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HOD IN INNER MODELS WITH WOODIN CARDINALS

SANDRA MÜLLER AND GRIGOR SARGSYAN

Abstract. We analyze the hereditarily ordinal definable sets HOD inMn(x)[g] for a Turing cone of
reals x, whereMn(x) is the canonical inner model with n Woodin cardinals build over x and g is generic
over Mn(x) for the Lévy collapse up to its bottom inaccessible cardinal. We prove that assuming Π1

n+2-
determinacy, for a Turing cone of reals x, HODMn (x)[g] = Mn(M∞|κ∞,Λ), where M∞ is a direct limit
of iterates of Mn+1, �∞ is the least Woodin cardinal in M∞, κ∞ is the least inaccessible cardinal in
M∞ above �∞, and Λ is a partial iteration strategy for M∞. It will also be shown that under the same
hypothesis HODMn (x)[g] satisfies GCH.

§1. Introduction. An essential question regarding the theory of inner models is
the analysis of the class of all hereditarily ordinal definable sets HOD inside various
inner models M of the set theoretic universe V under appropriate determinacy
hypotheses. Examples for such inner models M are L(R), L[x], and the canonical
proper class x-mouse with n Woodin cardinals Mn(x), but nowadays also larger
models of determinacy M are considered.

One motivation for analyzing the internal structure of these models HODM is
given by Woodin’s results in [5] that under determinacy hypotheses these models
contain large cardinals. He showed in [5] for example that assuming Δ1

2 determinacy
there is a Turing cone of reals x such that �L[x]

2 is a Woodin cardinal in the model
HODL[x]. This result generalizes to higher levels in the projective hierarchy. That
means for n ≥ 1 assuming Π1

n+1 determinacy and Π1
n+2 determinacy there is a cone

of reals x such that �Mn(x)
2 is a Woodin cardinal in the model HODMn(x)|�x , where

Mn(x) denotes the canonical proper class x-mouse with n Woodin cardinals and �x
is the least Woodin cardinal in Mn(x). Moreover, Woodin showed a similar result
for HODL(R). If we let Θ denote the supremum of all ordinalsα such that there exists
a surjection � : R → α, then assuming ZF + AD, he showed that ΘL(R) is a Woodin
cardinal in HODL(R) (see [5]). The fact that these models of the form HODM can
have large cardinals as for example Woodin cardinals motivates the question if
they are in some sense fine structural as for example the models L[x],Mn(x), and
L(R) are. A good test question for this is whether these models HODM satisfy the
generalized continuum hypothesis GCH. If it turns out that HODM is in fact a
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fine structural model, it would follow that it satisfies the GCH and even stronger
combinatorial principles as for example the � principle.

The first model which was analyzed in this sense was HODL(R) under the
assumption that every set of reals in L(R) is determined (short: ADL(R)). Using
purely descriptive set theoretic methods Becker showed in [1] under this hypothesis
that GCHα , i.e., 2α = α+, holds in HODL(R) for all α < �1. Later Steel and Woodin
were able to push the analysis of HODL(R) forward using more recent advances
in inner model theory. In 1993 they first showed independently that the reals in
HODL(R) are the same as the reals inM� , the least proper class iterable premouse
with�Woodin cardinals. Then they showed in Section 4 of [18] that HODL(R) in fact
agrees with the inner model N up to P(�1), where N denotes the�1-th linear iterate
ofM� by its least measure and its images. Building on this, Steel was able to show in
[19] that HODL(R) agrees with the inner model M∞ up to (�2

1)L(R), where M∞ is a
direct limit of iterates ofM� and (�2

1)L(R) is the supremum of all ordinals α such that
there exists a surjection � : R → α which is ΔL(R)

1 definable. Finally, in 1996 Woodin
extended this (see [23]) and showed that in fact HODL(R) = L[M∞,Λ], where Λ is
a partial iteration strategy for M∞. For even larger models of determinacy M the
corresponding model HODM was first analyzed in [11], where the second author
showed that it is fine structural using a layered hierarchy. Models of this form are
nowadays called hod mice. A different approach for the fine structure of hod mice
called the least branch hierarchy is studied in [22].

The question if HODL[x] is a model of GCH or even a fine structural model for a
Turing cone of reals x under a suitable determinacy hypothesis remains open until
today. What has been done is the analysis of the model HODL[x][G ], where G is
Col(�,<κx)-generic over HODL[x] for the least inaccessible cardinal κx in L[x].
Woodin showed in the 1990’s (see [23]) that assuming Δ1

2 determinacy there is a
Turing cone of reals x such that HODL[x][G ] = L[M∞,Λ], where M∞ is a direct
limit of mice (which are iterates ofM1) and Λ is a partial iteration strategy for M∞.

In this article, we analyze HOD in the modelMn(x)[g] for any real x of sufficiently
high Turing degree under the assumption that every Π1

n+2 set of reals is determined.
Here g is Col(�,<κ)-generic over Mn(x), where κ denotes the least inaccessible
cardinal in Mn(x). We first show that the direct limit model M∞, obtained from
iterates of suitable premice, agrees up to its bottom Woodin cardinal �∞ with
HODMn(x)[g]. In a second step, we show that the full model HODMn(x)[g] is in fact of
the formMn(M̂∞|κ∞,Λ), where M̂∞ =Mn(M∞|�∞), κ∞ is the least inaccessible
cardinal of M̂∞ above �∞, and Λ is a partial iteration strategy for M∞. Here and
belowMn(M̂∞|κ∞,Λ) denotes the canonical fine structural model with n Woodin
cardinals build over the coarse objects M̂∞|κ∞ and Λ. Our proof in fact shows that
HODMn(x)[g] is a model of GCH, �, and other combinatorial principles which are
consequences of fine structure.

In the statement of the following main theorem and in fact everywhere in this
article whenever we write HODM for some premouse M we mean HOD�M�, where
�M� denotes the universe of the model M. In particular, we do not allow the extender
sequence of M as a parameter in the definition of HOD. It will be clear from the
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context if we consider the model M or the universe �M� of M, therefore we decided
for the sake of readability to not distinguish the notation for these two objects.

The main result of this paper is the following theorem.

Theorem 1.1. Let n < � and assume Π1
n+2-determinacy. Then for a Turing cone

of reals x,

HODMn(x)[g] =Mn(M̂∞|κ∞,Λ),

where g is Col(�,<κ)-generic over Mn(x), κ denotes the least inaccessible cardinal
inMn(x), M̂∞ is a direct limit of iterates ofMn+1, �∞ is the least Woodin cardinal
in M̂∞, κ∞ is the least inaccessible cardinal of M̂∞ above �∞, and Λ is a partial
iteration strategy for M∞.

Our proof in fact shows the following corollary.

Corollary 1.2. Assume Π1
n+2-determinacy. Then for a Turing cone of reals x,

HODMn(x)[g] � GCH,

where g is Col(�,<κ)-generic overMn(x) and κ denotes the least inaccessible cardinal
inMn(x).

Remark. In fact the full strength of Π1
n+2-determinacy is not needed for these

results. It suffices to assume that M#
n (x) exists and is �1-iterable for all reals x

(or equivalently Π1
n+1-determinacy, see [8] and [10]) and that M#

n+1 exists and is
�1-iterable. This is all we will use in the proof.

Finally, we summarize some open questions related to these results. The following
question already appears in [23].

Question 1. Assume Δ1
2 determinacy. Is HODL[x] for a cone of reals x a fine

structural model?

Question 2. Assume Π1
n+2 determinacy. Is HODMn(x) for a cone of reals x a fine

structural model?

This article is structured as follows. In Section 2 we recall some preliminaries and
fix the basic notation. In Section 3 we recall the relevant notions from [12] and define
the direct limit system converging to M∞, before we compute HODMn(x)[g] up to
its Woodin cardinal in Section 4. In Section 5 we then show how this can be used to
compute the full model HODMn(x)[g], i.e., we finish the proof of Theorem 1.1.

§2. Preliminaries and notation. Whenever we say reals we mean elements of the
Baire space ��. We also write R for ��. HOD denotes the class of all hereditarily
ordinal definable sets. Moreover HODx for any x ∈ �� denotes the class of all
sets which are hereditarily ordinal definable over {x}.1 That means we let A ∈ ODx
iff there is a formula ϕ such that A = {v | ϕ(v, α1, ... , αn, x)} for some ordinals
α1, ... , αn. Then A ∈ HODx iff TC({A}) ⊂ ODx , where TC({A}) denotes the
transitive closure of the set {A}.

1In the literature this is sometimes also called HOD{x}.
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We use the notions of premice and iterability from [21, Sections 1–4] and assume
that the reader is familiar with the basic concepts defined there. In most cases we will
demand (�,�1, �1)-iterability in the sense of Definition 4.4 in [21] for our mice, but
in other cases or if it is not clear from the context we will state the precise amount
of iterability. We say a cutpoint of a premouse M is an infinite ordinal � such that
there is no extender E on the M-sequence with crit(E) ≤ � ≤ lh(E).2

For some ZFC model M and some real x ∈M we write L[E](x)M for the result
of a fully backgrounded extender construction above x inside M in the sense of
[7], with the minimality condition relaxed to �-small premice. Moreover, we let
for a premouse M with M � ZFC, a cardinal cutpoint 	 of M, and a premouse
N of height 	 such that N ∈ P(M|	) ∩M|(	 + �), PM(N ) denote the result of a
P-construction overN inside the modelM in the sense of [15] or [12, Proposition 2.3
and Definition 2.4].

For x ∈ �� and n ≤ � we let M#
n (x), if it exists, denote a countable, sound,

�1-iterable x-premouse which is not n-small but all of whose proper initial segments
are n-small. In fact, �1-iterability suffices to show that such anM#

n (x) is unique. If
M#
n (x) exists, we letMn(x) be the proper class premouse obtained by iterating the

top extender ofM#
n (x) out of the universe.

§3. The direct limit system. To show that HODMn(x)[g] is a fine structural inner
model, we will use an extension of the direct limit system introduced in [12]. For the
reader’s convenience we will first recall the relevant definitions and results from [12],
obtaining a direct limit system which is definable in Mn(x). We use the chance to
correct some minor errors in the presentation of that direct limit system in [12]. Then
we discuss the changes we need to make to obtain a direct limit system definable in
Mn(x)[g]. Another application of a similar but slightly different direct limit system
as in [12] can be found in [13].

Fix an arbitrary natural number n. Throughout the rest of this article we will
assume thatM#

n+1 exists and is (�,�1, �1)-iterable and fix a real x that codesM#
n+1.

This implies Π1
n+1 determinacy or equivalently thatM#

n (z) exists and is (�,�1, �1)-
iterable for all reals z (see [9] and [8] for a proof of this equivalence due to Neeman
and Woodin). Finally, we fix a Col(�,<κ)-generic g over Mn(x), where κ is the
least inaccessible cardinal inMn(x).

The first direct limit system. We first recall the definition of a lower part premouse.

Definition 3.1. Let a be a countable, transitive, self-wellordered3 set. Then we
define the lower part model Lpn(a) as the model theoretic union of all countable
a-premice M with 
�(M) = a which are n-small, sound, and (�,�1, �1)-iterable.

If N is a countable premouse, we also use Lpn(N ) to denote the premouse
extending N which is defined similarly as the model theoretic union of premice
M�N with 
�(M) ≤ N ∩ Ord which have N ∩ Ord as a cutpoint, are n-small
above N ∩ Ord, sound above N ∩ Ord, and (�,�1, �1)-iterable above N ∩ Ord. In

2Such a cutpoint � is often also called a strong cutpoint.
3We say a transitive set a is self-wellordered iff a is wellordered in L� [a].
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case M�N has a partial measure � with critical point N ∩ Ord, we replace M by
the corresponding translated premouse in which N ∩ Ord is a cutpoint as in [20,
Remark 12.7] in order to include it in Lpn(N ) as well.

Definition 3.2. A countable premouse N is n -suitable iff there is an ordinal �
such that

(1) N � “ ZFC – Replacement” and N ∩ Ord = supi<�(�+i)N ,
(2) N � “� is a Woodin cardinal”,
(3) N is (n + 1)-small,
(4) for every cutpoint � < � of N , � is not Woodin in Lpn(N|�),
(5) N|(�+(i+1))N = Lpn(N|(�+i)N ) for all i < �, and
(6) for all 	 < �, N � “N|� is (�, 	, 	)-iterable.”

If N is an n-suitable premouse we denote the ordinal � from Definition 3.2 by
�N . Moreover, we write N̂ =Mn(N|�N ) for any n-suitable premouse N . Then
N = N̂ |((�N )+�)N̂ for every n-suitable premouse N by well-known properties of
the lower part model Lpn. We now give some definitions indicating how n-suitable
premice can be iterated.

Definition 3.3. Let N be an arbitrary premouse and let T be an iteration tree
on N of limit length.

(1) We say a premouse Q = Q(T ) is a Q -structure for T iff M(T ) �Q, Q is
sound above �(T ), �(T ) is a cutpoint of Q, Q is (�,�1, �1)-iterable above
�(T ), and if Q 
= M(T )

Q � “�(T ) is a Woodin cardinal,”

and
(i) over Q there exists an rΣn-definable set A ⊂ �(T ) such that there is no
κ < �(T ) such that κ is strong up to �(T ) with respect to A as being
witnessed by extenders on the sequence of Q for some n < �, or

(ii) 
n(Q) < �(T ) for some n < �.
(2) Let b be a cofinal well-founded branch through T . Then we say a premouse

Q = Q(b, T ) is a Q -structure for b in T iff Q = MT
b |�, where � ≤ MT

b ∩ Ord
is the least ordinal such that either

� <MT
b ∩ Ord and MT

b |(� + 1) � “�(T ) is not Woodin,”

or

� = MT
b ∩ Ord and 
n(MT

b ) < �(T )

for some n < � or over MT
b there exists an rΣn-definable set A ⊂ �(T ) such

that there is no κ < �(T ) such that κ is strong up to �(T ) with respect to A
as being witnessed by extenders on the sequence of MT

b for some n < �.
If no such ordinal � ≤ MT

b ∩ Ord exists, we let Q(b, T ) be undefined.
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Remark. The premouse Mn+1|(�+�
0 )Mn+1 is n-suitable, where �0 is the least

Woodin cardinal in Mn+1. We denote this premouse by M –
n+1 and write ΣM–

n+1
for its canonical iteration strategy induced by the usual iteration strategy ΣMn+1 for
Mn+1 for countable stacks of normal trees without drops on the main branches.

Our goal is to approximate the iteration strategy ΣM–
n+1

inside HODMn(x)[g].
Analogous to [17, Definition 5.32] we define the following requirement, which will
be used in Definition 3.6 to make the proof of Lemmas 3.8 and 3.9 work.

Definition 3.4. Let N be an n-suitable premouse and let T be a normal iteration
tree onN of length< �V1 . Then we say that T is suitability strict iff for allα < lh(T ),

(i) if [0, α]T does not drop then MT
α is n-suitable, and

(ii) if [0, α]T drops then no R�MT
α is n-suitable.

Definition 3.5. Let N be an n-suitable premouse and let T be a normal iteration
tree on N of length < �V1 .

(1) T is correctly guided iff for every limit ordinal � < lh(T ), if b is the
branch choosen for T � � in T , then Q(b, T � �) exists and Q(b, T � �) �
Mn(M(T � �)).

(2) T is short iff T is correctly guided and in case T has limit length Q(T ) exists
and Q(T ) �Mn(M(T )).

(3) T is maximal iff T is correctly guided and not short.

Definition 3.6. Let N be an n-suitable premouse. We say N is short tree iterable
iff whenever T is a short tree on N ,

(i) T is suitability strict,
(ii) if T has a last model, then every putative4 iteration tree U extending T such

that lh(U) = lh(T ) + 1 has a well-founded last model, and
(iii) if T has limit length, then there exists a cofinal well-founded branch b through

T such that Q(b, T ) = Q(T ).

This can be generalized to stacks of correctly guided normal trees.

Definition 3.7. Let N be an n-suitable premouse and m < �. Then we say
(Ti ,Ni | i ≤ m) is a correctly guided finite stack on N iff

(i) N0 = N ,
(ii) Ni is n-suitable and Ti is a correctly guided normal iteration tree on Ni which

acts below �Ni for all i ≤ m, and
(iii) for every i < m either Ti has a last model which is equal to Ni+1 and the

iteration embedding iTi : Ni → Ni+1 exists or Ti is maximal and Ni+1 =
Mn(M(Ti))|(�(Ti )+�)Mn(M(Ti )).

Moreover, we say that M is the last model of (Ti ,Ni | i ≤ m) iff either

(i) Tm has a last model which is equal to M and the iteration embedding iTm :
Nm → M exists,

4An iteration tree U is a putative iteration tree if U satisfies all properties of an iteration tree, but in
case U has a last model we allow this last model to be ill-founded.
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(ii) Tm is of limit length and short and there is a non-dropping cofinal well-
founded branch b through Tm such that Q(b, T ) exists, Tm�b is correctly
guided, and M = MT

b , or
(iii) Tm is maximal and M =Mn(M(Tm))|(�(Tm)+�)Mn(M(Tm)).

Finally, we say that M is a correct iterate of N iff there is a correctly guided finite
stack on N with last model M. In case there is a correctly guided finite stack on N
with last modelMof length 1, i.e., such thatm = 0, we say thatM is a pseudo-normal
iterate (or just pseudo-iterate) of N .

Analogous to Theorem 3.14 in [23] we also have a version of the comparison
lemma for short tree iterable premice and pseudo-normal iterates.

Lemma 3.8 (Pseudo-comparison lemma). Let N and M be n-suitable premice
which are short tree iterable. Then there is a common pseudo-normal iterateR ∈Mn(y)
such that �R ≤ �Mn(y)

1 , where y is a real coding N and M.

The proof of Lemma 3.8 is similar to the proof of Theorem 3.14 in [23], so we omit
it. Similarly, we have an analogue to the pseudo-genericity iteration (see Theorem
3.16 in [23]).

Lemma 3.9 (Pseudo-genericity iterations). Let N be an n-suitable premouse which
is short tree iterable and let z be a real. Then there is a pseudo-normal iterate R of
N inMn(y, z) such that z is BR-generic over R and �R ≤ �Mn(y,z)

1 , where y is a real
coding N and B

R denotes Woodin’s extender algebra inside R.

For the definition of the direct limit system converging to HOD we need the notion
of s-iterability. To define this, we first introduce some notation. For an n-suitable
premouse N , a finite sequence of ordinals s, and some k < � let

TN
s,k = {(t, �φ�) ∈ [((�N )+k)N ]<� × � | φ is a Σ1-formula and

Mn(N|�N ) � φ[t, s]},

where �φ� denotes the Gödel number of φ. Let HullN1 denote an uncollapsed Σ1

hull in N . Then we let

�Ns = sup(HullN1 ({TN
s,k | k < �}) ∩ �N )

and

HN
s = HullN1 (�Ns ∪ {TN

s,k | k < �}).

Then �Ns = HN
s ∩ �N . For sm = (u1, ... , um) the sequence of the first m uniform

indiscernibles, we write �Nm = �Nsm andHN
m = HN

sm . Then we have that supm∈� �
N
m =

�N (see Lemma 5.3 in [12]).

Definition 3.10. Let N be an n-suitable premouse and s a finite sequence of
ordinals. Then N is s -iterable iff every correct iterate of N is short tree iterable and
for every correctly guided finite stack (Ti ,Ni | i ≤ m) on N with last model M there
is a sequence of non-dropping branches (bi | i ≤ m) and a sequence of embeddings
(�i | i ≤ m) such that

(i) if Ti has successor length α + 1, then bi = [0, α]Ti and �i = iTi0,α is the
corresponding iteration embedding for i ≤ m,
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(ii) if Tm is short, then bm is the unique cofinal well-founded branch through Tm
such that Q(bm, Tm) exists and Tm�bm is correctly guided and �m = iTmbm is
the corresponding iteration embedding,

(iii) if Ti is maximal, then bi is a cofinal well-founded branch through Ti
such that MTi

bi
= Ni+1 if i < m or MTi

bi
= M if i = m, and �i = iTibi is the

corresponding iteration embedding for i ≤ m, and
(iv) if we let � = �m ◦ �m–1 ◦ ··· ◦ �0 then for every k < �,

�(TN
s,k) = TM

s,k .

In this case we say that the sequence �b = (bi | i ≤ m) witnesses s -iterability for
�T = (Ti ,Ni | i ≤ m) or that �b is an s -iterability branch for �T and we write � �T ,�b = �.

Now for every two s-iterability branches for �T on N their corresponding iteration
embeddings agree on HN

s .

Lemma 3.11 (Uniqueness of s-iterability embeddings, Lemma 5.5 in [12]). Let
N be an n-suitable premouse, s a finite sequence of ordinals, and �T a correctly guided
finite stack on N . Moreover let �b and �c be s-iterability branches for �T . Then

� �T ,�b � H
N
s = � �T ,�c � HN

s .

The uniqueness of s-iterability embeddings yields that for every n-suitable, s-
iterable N , every correctly guided finite stack �T on N and every s-iterability branch
�b for �T , the embedding � �T ,�b � HN

s is independent of the choice of �b, but it might

still depend on �T . This motivates the following definition.

Definition 3.12. Let N be an n-suitable premouse and s a finite sequence of
ordinals. Then N is strongly s -iterable iff for every correct iterate R of N , R is
s-iterable and for every two correctly guided finite stacks �T and �U on R with
common last model M and s-iterability witnesses �b and �c for �T and �U respectively,
we have that

� �T ,�b � H
R
s = � �U ,�c � HR

s .

A so-called bad sequence argument shows the following lemma, which yields the
existence of strongly s-iterable premice.

Lemma 3.13 (Lemma 5.9 in [12]). For every finite sequence of ordinals s and any
short tree iterable n-suitable premouse N there is a pseudo-normal iterate M of N
such that M is strongly s-iterable.

If N is strongly s-iterable and �T is a correctly guided finite stack on N with last
model M, let �N ,M,s : HN

s → HM
s denote the embedding given by any s-iterability

branch �b for �T . As N is strongly s-iterable, the embedding �N ,M,s does not depend
on the choice of �T and �b.

Recall that we write M –
n+1 =Mn+1|(�+�

0 )Mn+1 , where �0 is the least Woodin
cardinal inMn+1, and ΣM–

n+1
for the canonical iteration strategy forM –

n+1 induced
by ΣMn+1 . Moreover, recall that for m < �, we write sm for the set of the first m
uniform indiscernibles. Then M –

n+1 is n-suitable and strongly sm-iterable for every
m. Moreover, if �T is a correctly guided finite stack on M –

n+1 with last model M,
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then �M–
n+1,M,sm agrees with the iteration embedding according to ΣM–

n+1
onH

M–
n+1

sm .
The first direct limit system we define will consist of iterates ofM –

n+1.

Definition 3.14. Let

F̃+ = {N | N is a non-dropping iterate ofM –
n+1 via ΣM–

n+1

by a finite stack of countable trees}

and for N ,M ∈ F̃+ let N ≤+ M iff M is an iterate of N via the tail strategy ΣN
as witnessed by some finite stack of countable iteration trees. Then we let M̃+

∞ be
the direct limit of (F̃+,≤+) under the iteration maps.

Remark. The prewellordering ≤+ on F̃+ is directed and the direct limit M̃+
∞ is

well-founded as the limit system (F̃+,≤+) only consists of iterates ofM –
n+1 via the

canonical iteration strategy ΣM–
n+1

.

Since F̃+ is not definable enough for our purposes, we now introduce another
direct limit system which has the same direct limit M̃+

∞.

Definition 3.15. Let

Ĩ = {(N , s) | N is n-suitable, s ∈ [Ord]<�, and N is strongly s-iterable}

and

F̃ = {HN
s | (N , s) ∈ Ĩ}.

For (N , s), (M, t) ∈ Ĩ we let (N , s) ≤Ĩ (M, t) iff there is a correctly guided finite
stack onN with last modelM and s ⊆ t. In this case we let�(N ,s),(M,t) : HN

s → HM
t

denote the canonical corresponding embedding.

Remark. The prewellordering ≤Ĩ on Ĩ is directed: Let (N , s), (M, t) ∈ Ĩ. By
Lemma 3.13 there exists an n-suitable premouse R which is strongly (s ∪ t)-iterable.
Let S be the result of simultaneously comparing N , M and R in the sense of
Lemma 3.8. Then (S, s ∪ t) ∈ Ĩ, (N , s) ≤Ĩ (S, s ∪ t), and (M, t) ≤Ĩ (S, s ∪ t), as
desired.

Definition 3.16. Let M̃∞ be the direct limit of (F̃ ,≤Ĩ) under the embeddings
�(N ,s),(M,t). For (N , s) ∈ Ĩ let �(N ,s),∞ : HN

s → M̃∞ denote the corresponding
direct limit embedding.

The fact that M̃∞ is well-founded follows from the next lemma.

Lemma 3.17 (Lemma 5.10 in [12]). M̃∞ = M̃+
∞.

The second direct limit system. To obtain HOD of some inner model from the
direct limit, we in particular need to show that the direct limit is in fact contained in
HOD of that inner model. In our setting we therefore need to internalize the direct
limit system into the inner model Mn(x)[g] fixed above. We first aim to define a
direct limit system similar to (F̃ ,≤Ĩ) inMn(x) analogous to [12]. In a second step,
we then modify the system to obtain direct limit systems with the same direct limit
which are definable inMn(x)[g].

https://doi.org/10.1017/jsl.2021.61 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.61
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The notion of n-suitability from Definition 3.2 is already internal toMn(x) and
Mn(x)[g], i.e., if N ∈Mn(x)|κ then N is n-suitable in V iff N is n-suitable inMn(x)
by the following lemma.

Lemma 3.18. Let �0 denote the least Woodin cardinal inMn(x).

(1) For all y ∈ VMn(x)[g]
�0

, Lpn(y) ∈ HODMn(x)[g]
y .

(2) VMn(x)
�0

and VMn(x)[g]
�0

are closed under the operation y �→ Lpn(y).

Proof. Let y ∈ VMn(x)[g]
�0

be arbitrary. The model Mn(x)[g] can be organized

as a VMn(x)[g]
κ -premouse and as such it inherits the iterability from Mn(x) and

is in fact equal to Mn(V
Mn(x)[g]
κ ). Consider L[E](y)Mn(x)[g], the result of a fully

backgrounded extender construction above y using extenders from the sequence of
Mn(x)[g] organized as a VMn(x)[g]

κ -premouse, and compare it with Lpn(y). First,
we argue that Lpn(y) does not move. If it would move, the Lpn(y)-side of the
coiteration would have to drop because Lpn(y) does not have any total extenders.
Moreover, it would have to iterate to a proper class model which is equal to an
iterate of L[E](y)Mn(x)[g]. As L[E](y)Mn(x)[g] has n Woodin cardinals, this would
imply that Lpn(y) has a level which is not n-small, contradicting the definition of
Lpn(y).

Therefore, Lpn(y) �R for some iterate R of L[E](y)Mn(x)[g].5 The iteration
from L[E](y)Mn(x)[g] to R resulting from the comparison process can be defined
over L[E](y)Mn(x)[g] from the extender sequence of L[E](y)Mn(x)[g] and a finite
sequence of ordinals as it cannot leave any total measures behind and thus

can only use measures of order 0. Let K(VMn(x)[g]
κ )Mn(VMn (x)[g]

κ ) denote the core
model constructed above VMn(x)[g]

κ inside Mn(V
Mn(x)[g]
κ ), an n-small premouse

with n Woodin cardinals, in the sense of [14]. Then K(VMn(x)[g]
κ )Mn(VMn (x)[g]

κ ) =
Mn(V

Mn(x)[g]
κ ) by [14, Lemma 1.1 (due to Steel)]. Recall that the reorganization of

Mn(x)[g] as a VMn(x)[g]
κ -premouse is equal to Mn(V

Mn(x)[g]
κ ). Hence, the extender

sequence of the VMn(x)[g]
κ -premouse Mn(x)[g] is in ODMn(x)[g]

V
Mn (x)[g]
κ

= ODMn(x)[g].

Therefore Lpn(y) ∈ HODMn(x)[g] by the definability of the L[E]-construction.
For (2), the closure of VMn(x)[g]

�0
follows immediately from (1). For VMn(x)

�0
notice

that for y ∈ VMn(x)
�0

, Lpn(y) ∈ HODMn(x)[g]
y ⊆ HODMn(x)

y by homogeneity of the
forcing. �

By stacking the Lpn-operation, the uniform proof of Lemma 3.18 in fact shows
that for all y ∈ VMn(x)

�0
, Mn(y)|κ0 ∈ HODMn(x)[g]

y , where κ0 denotes the least
measurable cardinal inMn(y).

The definitions of short tree, maximal tree, and correctly guided finite stack we
gave above are internal toMn(x) andMn(x)[g] as well, as they can be defined only
using theLpn-operation. The only notion we have to take care of is s-iterability since

5In fact, it is not hard to see that R = L[E](y)Mn(x)[g] and hence Lpn(y) � L[E](y)Mn(x)[g] but we
will not need this observation.
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it is not even clear how the sets TN
s,k can be identified insideMn(x). This obstacle is

solved by shrinking the direct limit system (F̃ ,≤Ĩ) to a dense subset as follows.

Definition 3.19. Let

G = {N ∈Mn(x)|κ | N is n-suitable andMn(x) � “for some cardinal

cutpoint 	, �N = 	+, N|�N ∈ P(Mn(x)|	+) ∩Mn(x)|(	+ + �),

andMn(x)|	 is generic over N for the �N -generator version of

the extender algebra at �N ”}.
See for example Section 4.1 in [2] for an introduction to the �-generator version of

the extender algebra at some Woodin cardinal �. The following lemma shows how we
can use the fact that N ∈ G to detectMn(N|�N ) insideMn(x). For some premouse
R ∈ G we denote the last model of a P-construction above R|�R performed inside
Mn(x) as introduced in [15] (see also Proposition 2.3 and Definition 2.4 in [12]) by
PMn(x)(R|�R).

Lemma 3.20 (Lemma 5.11 in [12]). Let N ∈Mn(x)|κ be an n-suitable premouse
such that for some cardinal cutpoint 	 < �N of Mn(x), we have that N|�N ∈
P(Mn(x)|	+) ∩Mn(x)|(	+ + �) andMn(x)|	 is generic overN for the �N -generator
version of the extender algebra at �N . Then N ∈ G and

PMn(x)(N|�N ) =Mn(N|�N ).

In particular,Mn(N|�N )[Mn(x)|	] =Mn(x).

Using pseudo-genericity iterations (see Lemma 3.9) we can obtain the following
corollary.

Corollary 3.21. Let N be a short tree iterable n-suitable premouse such that
N ∈Mn(x)|κ. Then there is a correctly guided finite stack on N with last model M
such that M ∈ G and PMn(x)(M|�M) =Mn(M|�M).

Now the following definition of s-iterability agrees with the previous one given in
Definition 3.10 for n-suitable premice in G.

Definition 3.22. For N ∈ G, s ∈ [Ord]<� , and k < � let

TN ,∗
s,k = {(t, �φ�) ∈ [((�N )+k)N ]<� × � | φ is a Σ1-formula and

PMn(x)(N|�N ) � φ[t, s]}.
Then we say for N ∈ G and s ∈ [Ord]<� that Mn(x) � “ N is s-iterable below κ”
iff for every Col(�,<κ)-generic G over Mn(x) and every correctly guided finite
stack �T = (Ti ,Ni | i ≤ m) ∈ HCMn(x)[G ] on N with last model M ∈ G, there is a
sequence of branches �b = (bi | i ≤ m) ∈Mn(x)[G ] and a sequence of embeddings
(�i | i ≤ m) satisfying (i) – (iii) in Definition 3.10 such that if we let � �T ,�b = �m ◦
�m–1 ◦ ··· ◦ �0, then for every k < �,

� �T ,�b(T
N ,∗
s,k ) = TM,∗

s,k .

In addition, we defineMn(x) � “ N is strongly s-iterable below κ” analogous to
Definition 3.12 for all Col(�,<κ)-generic G and stacks �T , �U ∈Mn(x)[G ]. ForN ∈G,
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s ∈ [Ord]<� , andk < �, we haveTN ,∗
s,k = TN

s,k , so we will omit the ∗ forN ∈ G. Using
this, �Ns and HN

s are defined as before. Then we can define the internal direct limit
system as follows.

Definition 3.23. Let

I = {(N , s) | N ∈ G, s ∈ [Ord]<�, and

Mn(x) � “N is strongly s-iterable below κ”}

and

F = {HN
s | (N , s) ∈ I}.

Moreover, for (N , s), (M, t) ∈ I we let (N , s) ≤ (M, t) iff there is a correctly
guided finite stack on N with last model M and s ⊆ t. In this case we let as
before �(N ,s),(M,t) : HN

s → HM
t denote the canonical corresponding embedding.

For clarity, we sometimes write ≤I for ≤. Similar as before we have that for
every N ∈ G and s ∈ [Ord]<� there is a normal correct iterate M of N such that
(M, s) ∈ I. Using the fact that κ is inaccessible and a limit of cutpoints inMn(x)
we can obtain the following lemma.

Lemma 3.24 (Lemma 5.14 in [12]). ≤ is directed.

Therefore we can again define the direct limit.

Definition 3.25. Let M∞ be the direct limit of (F ,≤) under the embeddings
�(N ,s),(M,t). Moreover, let �∞ = �M∞ be the Woodin cardinal in M∞ and �(N ,s),∞ :
HN
s → M∞ be the direct limit embedding for all (N , s) ∈ I.

An argument similar to the one for Lemma 3.17 shows that this direct limit is
well-founded as well. As we will use ideas from this proof in the next section, we
will give some details here. We again first define another direct limit system which
consists of iterates ofM –

n+1 and then show that its direct limit M+
∞ is equal to M∞.

Definition 3.26. Let

F+ = {Q ∈ G | Q is the last model of a correctly guided

finite stack onM –
n+1 via ΣM–

n+1
}.

Moreover, let P ≤+ Q for P ,Q ∈ F+ iff there is a correctly guided finite stack on P
according to the tail strategy ΣP with last model Q. In this case we let iP ,Q : P → Q
denote the corresponding iteration embedding.

Then ≤+ on F+ is directed, so we can define the direct limit.

Definition 3.27. Let M+
∞ be the direct limit of (F+,≤+) under the embeddings

iP ,Q. Moreover, let iQ,∞ : Q → M+
∞ denote the direct limit embedding for

all Q ∈ F+.

Then it is easy to see that M+
∞ is well-founded as F+ only consists of iterates of

M –
n+1 according to the canonical iteration strategy ΣM–

n+1
.

Lemma 3.28 (Lemma 5.15 in [12]). M+
∞ = M∞ and hence M∞ is well-founded.
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Proof. We construct a sequence (Qi | i < �) of iterates ofM –
n+1 such that Qi ∈

F+ for every i < � and (Qi | i < �) is cofinal in G, i.e., for every N ∈ G there is an
i < � such that Qi is the last model of a correctly guided finite stack on N .

In V, fix some sequence (�i | i < �) of ordinals cofinal inκ. We define (Qi | i < �)
together with a strictly increasing sequence (	i | i < �) of cardinal cutpoints of
Mn(x)|κ by induction on i < �. So let Q0 =M –

n+1 and let 	0 < κ be a cardinal
cutpoint ofMn(x). Moreover assume that we already constructed (Qi | i ≤ j) and
(	i | i ≤ j) with the above mentioned properties such that in addition (Qi | i ≤
j) ∈Mn(x)|	j . Let Q∗

j+1 be the result of simultaneously pseudo-comparing (in
the sense of Lemma 3.8) all n-suitable premice M such that M ∈ G ∩Mn(x)|	j .
Then in particular Q∗

j+1 is a normal iterate of Qj according to the canonical tail
iteration strategy ΣQj , but Q∗

j+1 might not be in G. Let � be a cardinal cutpoint of
Mn(x) such that 	j < � < κ and Q∗

j+1 ∈Mn(x)|�. Note that such a � exists as κ
is inaccessible and a limit of cardinal cutpoints inMn(x). Let Qj+1 be the normal
iterate of Q∗

j+1 according to the canonical tail strategy ΣQ∗
j+1

of ΣQj obtained by

Woodin’s genericity iteration such thatMn(x)|� is generic over Qj+1 for the �Qj+1 -
generator version of the extender algebra (see for example Section 4.1 in [2]). Then
Qj+1 ∈ G is as desired. Finally choose 	j+1 < κ such that 	j+1 > max(	j, �j), 	j+1

is a cardinal cutpoint inMn(x) and (Qi | i ≤ j + 1) ∈Mn(x)|	j+1.
Now we define an embedding � : M∞ → M+

∞ as follows. Let x ∈ M∞. Since
(Qi | i < �) is cofinal in G, there are i, m < � such that (Qi , sm) ∈ I and x =
�(Qi ,sm),∞(x̄) for some x̄ ∈ HQi

sm ⊆ Qi . Then we let �(x) = iQi ,∞(x̄).
It follows as in the proof of Lemma 5.10 in [12] that the definition of � does not

depend on the choice of i, m < � and in fact � = id. �

Moreover, it is possible to compute �∞.

Lemma 3.29 (Lemma 5.16 in [12]). �∞ = (κ+)Mn(x).

Direct limit systems in HODMn(x)[g]. Finally, we will argue that M∞ ∈
HODMn(x)[g] by first defining direct limit systems in various premiceM (y) satisfying
certain properties definable in Mn(x)[g] and then showing that the direct limits
MM (y)

∞ are equal to M∞. A similar approach but in a completely different setting
can be found in [13].

In what follows, we will let (K(z))N denote the core model constructed above a
real z inside some n-small model N with n Woodin cardinals in the sense of [14], i.e.,
the core modelK(z) is constructed between consecutive Woodin cardinals. Lemma
1.1 in [14] (due to Steel) implies that (K(x))Mn(x) =Mn(x). We will use this fact
and consider more arbitrary premice with this property in what follows. We state
the following definitions in V, but we will later apply them insideMn(x)[g].

Definition 3.30. Let y ∈ �� ∩Mn(x)[g]. Then we say y is pre-dlm-suitable iff
there is a proper class y-premouseM (y) satisfying the following properties.

(i) M (y) is n-small and has n Woodin cardinals,
(ii) the least inaccessible cardinal inM (y) is κ,
(iii) M (y) = (K(y))M (y), and
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(iv) there is a Col(�,<κ)-generic h overM (y) such that

M (y)[h] =Mn(x)[g].

We also call such a y-premouseM (y) pre-dlm-suitable and say thatM (y) witnesses
that y is pre-dlm-suitable.

Using this, we can define a version of the direct limit system F inside arbitrary
pre-dlm-suitable y-premiceM (y).

Definition 3.31. Let y ∈ �� be pre-dlm-suitable as witnessed by M (y). Then
we let

GM (y) = {N ∈M (y)|κ | N is n-suitable andM (y) � “for some cardinal

cutpoint 	, �N = 	+, N|�N ∈ P(M (y)|	+) ∩M (y)|(	+ + �),

andM (y)|	 is generic over N for the �N -generator version of

the extender algebra at �N ”}.

Analogous as before, we can now define when for an n-suitable premouse N ,
M (y) � “N is strongly s-iterable below κ” by referring to PM (y)(N|�N ) in the
definition of (TN ,∗

s,k )M (y). Let �N ,M (y)
s andHN ,M (y)

s be defined analogous to �Ns and

HN
s insideM (y) using (TN ,∗

s,k )M (y). ForM (y) =Mn(x) and N ∈ G this agrees with
our previous definition of strong s-iterability.

Definition 3.32. Let y ∈ �� be pre-dlm-suitable as witnessed by M (y). Then
we let

IM (y) = {(N , s) | N ∈ GM (y), s ∈ [Ord]<�, and

M (y) � “N is strongly s-iterable below κ”}

and

FM (y) = {HN ,M (y)
s | (N , s) ∈ IM (y)}.

Moreover, for (N , s), (M, t) ∈ IM (y) we let (N , s) ≤IM (y) (M, t) iff there is a
correctly guided finite stack on N with last model M and s ⊆ t. In this
case we let �M (y)

(N ,s),(M,t) : HN ,M (y)
s → HM,M (y)

t denote the canonical corresponding

embedding. Finally, letMM (y)
∞ denote the direct limit of (FM (y),≤IM (y) ) under these

embeddings.

We will now strengthen this and define when a real y ∈ �� (or a y-premouse
M (y)) is dlm-suitable.

Definition 3.33. Let y ∈ �� ∩Mn(x)[g] be pre-dlm-suitable as witnessed by
some y-premouseM (y). We say that y is dlm-suitable (witnessed byM (y)) iff

(i) for every s ∈ [Ord]<� there is a premouse N such that (N , s) ∈ IM (y) and
(ii) for every N ∈ GM (y),

PM (y)(N|�N ) = KMn(x)[g](N|�N ).

Lemma 3.34. Mn(x) witnesses that x is dlm-suitable.
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Proof. The fact thatMn(x) satisfies (i) follows from Lemma 3.13 and Corollary
3.21, so we only have to show (ii). Let N ∈ G. Then PMn(x)(N|�N ) =Mn(N|�N ) by
Lemma 3.20. Moreover, there is some G generic over the result of theP-construction
PMn(x)(N|�N ) for the �N -generator version of the extender algebra at �N with
PMn(x)(N|�N )[G ] =Mn(x). That means

Mn(N|�N )[G ] =Mn(x).

Now,

KMn(x)[g](N|�N ) = KMn(N|�N )[G ][g](N|�N ) = KMn(N|�N )(N|�N )

=Mn(N|�N ) = PMn(x)(N|�N ),

by generic absoluteness of the core model and Lemma 1.1 in [14] (due to Steel). �
Condition (ii) in Definition 3.33 will ensure that for any dlm-suitable y-premouse

M (y) and (N , s), (M, t) ∈ I ∩ IM (y) with (N , s) ≤I (M, t) and (N , s) ≤IM (y)

(M, t), the induced embeddings �(N ,s),(M,t) and �M (y)
(N ,s),(M,t) agree. Hence we can

show in the following lemma that the direct limit MM (y)
∞ defined inside some dlm-

suitableM (y) will in fact be the same as the direct limit M∞ defined insideMn(x).

Lemma 3.35. Let y ∈ �� be dlm-suitable as witnessed byM (y). ThenF andFM (y)

have cofinally many points in common and M∞ = MM (y)
∞ .

Proof. Let h be Col(�,<κ)-generic overM (y) such thatM (y)[h] =Mn(x)[g].
Let (N , s) ∈ I and (N ′, s ′) ∈ IM (y). We aim to show that there is some (M, t) ∈
I ∩ IM (y) such that (N , s) ≤I (M, t) and (N ′, s ′) ≤IM (y) (M, t). As condition (ii)
in Definition 3.33 yields that the embeddings associated to F and FM (y) agree, this
suffices to show that M∞ = MM (y)

∞ .
Let t = s ∪ s ′. By assumption, there is a t-iterable premouse R in Mn(x) and a

t-iterable premouse R′ inM (y). Therefore we can assume that N and N ′ are both
t-iterable in Mn(x) and M (y) respectively as we can replace them by the result of
their coiteration with R and R′ respectively.

By the choice ofM (y) and generic absoluteness of the core model we have

M (y) = (K(y))M (y) = (K(y))M (y)[h] (1)

= (K(y))Mn(x)[g] = (K(y))Mn(x)[g��],

where � < κ is such that y ∈Mn(x)[g � �]. Analogously, using Lemma 1.1 in [14]
due to Steel and generic absoluteness of the core model again,

Mn(x) = (K(x))Mn(x) = (K(x))Mn(x)[g] (2)

= (K(x))M (y)[h] = (K(x))M (y)[h��′],

where �′ < κ is such that x ∈M (y)[h � �′]. Now we can obtain the following claim.

Claim 1. M (y) and Mn(x) have cofinally many common cardinal cutpoints
below κ.

Proof. As M (y) = K(y)Mn(x)[g��] is an inner model of Mn(x)[g � �], every
cardinal above � in Mn(x) is a cardinal in M (y), so it is easy to find cofinally

https://doi.org/10.1017/jsl.2021.61 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.61
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many common cardinals of M (y) and Mn(x) below κ. Recall that κ is the least
inaccessible cardinal of bothM (y) andMn(x). Therefore, every common cardinal
ofM (y) andMn(x) below κ is also a cutpoint of both models. �

Moreover, Equations (1) and (2) yield

M (y) ⊆Mn(x)[g � �] ⊆M (y)[h � �],
where �′ < � < κ is such that g � � ∈M (y)[h � �]. By the intermediate model
theorem (see for example Lemma 15.43 in [4]) this implies that Mn(x)[g � �] is
a generic extension ofM (y) for a forcing of size less than κ.6 SinceMn(x)[g � �] is
a generic extension ofMn(x) for a forcing of size less than κ as well, this implies by
Theorem 1.3 in [24] that there is some common inner modelW ⊆Mn(x) ∩M (y)
such thatMn(x)[g � �] is a generic extension of W for a forcing of size less than κ.

As every generic extension via a forcing of size less than κ can be absorbed by the
collapse of some ordinal � < κ, this yields that we can fix some ordinal � < κ and
some Col(�, �)-generic b ∈Mn(x)[g] over W such that x, y,N ,N ′ ∈W [b]. Then
Mn(x) andM (y) exist inW [b] as definable subclasses because

(K(x))W [b] = (K(x))Mn(x)[g��] = (K(x))Mn(x) =Mn(x)

and similarly

(K(y))W [b] = (K(y))Mn(x)[g��] = (K(y))Mn(x)[g] = (K(y))M (y)[h] =M (y)

by generic absoluteness of the core model again. Let ẋ, ẏ, Ṅ and Ṅ ′ be Col(�, �)-
names for x, y,N and N ′ in W. Moreover, let p ∈ Col(�, �) force all properties we
need about ẋ, ẏ, Ṅ and Ṅ ′. For q ≤Col(�,�) p let bq be the Col(�, �)-generic filter
over W such that

⋃
bq agrees with q on dom(q) and with

⋃
b everywhere else.

Now we construct (M, t) ∈ I ∩ IM (y). Let 	 < κ be a cardinal cutpoint of
both M (y) and Mn(x) such that �, �′ < 	, which exists by Claim 1. Then in fact
(	+)Mn(x) = (	+)M (y) as by Equations (1) and (2) at the beginning of the proof

(	+)M (y) ≤ (	+)Mn(x)[g��] = (	+)Mn(x) ≤ (	+)M (y)[h��′] = (	+)M (y).

By the same argument, (	+)K(ẋbq ) = (	+)K(ẏbq ) for all q ≤Col(�,�) p.
Work in W [b]. Using Lemmas 3.8 and 3.9, we obtain an inner model M

by pseudo-comparing all (Ṅ )bq and (Ṅ ′)bq for q ≤Col(�,�) p and simultaneously
pseudo-genericity iterating such thatK(ẋbq )|	 andK(ẏbq )|	 are generic overM and
�M = (	+)K(ẋbq ) = (	+)K(ẏbq ). Since M is definable inW [b] from {bq | q ≤Col(�,�)
p} and parameters from W, we have that in fact M ∈W ⊆Mn(x) ∩M (y), as M
does not depend on the choice of the generic b. Moreover, M is a correct iterate of
N inMn(x) and a correct iterate of N ′ inM (y).

As argued above, we can assume that N and N ′ are t-iterable inMn(x) andM (y)
respectively for t = s ∪ s ′. Therefore M is t-iterable in both, Mn(x) and M (y).
Hence, (M, t)∈I ∩IM (y), (N , s)≤I (M, t), and (N ′, s ′) ≤IM (y) (M, t), as desired.

�

6I.e.,M (y) is a ground ofMn(x)[g � �]. See for example [3] or [24] for an introduction to the theory
of grounds.
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This yields that M∞ ∈ HODMn(x)[g].

§4. HOD below �∞. In this section we will show that HODMn(x)[g] andM∞ agree
up to �∞ by generalizing the arguments in Section 3.4 in [23]. We show a version of
Woodin’s derived model resemblance for our setting. For this, we do not need to talk
about generic extensions such asM (y)[h] and work withM (y) directly instead.

We start with expanding our direct limitM∞ to the proper class premouseM̂∞ =
Mn(M∞|�∞) and define a direct limit system F̂ of expansions of the elements of
F that converges to M̂∞. For an n-suitable premouse N and s ∈ [Ord]<� with
max(s) a uniform indiscernible above the Woodin cardinals in Mn(N|�N ), we let
N̂ =Mn(N|�N ) be the proper class expansion of N , s– = s \max(s),

�N̂s = sup(Hull N̂ |max(s)
1 (s–) ∩ �N ),

and

H N̂
s = Hull N̂ |max(s)

1 (�N̂s ∪ s–).

Now we let

F̂ = {H N̂
s | (N , s) ∈ I}

and for (N , s), (M, t) ∈ I with (N , s) ≤ (M, t) we let �̂(N ,s),(M,t) : H N̂
s → HM̂

t

denote the canonical corresponding embedding extending �(N ,s–),(M,t–).
Finally, let M̂∞ be the direct limit of (F̂ ,≤) under the embeddings �̂(N ,s),(M,t)

and let �̂(N ,s),∞ : H N̂
s → M̂∞ for (N , s) ∈ I denote the direct limit embedding.

Then it is easy to see that Mn(M∞|�∞) = M̂∞ as we can define a similar direct
limit system F̂+ of premice expanding the n-suitable premice in F+.

Choose for any ordinal α an arbitrary (N , s) ∈ I such that α ∈ s \max(s) and
let α∗ = �̂(N ,s),∞(α). Note that the value of α∗ does not depend on the choice of
(N , s). We also let t∗ = {α∗ | α ∈ t} for t ∈ [Ord]<� .

Lemma 4.1. Let N be an n-suitable premouse and s ∈ [Ord]<� such that (N , s) ∈
I. Let �̄ < �Ns , � = �(N ,s),∞(�̄) and t ∈ [Ord]<� . Moreover, letϕ(v0, v1) be a formula
in the language of premice, i.e., we allow the extender sequence as a predicate. Then
the following are equivalent.

(a) Mn(M∞|�∞) � ϕ(�, t∗) and
(b) in Mn(x)[g], there is some dlm-suitable y ∈ �� witnessed by M (y) with

(N , s) ∈ IM (y) and a correctly guided finite stack on N with last model
M ∈M (y) such that whenever R ∈ GM (y) is the last model of a correctly
guided finite stack on M, then PM (y)(R|�R) � ϕ(�M (y)

(N ,s),(R,s)(�̄), t).

Proof. To prove that (a) implies (b) we assume toward a contradiction that
(b) is false. So in Mn(x)[g] for all dlm-suitable y ∈ �� and M (y) witnessing this
with (N , s) ∈ IM (y) and all correctly guided finite stacks on N with last model
M ∈M (y), there is a correctly guided finite stack on M with last model R ∈ GM (y)

such that PM (y)(R|�R) � ¬ϕ(�M (y)
(N ,s),(R,s)(�̄), t).
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We can assume without loss of generality that N ∈Mn(x) is the last model of
a correctly guided finite stack on M –

n+1 via the canonical iteration strategy ΣM–
n+1

and strongly s-iterable below κ. Moreover, we can assume thatmax(s) is a uniform
indiscernible. If this is not already the case, we replace N by a pseudo-iterate of the
result of the pseudo-comparison of N withM –

n+1 using Lemma 3.8 and Corollary
3.21.

Claim 1. There are n-suitable premice Nk ∈ F+ for k < � which are cofinal in F+

such that N0 = N and for all k < �,

Mn(Nk |�Nk ) � ¬ϕ(�̄k , t),

where �̄k = iN0,Nk (�̄) is the image of �̄ under the iteration map induced by ΣM–
n+1

.

Proof. Let (Qi | i < �) be an enumeration of F+ and N0 = N . Then we
construct Nk+1 inductively. So assume that we already constructed Nk and pseudo-
coiterate Nk with Qk to some model N ∗

k (see Lemma 3.8). By assumption (b)
is false, so let R be a counterexample witnessing this for N ∗

k and the dlm-
suitable premouse Mn(x). That means R ∈ G is the last model of a correctly
guided finite stack on N ∗

k such that Mn(R|�R) = PMn(x)(R|�R) � ¬ϕ(iN ,R(�̄), t)
as iN ,R � HN

s = �(N ,s),(R,s). But R ∈ F+ since R ∈ G and it is a correct iterate of
Qk . Thus we can let Nk+1 = R. �

Since (Nk | k < �) is cofinal in F+, it follows that the direct limit of
(Nk, iNk ,Nl | k < l < �) is equal to M+

∞. Let N̂k =Mn(Nk |�Nk ) and let îN̂k ,∞ :

N̂k →Mn(M+
∞|�M+

∞) = M̂+
∞ be the corresponding extension of the direct limit

map iNk ,∞. Then we have for all sufficiently large k that

Mn(M+
∞|�M+

∞) � ¬ϕ(iNk ,∞(�̄k), îN̂k ,∞[t]).

Since we assumed that N is strongly s-iterable below κ and �̄ < �Ns , it follows that
iNk ,∞(�̄k) = iN ,∞(�̄) = �(N ,s),∞(�̄) = � as �̄k = iN ,Nk (�̄).

Let k < � be large enough such that (Nk, s ∪ t) ∈ I and îN̂l ,N̂l+1
(s ∪ t) = s ∪ t

for all l ≥ k. Such a k exists by a so-called bad sequence argument similar to the
one in the proof of Lemma 5.8 in [12].

Consider the map

�̂ :Mn(M∞|�∞) = M̂∞ → M̂+
∞ =Mn(M+

∞|�M+
∞)

which is the canonical extension of the map � : M∞ → M+
∞ defined in the proof

of Lemma 3.28. That means, for x ∈ M̂∞, say x = �̂(Nl ,r),∞(x̄) for some x̄ ∈ H N̂l
r ,

we may assume similar as above that l ≥ k is large enough such that (Nl , r) ∈ I
and îN̂j ,N̂j+1

(r) = r for all j ≥ l . Then we let �̂(x) = îN̂l ,∞(x̄). Now it follows from

a generalization of the proof of [16, Claim 2] that �̂ = id. Moreover, we have that
�̂[t∗] = �̂(�̂(Nk ,s∪t),∞[t]) = îN̂k ,∞[t]. Therefore pulling back under �̂ yields that

Mn(M∞|�∞) � ¬ϕ(�, t∗).

This is the desired contradiction to (a).
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To show that (b) implies (a) we now assume that (b) is true. Let M (y) be the
dlm-suitable premouse with (N , s) ∈ IM (y) given by (b). As before we can assume
without loss of generality thatN is the last model of a correctly guided finite stack on
M –
n+1 via the canonical iteration strategy ΣM–

n+1
, that N is strongly s-iterable below

κ with respect to branches chosen by ΣM–
n+1

, thatmax(s) is a uniform indiscernible,

and that N ∈ G ∩ GM (y) using Lemma 3.35.

Claim 2. There are n-suitable premice Nk ∈ F+ for k < � which are cofinal in F+

such that N0 = N and for all k < �,

Mn(Nk |�Nk ) � ϕ(�̄k , t),

where �̄k = iN0,Nk (�̄) is the image of �̄ under the iteration map induced by ΣM–
n+1

.

Proof. By the proof of Lemma 3.35, we can pick a sequence (Qi | i < �) of
premice cofinal inF+ such thatQi ∈ FM (y) for all i < �. LetN0 = N and construct
Nk+1 ∈M (y) inductively. Assume that we already constructed Nk and let M ∈
M (y) be the last model of a correctly guided finite stack on N witnessing that
(b) is true. Simultaneously pseudo-coiterate M with Nk and Qk to some premouse
N ∗
k . Using genericity iterations and Lemma 3.35, there is a pseudo-iterate R of

N ∗
k such that R ∈ G ∩ GM (y) (see also Corollary 3.21). In particular, we have by

dlm-suitability ofM (y) that

PM (y)(R|�R) = KMn(x)[g](R|�R) = KMn(R|�R)[G ][g](R|�R)

= KMn(R|�R)(R|�R) =Mn(R|�R)

for some G generic over Mn(R|�R) for the extender algebra and therefore
Mn(R|�R) � ϕ(iN ,R(�̄), t) using (b) as iN ,R(�̄) = �(N ,s),(R,s)(�̄) = �M (y)

(N ,s),(R,s)(�̄).
Moreover, R is the last model of a correctly guided finite stack on Qk and thus
R ∈ F+, so we can let Nk+1 = R. �

As before we can use this claim to obtain that

Mn(M∞|�∞) � ϕ(�, t∗),

which proves (a). �

Let κ∞ be the least inaccessible cardinal above �∞ in M̂∞ =Mn(M∞|�∞) and
fix some H which is Col(�,<κ∞)-generic over M̂∞. Then Lemma 4.1 implies for
example that M̂∞[H ] andMn(x)[g] are elementary equivalent (for formulae in the
language of set theory) as for R as in the statement of Lemma 4.1, there is some
Col(�,<κR)-generic G, where κR is the least inaccessible cardinal above �R in
PM (y)(R|�R), such that PM (y)(R|�R)[G ] =Mn(x)[g].

We defined a direct limit system FM (y) for all dlm-suitable M (y) in Mn(x)[g].
Therefore, there is a direct limit system F∗,M (y) with the same properties for each
dlm-suitableM (y) in M̂∞[H ] (adapting the definition of dlm-suitable to M̂∞[H ]).
It is easy to see that Lemma 4.1 implies that for each s ∈ [Ord]<� there is a ys such
that M∞ ∈ GM (ys ) and M∞ is strongly s∗-iterable inM (ys) in M̂∞[H ]. In fact, the
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direct limit embedding (�M (ys )
(M∞,s∗),∞)F

∗,M (ys )
in the system F∗,M (ys ) is independent

of the choice of ys and we can consider

�∞ =
⋃{(

�M (ys )
(M∞,s∗),∞

)F∗,M (ys )

| s ∈ [Ord]<� and ys is such that

M∞ ∈ GM (ys ) and M∞ is strongly s∗-iterable inM (ys) in M̂∞[H ]

}
.

Lemma 4.2. For all 	 < �∞ we have that �∞(	) = 	∗.

Proof. This is again a consequence of Lemma 4.1. Consider the dlm-suitable
premouseMn(x). Let 	 = �(N ,s),∞(	̄) for some (N , s) ∈ I and 	̄ < �Ns and consider
the formula

ϕ(v0, v1, v2, v3) = “1 �Col(�,<κ∗) for all dlm-suitable y with v0 ∈ GM (y),

we have (v0, v1) ∈ IM (y), v2 < �
v0,M (y)
v1 , and �M (y)

(v0,v1),∞(v2) = v3,′′

where κ∗ refers to the least inaccessible cardinal above the least Woodin cardinal
of the current model. Recall that for any dlm-suitable y and z witnessed by M (y)
and M (z), for any (N , s), (M, t) ∈ IM (y) ∩ IM (z) with (N , s) ≤IM (y) (M, t) and

(N , s) ≤IM (z) (M, t) the induced embeddings �M (y)
(N ,s),(M,t) and �M (z)

(N ,s),(M,t) agree.
Hence, in Mn(x)[g], we have for every R ∈ G which is the last model of a
correctly guided finite stack on N that for all dlm-suitable y such that R ∈ GM (y),
in fact (R, s) ∈ IM (y), �(N ,s),(R,s)(	̄) < �

R,M (y)
s , and �M (y)

(R,s),∞(�(N ,s),(R,s)(	̄)) = 	.

Therefore, PM (y)(R|�R) � ϕ(R, s, �(N ,s),(R,s)(	̄), 	). So Lemma 4.1 yields that
M̂∞ � ϕ(M∞, s

∗, 	, 	∗). So in M̂∞[H ], for all dlm-suitable y with M∞ ∈ GM (y),
we have (M∞, s

∗) ∈ IM (y) and (�M (y)
(M∞,s∗),∞)F

∗,M (y)(	) = 	∗, as desired. �

Theorem 4.3. VHODMn (x)[g]

�∞ = VM∞
�∞

.

Proof. By the internal definition ofM∞ from Lemma 3.35 we have thatVM∞
�∞

⊆
VHODMn (x)[g]

�∞ . For the other inclusion we first show the following claim.

Claim 1. �∞ � α ∈ M̂∞ for all α < �∞.

Proof. As α < �∞, there exists an s ∈ [Ord]<� and a dlm-suitable ys such that,
in M̂∞[H ], M∞ ∈ GM (y) and α < �M∞,M (ys )

s∗ . We have by definition that �∞ �
α = (�M (ys )

(M∞,s∗),∞)F
∗,M (ys ) � α. As (�M (ys )

(M∞,s∗),∞)F
∗,M (ys ) � α does not depend on

the choice of ys , this implies �∞ � α ∈ HODM̂∞[H ]
M∞ and thus �∞ � α ∈ M̂∞ by

homogeneity of the forcing P = Col(�,<κ∞). �

Now let A ∈ VHODMn (x)[g]

�∞ be arbitrary. Let α < �∞ be such that A ⊂ α is defined
over Mn(x)[g] by a formula ϕ with ordinal parameters from t ∈ [Ord]<� and let
� < α be arbitrary. That means � ∈ A iffMn(x)[g] � ϕ(�, t). Lemma 4.1 yields that
this is the case iff M̂∞[H ] � ϕ(�∗, t∗). Since � < α < �∞, we have that �∗ = �∞(�)
by Lemma 4.2. Moreover, we have by Claim 1 that �∞ � α ∈ M̂∞. Therefore, it
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follows by homogeneity of the forcing P = Col(�,<κ∞) that A ∈ M̂∞ since t∗ is a
fixed parameter in M̂∞. Thus A ∈ VM∞

�∞
, as desired. �

§5. The full HOD in Mn(x)[g]. To compute the full model HODMn(x)[g], i.e.,
prove Theorem 1.1, we first show the following lemma. Recall that �Mn(x)[g]

2 = �∞.

Lemma 5.1. HODMn(x)[g] =Mn(A) for some set A ⊆ �Mn(x)[g]
2 with A ∈

HODMn(x)[g].

Proof. Let V denote the Vopěnka algebra inMn(x)[g] for making a real generic
over HODMn(x)[g]. By Vopěnka’s theorem (see for example Theorem 15.46 in [4]
or Theorem 9.0.1 in [6]) there is a V-generic Gx over HODMn(x)[g] such that x ∈
HODMn(x)[g][Gx ] and in fact HODMn(x)[g][Gx ] = HODMn(x)[g]

x .

Claim 1. There is some Ṽ ∈ HODMn(x)[g] which is isomorphic to V and a subset of
�Mn(x)[g]

2 .7

Proof. Work in Mn(x)[g]. Each real, i.e., element of P(�), can be coded by a
countable ordinal and each set of reals can be coded by an ordinal < �2. Forcing
with the Vopěnka algebra V is �2-c.c. in Mn(x)[g] as otherwise there would be
an �2 sequence of pairwise distinct non-empty sets of reals, contradicting CH.
The Vopěnka algebra is in HODMn(x)[g] and when considering HODMn(x)[g][Gx ]
cardinals ≥ (κ+)Mn(x) are preserved. Since (κ+�)Mn(x) is below the least measurable
cardinal of Mn(x), Mn(x)|(κ+�)Mn(x) can be written as the Lpn-stack of height
(κ+�)Mn(x) above x and is therefore by the argument in Lemma 3.18 an element
of HODMn(x)[g]

x = HODMn(x)[g][Gx ]. But the Vopěnka algebra is a subset of some

ordinal α < (κ++)Mn(x) = (κ++)HODMn (x)[g][Gx ] = (κ++)HODMn (x)[g]
, so there is some

Ṽ ∈ HODMn(x)[g] which is isomorphic to V and a subset of (κ+)Mn(x). �
For the rest of this proof we write V for the Ṽ from the previous claim and show

thatMn(V) = HODMn(x)[g].

Claim 2. Gx is V-generic overMn(V).

Proof. The dense sets in question are elements of P(V)Mn(V) and hence elements
ofLpn(V)=

⋃
{N |N is a countable V-premouse with 
�(N )=V which is n-small,

sound, and (�,�1, �1)-iterable}. As V ∈ HODMn(x)[g], Lemma 3.18 yields that
Lpn(V) ∈ HODMn(x)[g], which implies the claim. �

Let � be the least inaccessible ofMn(x) above κ.

Claim 3. VMn(x)
� = VMn(V)[Gx ]

� and � is a cardinal inMn(V)[Gx ].

Proof. Write κMn(x)
0 and κMn(V)

0 for the least measurable cardinal ofMn(x) and
Mn(V) respectively.Mn(V) andMn(V)[Gx ] have the same least measurable cardinal.
The proof of Lemma 3.18 shows that Lpn(z) ∈Mn(V)[Gx ] for any z ∈ VMn(V)[Gx ]

�0
,

7We would like to thank the anonymous referee for pointing out that this was overlooked in an earlier
version of this article and for suggesting the argument we provide here.
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where �0 denotes the least Woodin cardinal inMn(V)[Gx ]. AsMn(x)|κMn(x)
0 is equal

to the Lpn-stack of height κMn(x)
0 over x, it follows that

Mn(x)|κMn(x)
0 ⊆Mn(V)[Gx ].

Analogously,Mn(V)|κMn(V)
0 ⊆Mn(x) and in fact

Mn(V)[Gx ]|κMn(V)
0 ⊆Mn(x).

We are left with showing that � < κMn(V)
0 (as � < κMn(x)

0 is obvious). So suppose

toward a contradiction that � ≥ κMn(V)
0 . Then

VMn(V)[Gx ]

κ
Mn (V)
0

= VMn(x)

κ
Mn (V)
0

.

Therefore, κMn(V)
0 is not only a limit of inaccessible cardinals inMn(V)[Gx ] but also

inMn(x), contradicting our assumption that � ≥ κMn(V)
0 . �

Claim 4. VMn(V)
� ⊆ HODMn(x)[g].

Proof. This follows from the proof of Lemma 3.18 asMn(V)|� can be obtained
as the Lpn-stack of height � over V and V ∈ HODMn(x)[g]. �

Now we can show that the lemma holds below �.

Claim 5. VMn(V)
� = VHODMn (x)[g]

� .

Proof. We first show that VMn(V)
� [Gx ] = VHODMn (x)[g]

� [Gx ]. The inclusion ⊆
follows from Claim 4. For the other inclusion we have that

HODMn(x)[g][Gx ] = HODMn(x)[g]
x ⊆ HODMn(x)

x ⊆Mn(x),

using the homogeneity and ordinal definability of the forcing Col(�,<κ). Therefore
by Claim 3

VHODMn (x)[g]

� [Gx ] ⊆ VMn(x)
� = VMn(V)

� [Gx ].

Finally, we argue that the equality VMn(V)
� [Gx ] = VHODMn (x)[g]

� [Gx ] also holds true

without adding the generic Gx . As by Claim 4 we have VMn(V)
� ⊆ VHODMn (x)[g]

� , we
are again left with proving the other inclusion. Let P = V× Col(�,<κ). Then

(Gx, g) is P-generic over both VMn(V)
� and VHODMn (x)[g]

� , and VMn(V)
� [Gx, g] =

VHODMn (x)[g]

� [Gx, g]. Let a ∈ VHODMn (x)[g]

� be a set of ordinals. Then there is aP-name

�∈VMn(V)
� such that �(Gx,g) =a. This is forced overVHODMn (x)[g]

� , i.e., there is a p ∈ P

such that VHODMn (x)[g]

� � “p � � = ǎ.” Thus VMn(V)
� can compute the elements of a

using the forcing relation for P below p. Hence a ∈ VMn(V)
� , as desired. �

Now we are able to extend Claim 3 to the full models.

Claim 6. Mn(V)[Gx ] =Mn(x).

Proof. Consider Mn(x)[g] as a VMn(x)[g]
� -premouse and note that it equals

Mn(V
Mn(x)[g]
� ). We use PMn(x)[g](Mn(V)|�) to denote the result of a P-construction
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in the sense of [15] above Mn(V)|� inside the VMn(x)[g]
� -premouse Mn(x)[g].

By Claim 3, VMn(V)
� [Gx ] = VMn(x)

� , so VMn(V)
� [Gx ][g] = VMn(x)[g]

� and this P-
construction is well-defined. Moreover, the following argument shows that the
construction never projects across �.

Assume toward a contradiction that there is a level P of the P-construction
above Mn(V)|� inside Mn(x)[g] such that 
�(P) = 
 < �. That means there is an
rΣk+1(P)-definable set a ⊆ 
 for some k < � such that a /∈ P . As by the proof of
Claim 4, Mn(V)|� ∈ HODMn(x)[g] it follows by definability of the P-construction
and of the extender sequence of Mn(V

Mn(x)[g]
� ) (see Lemma 1.1 in [14] due to

J. Steel) that P ∈ HODMn(x)[g]. This means that in particular a ∈ HODMn(x)[g]. But

a ⊆ 
 < � and by Claim 5, VHODMn (x)[g]

� = VMn(V)
� = VP

� , so a ∈ P . Contradiction.
Now it follows by construction (see [15]) that

PMn(x)[g](Mn(V)|�)[Gx ][g] =Mn(x)[g].

But this yields that PMn(x)[g](Mn(V)|�)[Gx ] =Mn(x), without adding the generic
g, by an argument as the one at the end of the previous claim. Moreover,
PMn(x)[g](Mn(V)|�) =Mn(V) and thusMn(V)[Gx ] =Mn(x), as desired. �

This argument also shows the following claim.

Claim 7. Mn(V) ⊆ HODMn(x)[g].

Now, the next claim follows from the first half of the proof of Claim 5.

Claim 8. Mn(V)[Gx ] = HODMn(x)[g][Gx ].

Finally, the statement of Claim 8 also holds true without adding the generic Gx
by the argument at the end of the proof of Claim 5. HenceMn(V) = HODMn(x)[g],
as desired. �

Corollary 5.2. Let F (s) = s∗ for s ∈ [Ord]<� . Then

HODMn(x)[g] =Mn(M∞|�∞, F � �∞).

Proof. Note that M∞|�∞ and F � �∞ are elements of HODMn(x)[g] by
construction. Let 	 = supF ”�∞ and let � be the least inaccessible cardinal of
Mn(M∞|�∞, F � �∞) above 	. Let A ⊆ �Mn(x)[g]

2 be as in the statement of Lemma
5.1, i.e., such that HODMn(x)[g] =Mn(A). Moreover, let ϕ be a formula defining A,
i.e., � ∈ A iffMn(x)[g] � ϕ(�). Then, as F (�) = �∞(�) for � < �∞ by Lemma 4.2,

� ∈ A iffMn(M∞|�∞) � “1 �P ϕ(�∞(�)),where �∞ is the direct limit

embedding from the systems on M∞”

forP = Col(�,<κ∞). ConsiderL[E](M∞|�∞)Mn(M∞|�∞,F ��∞), the result of a fully
backgrounded extender construction in the sense of [7] inside Mn(M∞|�∞, F �
�∞) aboveM∞|�∞. The premiceMn(M∞|�∞) andL[E](M∞|�∞)Mn(M∞|�∞,F ��∞)

successfully compare to a common proper class premouse without drops on the main
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branches. Since the iterations take place above �∞, � < �∞ is not moved and we
have by elementarity

� ∈ A iff L[E](M∞|�∞)Mn(M∞|�∞,F ��∞) � “1 �P ϕ(�∞(�)),where �∞
is the direct limit embedding from the systems on M∞.”

Therefore it follows that A ∈Mn(M∞|�∞, F � �∞).
By the same argument as in the proof of Claim 3 in the proof of Lemma 5.1 we

now obtain that � is also the least inaccessible cardinal above 	 ofMn(A) and the
universes ofMn(M∞|�∞, F � �∞) andMn(A) agree up to �. In particular, we can
rearrangeMn(M∞|�∞, F � �∞) andMn(A) asVMn(M∞|�∞,F ��∞)

� -premice. As such
it follows that the following equalities for classes (not structures) hold:

Mn(M∞|�∞, F � �∞) =Mn(V
Mn(M∞|�∞,F ��)
� )

=Mn(A) = HODMn(x)[g] . �

The following corollary follows immediately from Lemma 4.2 and Corollary 5.2.

Corollary 5.3. HODMn(x)[g] =Mn(M∞|�∞, �∞ � �∞).

We now consider the iteration strategy for M∞. Let Λ be the restriction of ΣM–
n+1

to correctly guided finite stacks �T on M∞|�∞ such that �T ∈ M̂∞|κ∞, where κ∞ is
the least inaccessible cardinal in M̂∞ above �∞.

Lemma 5.4. Λ ∈ HODMn(x)[g].

Proof. Let T be a maximal tree on M∞|�∞ with T ∈ M̂∞|κ∞. Moreover,
let b = Λ(T ). Let R = MT

b be the last model of T �b. Then R ∈ HODMn(x)[g].
Moreover, let �F

∗
∞ be the least Woodin cardinal in MF∗

∞ , the direct limit of the
system F∗,M (y) for some/all dlm-suitable M (y) in M̂∞[H ]. Then MF∗

∞ |�F∗
∞ is an

iterate of R. As �∞ � �∞ ∈ HODMn(x)[g], we can identify b insideMn(x)[g] as the
unique branch through T which is (�∞ � �∞)-realizable, i.e., such that there is an
elementary embedding � : MT

b → MF∗
∞ |�F∗

∞ with �∞ � �∞ = � ◦ iTb .
The same argument applies to pseudo-normal iterates N of M∞ with N|�N ∈

M̂∞|κ∞ and maximal iteration trees T on N|�N such that T ∈ M̂∞|κ∞, hence
Λ ∈ HODMn(x)[g]. �

Similarly to Lemma 3.47 in [23] we finally need a method of Boolean-valued
comparison. As the proof is analogous we omit it.

Lemma 5.5. Let H be Col(�,<κ∞)-generic over M̂∞, and let Q be such that
M̂∞[H ] � “Q is countable and n-suitable.” Then there is an R such that

(1) R is a pseudo-normal iterate of Q,
(2) R is a ΣM–

n+1
-iterate of M∞, and

(3) R ∈ M̂∞.

Finally, we can finish the proof of Theorem 1.1.

Theorem 5.6.

HODMn(x)[g] =Mn(M∞|�∞, �∞ � �∞) =Mn(M̂∞|κ∞,Λ).
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Proof. HODMn(x)[g] =Mn(M∞|�∞, �∞ � �∞) is Corollary 5.3. More-
over, Mn(M∞|�∞, �∞ � �∞) =Mn(M̂∞|κ∞,Λ) follows from Lemma 5.5
as follows. First, Λ ∈Mn(M∞|�∞, �∞ � �∞) = HODMn(x)[g] and M̂∞|κ∞ ∈
Mn(M∞|�∞, �∞ � �∞) by considering the Lpn-stack on M∞|�∞. The direct
limit of F∗,M (y) for some M (y) is the same as the direct limit of all Λ-
iterates of M∞ which are an element of M̂∞|κ∞ via the comparison maps.
Moreover, we have that �∞ is the canonical direct limit map of this system
and therefore definable from M̂∞|κ∞ and Λ. So �∞ � �∞ ∈Mn(M̂∞|κ∞,Λ).
Now, Mn(M∞|�∞, �∞ � �∞) =Mn(M̂∞|κ∞,Λ) follows analogous to the proof
of Corollary 5.2. �

Note that Theorem 4.3 and Lemma 5.1 together imply Corollary 1.2, i.e., that the
GCH holds in HODMn(x)[g]. Finally, most of the arguments we gave in this and the
previous sections generalize with only small changes to more arbitrary canonical
self-iterable inner models, e.g.,M� ,M�+42. We leave the details to the reader.
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