lemma 1.1 with the constant 62 replaced by some other absolute

constant. See [N11], [N13], [N14]. From this Lemma we get (like in proof of

Theorem 1.1)
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Theorem 2.1. For ρ ≥ 3, there are constants N(ρ, δE) and N ′(ρ, δE ,

pE) depending only on (ρ, δE) and (ρ, δE , pE) respectively such that for

any X with almost finite polyhedral Mori cone and ρ(X) = ρ, δE(X) = δE

and pE(X) = pE, there exists an ample effective divisor h such that h2 ≤

N(ρ, δE), and if the ground field is C, there exists a very ample divisor h′

such that h′2 ≤ N ′(ρ, δE , pE).
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