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Abstract

Conveyor belt wear is an important consideration in the bulk materials handling industry. We define four belt wear
rate metrics and develop a model to predict wear rates of new conveyor configurations using an industry dataset that
includes ultrasonic thickness measurements, conveyor attributes, and conveyor throughput. All variables are
expected to contribute in some way to explaining wear rate and are included in modeling. One specific metric, the
maximum throughput-based wear rate, is selected as the prediction target, and cross-validation is used to evaluate the
out-of-sample performance of random forest and linear regression algorithms. The random forest approach achieves a
lower error of 0.152mm/megatons (standard deviation [SD] = 0.0648). Permutation importance and partial depen-
dence plots are computed to provide insights into the relationship between conveyor parameters and wear rate. This
work demonstrates how belt wear rate can be quantified from imprecise thickness testing methods and provides a
transparent modeling framework applicable to other supervised learning problems in risk and reliability.

Impact Statement

Conveyor belts are critical components in global supply chains in mining, power, and manufacturing industries.
The belt is often the most expensive component of a conveyor system and downtime is costly. Predicting belt
wear rate from conveyor design and operational parameters is useful because it allows operators to accurately
forecast belt replacements on new conveyors, estimate wear rate on conveyors without adequate thickness
data, and improve their understanding of how different variables influence or relate to belt wear. Our work
demonstrates how such predictive models can be developed and evaluated.

1. Introduction

Conveyor belts are a cost effectivemethod of transporting bulkmaterials inmany industries worldwide. In
the mining industry, conveyor belts are critical components of the supply chain, and the ability to estimate
belt wear rates is important to ensure that risk of failure andmaintenance activities aremanaged optimally.

Typically, belt thickness measurements are carried out periodically, often with ultrasonic probes while
the belt is shut down. A common practice is to fit a straight line to the minimum thickness over calendar
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time, producing an estimate of wear rate in millimeters per week. By extrapolating thickness over time in
this way, a future belt replacement date can be estimated. This practice, although useful, has several
limitations.

• Not all conveyors have periodic thickness measurements due to the cost of downtime and mea-
surement.

• Wear is not linear with time for belts that are utilized inconsistently; belt throughput is a more robust
basis for wear rate metrics.

• Wear rate can only be estimated accurately when enough thickness measurements for a belt have
been taken.

• Wear rates on similar, new conveyor installations cannot be accurately predicted as their design and
operating characteristics usually differ to existing, monitored belts.

In this article, we describe a large dataset assembled from a mining company operating in Western Australia,
which includes conveyor design, operational parameters, belt thickness measurements, and conveyor
throughput captured by a material tracking system. We propose new wear rate metrics and apply one of
these metrics (worst-case wear, millimeters per million tons of throughput) to estimate the wear rates of
165 belt lifetimes from 95 unique conveyor systems based on our data. Finally, we compare linear regression
and random forest models for predicting wear rates of out-of-sample conveyors using repeated k-folds cross-
validation. Our objective is to present a framework for evaluating predictive models, and to assess if design
and operational factors, commonly available andmeasured on site, support conveyor beltwear rate prediction.

2. Background

2.1. Conveyors

Conveyor belts are made of several layers of different material selected for the operating conditions.
Typically, the belt comprises an inner load-bearing carcass of fabric or steel cords, surrounded by top and
bottom rubber covers. The carcass is the principal structural component of the belt, providing tensile
strength, while the rubber covers protect the carcass from damage. The top cover carries the bulk material
and the thinner bottom cover is supported by pulleys, freely rotating idlers, and drive systems. Long belts
are often made up of shorter belt segments spliced together, which can be replaced individually or as a set.
It is common for the belt to be the most expensive component of a conveyor system.

Wear of the top cover is predominantly due to abrasion by the bulk material, resulting in a reduction in
thickness with usage (Schallamach, 1954). In practice, the rate of wear is not constant throughout the life
of the belt due to changing operating conditions, bulk material properties, or maintenance practices. Belts
are considered worn-out when the thickness of the top cover has reached a threshold (e.g., 3mm) at any
point across the width of the belt. The belt is then either replaced or refurbished by re-coating the worn top
of the belt with new rubber. While belts can fail in a variety of modes, this work focuses on belt working
life as limited by top cover wear.

Belt working life is generally a function of the belt materials, the conveyor design and operation,
maintenance, and the physical properties of the material being transported. As part of our work, a panel of
subject matter experts were consulted with a view to extend the list of factors influencing belt wear rate
that are available in the literature (All State Conveyors Pty Ltd, 2018; Masaki et al., 2018; Metso, 2016;
Molnar et al., 2014; Schallamach, 1954). This extended list is shown in a fishbone diagram of the factors
(Figure 1). These factors are grouped by product (the characteristics of the conveyed product), environ-
mental factors (location and operating environment), belt parameters (design and operational history),
conveyor operational and design factors, and finally features associatedwith the transfer point design. The
relative importance of these factors was not determined by the subject matter experts, and it is not known a
priori which of these factors, or combination of factors, are most influential.

A limited range of studies on conveyor belt wear and damage has been published. Andrejiova and
Marasova (2013) found that belt length and transported quantity of material were associated with belt
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service life based on exploration of data from 30 conveyors at a quarry. Further experimental work with
impact drop hammers explored the significance of belt damage from falling material at the belt loading
point (Andrejiova et al., 2014). Another experimental study by Andrejiova et al. (2016) examined the
effects of selected factors including belt storage on belt wear.

While the existing literature establishes understanding of relationships between some factors and belt life,
we have neither found clear or rigorous definitions for wear rate metrics that are useful in practice, nor work
that focuses on predicting wear rate and quantifying the uncertainty in prediction performance estimates.

2.2. Thickness measurement

The current approach to planning belt replacement is to extrapolate minimum top cover thickness over
time. Conventionally, a time of flight ultrasonic probe is used to measure the top cover thickness of a belt
when the conveyor is shut down. Shorter belts are frequently only measured at one (longitudinal) position
along the belt length, whereas longer belts made up of spliced segments may have multiple longitudinal
measurement positions, often located near splices which serve as landmarks. At each longitudinal
position, measurements are taken across the belt width (transverse direction) at equally spaced intervals
producing a picture of the top cover cross-section.

Several factors complicate the analysis of these data.

• It is difficult to guarantee that thickness measurements are taken at the same longitudinal position
each time.

• The belt cross-section is known only at the (longitudinal) measurement positions.
• Data from ultrasonic probes are noisy and subject to measurement and calibration errors.
• Belts made up of multiple segments may have splices that were installed at different times.

Figure 2 shows a sample of data from a belt displaying wear patterns that are typical for a conveyor
system. The thickness should decrease over time. However, some crossover of the lines is seen in the
figure, indicating measurement error.

3. Data

The data collected for this work comprise 165 belts on 95 conveyors from two different bulk material
handling sites in the north-west ofWesternAustralia over a period of 8 years. The target variable, wear rate
(max mm/megatons [Mt]), was derived from 41,652 ultrasonic thickness measurements and 406,572
material movements. Not all of the factors shown in the fishbone diagram had readily available data. A
subset of factors for which data could be collected within time and resource constraints was selected for
this work with a preference for factors that subject matter experts expressed a prior belief of being more
important, or a greater interest in testing.
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Figure 1. Fishbone diagram showing the inputs to conveyor belt wear.
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The eight explanatory variables include seven numeric (belt width, belt length, belt speed, belt
strength, drop height, % fines, and loading frequency) and one categorical (conveyor duty). Loading
frequency is calculated as belt speed divided by length.

The data were obtained from three distinct sources.

• Ultrasonic belt thickness measurements.
• Amaterial tracking system, recording tonnages of bulk material movements through a supply chain.
• Conveyor specifications, assembled from various asset registers and design drawings.

A data preparation pipeline was developed using the R programming language (R Core Team, 2019) to
take the data from raw spreadsheets and csv files and produce a modeling table with one row for each
conveyor belt, a column for wear rate (the prediction target), and columns for each explanatory variable.

This process spanned three main stages which are shown in Figure 3: (a) anonymization and
aggregation for de-identifying sensitive commercial information and merging spreadsheets into a single
csv file; (b) data preprocessing, where datawere cleaned andmerged, including necessary transformations
to model the relationship between belt thickness and throughput; and (c) wear rate estimation, an
intermediate modeling stage where belt wear rate metrics are calculated.

Selected parts of the pipeline that are relevant to understanding the model are discussed herein.

3.1. Thickness data

Thickness measurements were collected at irregular intervals by specialist contractors from each
conveyor while it was shut down. Measurements were taken at one or more longitudinal positions and
at 50 mm intervals across the width of the conveyor. These measurements were stored in spreadsheets;
each instance of a conveyor belt life had, in principle, its own file, whichwasmaintained until that belt was
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Figure 3. Data preparation process overview. Several approaches to wear rate estimation are discussed
in this article, but only one is used for predictive modeling.
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Figure 2. Top cover thickness of an 1,800-mm wide belt over time. Measurements are spaced 50mm
apart, but elapsed time between measurements is irregular.
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replaced. Spreadsheets also recorded the date that the belt was installed on the conveyor. A total of 78,557
thickness records were extracted from 243 spreadsheets into a single table and anonymized.

Measurements at points within 400mm of either belt edge were excluded since excessive wear can
occur in these regions if conveyor skirts are improperly adjusted. Records were also removed if any of the
following conditions were met: (a) limited material tracking history was available; (b) thickness data were
available but tonnage records were not; or (c) the belt had less than threemeasurements with valid tonnage
values. The final dataset comprises 41,652 records.

Plotting the thickness data for each conveyor revealed multiple sets of measurements (i.e., recorded in
separate spreadsheets) from the same conveyor on the same date with identical belt installation dates. In
total, 79 spreadsheets were affected, attributable to 18 separate belts. As these records had different
thickness values, they were identified as separate sets of measurements and not merely duplicates. We
made the assumption that multiple measurements had been collected from different longitudinal positions
on particularly long or otherwise important belts. We refer to all measurements that have been collected
from the same conveyor over the same time frame with the same belt installation date, as a pool. We
assume that all measurements in a pool relate to the same conveyor belt. The concept of a pool allows us to
accommodate multiple measurements on the same belt as described above.

3.2. Throughput data

Tonnages are measured byweightometers positioned throughout the supply chain andwere extracted from
a material tracking system, producing 475,191 records of bulk material movements over a continuous
8-year period. Each record captures the source and destination of the material, the product type (lump or
fines), and IDs of all the equipment in between. Timestamps marking the beginning and end of the
movement, the total tons, and variables describing the type of material are also recorded. The equipment
IDs were matched with conveyors to calculate throughput between belt thickness tests. These data were
cleaned by considering only movements with non-zero duration and a calculated throughput rate between
300 and 15,000 tons per hour. It is worth noting that the frequency of calibration of the weightometers is
unknown, but since thesematerialmovements are an important value driver for the companywe havemade
the assumption that the error in weightometer readings is negligible in our analysis.

3.3. Conveyor specifications

Conveyor and belt design and operational parameters were collated from asset registers, belt thickness
files, and design drawings. These included: belt width (mm); belt length (m); belt tensile strength (kN/m);
manufacturer’s belt material grade; drop height (m); and conveyor duty.

Conveyor duty is a categorical variable that classifies conveyors by a broad collection of design parameters
related to the application or duty of the conveyor. When conveyors are designed, it is usually assumed that
equipment belonging to the same duty-class will have similar operating requirements. Some conveyor duties
had only a few observations, so these were merged with other conveyors that were similar in design.
Specifically, Wharf and Tunnel duties were combined with Yard, and Car dumper conveyors were combined
withTransfer conveyors.After thismergingprocess, conveyor dutyhas fivediscrete categories:Yard,Transfer,
Stacker, Reclaimer, and Shiploader. The number of conveyors and belts across duties is shown in Table 1.

Belt material grade was initially considered as a categorical variable, but was omitted as the data were
deemed to be insufficiently trustworthy. Belt grade had been assigned by plant staff retrospectively based
on the memory of key engineers, rather than accurately recorded from the markings on the belt at the time
it was installed. In more than half of the records, this value did not agree with other information that
independently indicated a different grade.

Drop height is the vertical distance between the tail pulley of the conveyor and the head pulley of the
upstream loading conveyor. Subject matter experts agreed that the relative velocity of the bulk material
and belt at the point of loading is an important factor for belt wear, and this vertical distance was a crude
but simple attempt to characterize this. It is crude because the design of the transfer chute is ignored.
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4. Belt Wear Rate Estimation

To enable predictive model development, wear rate metric(s) must be defined and applied to the raw data
to produce a target variable for prediction. Any wear rate metric will be the ratio of two quantities: some
measure of thickness and another quantity that measures belt utilization.

At the mine site operations in this study, remaining life of belts in service was estimated using the slope
of the regression line of minimum belt thickness over time. This corresponds to a wear rate metric with
units millimeters/week, and could be applied to historical data to summarize the lifetimewear rate of belts.
However, this metric has some limitations.

First, conveyor utilization is not necessarily uniform over the life of a belt; periods of inactivity or
changes in production plans can result in wear that is only piece-wise linear with time. In this situation, a
single estimate of belt lifetime wear rate based on a linear model over the entire time period is not
meaningful (see Figure 4).

Second, the minimum thickness at a particular transverse position on a belt can only be obtained by
measuring at all points across the belt. Since this is not common practice, the minimum thickness may not
be known. In addition, the transverse position of the point of minimum thickness often moves between
measurements, and this introduces further error in the measurements.

We use the slope of a regression line approach to estimate belt lifetime wear rate, but propose four
alternative wear ratemetrics by considering two different methods for using the thickness data to calculate
the numerator of the ratio, and adding throughput as an alternative to time for the denominator. One
metric, maximum throughput-based wear rate, is used for further modeling.

4.1. Maximum wear rate

This metric aims to provide a worst-case estimate of wear rate that avoids loss of physical interpretability
and reduces the risk of bias due to random noise.

Table 1. Summary of conveyor and belt counts in dataset by
conveyor duty.

Conveyor duty Conveyor count Belt count

Reclaimer 5 23

Shiploader 6 27

Stacker 7 22

Transfer 56 60

Yard 21 33
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Figure 4. Throughput rate for this conveyor drops at the beginning of 2011 resulting in a reduced rate of
wear with time and poor linear fit. Regressing thickness against cumulative throughput produces a good

fit (thickness data taken from a single measurement position).
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Instead of usingminimum thickness, data from a pool are first grouped by transverse position. For each
such group, themeasured thickness is regressed against either time or throughput, producing an individual
estimate of wear rate at each measurement position.

The slope of the steepest line is taken to be the maximumwear rate. Figure 5 illustrates this process for
three positions (in practice, an 1,800 mm wide belt will have 20 measurement positions after skirt zones
are excluded).

4.2. Mean wear rate

Maximum wear rate effectively discards thickness data from all but one measurement position; the
motivation for this metric is to use all the data by estimating the mean wear rate. We first estimate the belt
cross-section area A using the trapezoidal rule:

A≈
XN
k¼1

tk�1þ tk
2

Δx¼Δx
2

t0þ2t1þ2t2þ…þ2tN�1þ tNð Þ, (1)

where Δx is the transverse (equal) spacing between measurements, N is the total number of measure-
ments across the belt width, and tk is the thickness at the kth measurement position. Removing
measurements within 400mm of the belt edge can be considered equivalent to dropping the first and
last eight tk values—we will index the remaining measurements by k0 and N 0. Normalizing by remaining
belt width then yields:

A0 ¼Δx
2

1
N0Δx

X
k0
2tk0 ¼

P
k0
tk0

N0 , (2)

which is the mean thickness. Wear rate estimation proceeds by grouping thickness data from a pool by
measurement date, calculating the mean thickness, and regressing against time or throughput. The slope
of this line is the rate of change of mean belt thickness.

4.3. Summary of metrics

The four wear ratemetrics (maximum andmeanwear rates eachwith respect to time and throughput) were
calculated for the set of pooled belt lifetimes and summary statistics from the regression analyses are
shown in Table 2. Along with this tabular summary, 116 plots of the four regression models were visually
inspected. Generally, a linear model for wear rate provides a good fit for the data and explains a large
proportion of the variation in the thickness metric.
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Figure 5.Maximum wear rate is estimated to be the slope of the steepest regression line, in this case at
position 875. Only three positions are drawn for clarity.
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There is little difference in model fit between time- and throughput-based metrics, and this is a
reflection of the fact that in our data most conveyors are utilized consistently. Mean wear rates have a
slightly lower mean R2 value, but are still a strong fit to the data. However, we select maximum wear rate
as our metric, because if any point over the cover wears out the belt needs replacement. Further,
throughput-based metrics are less sensitive to changes in production plans and non-uniform conveyor
utilization, and are therefore more useful for forward planning. That is, we select throughput-based
maximum wear rate as the appropriate metric to model belt wear rate.

4.4. Exploratory data analysis

Explanatory variables were explored to identify any relationships in the data, inform the modeling
process, and confirm data fidelity. The range of thickness measurement dates is known to span multiple
belt lifetimes for some conveyors. Figure 6 shows the distribution of the number of belt lifetimes in the
thickness data over the 95 conveyors.

While most conveyors only have a single belt (i.e., a single row in the modeling table), 23 conveyors
have more than one belt lifetime. The modeling process will be designed to eliminate a potential source of
bias by ensuring belt lifetimes from the same conveyor do not appear simultaneously in both data used to
fit models and data used to evaluate the models.

A correlationmatrix for the continuous explanatory variables is shown in Figure 7. Belt length and load
frequency are strongly inversely correlated, which is expected given that loading frequency is equal to the
quotient of belt speed and length. Belt length and strength are positively correlated, and this may reflect
belt tension requirements, which increase with belt length for optimal conveyor operation. Speed and
width are negatively correlated, again an expected result. Wider belts have greater carrying capacities and
throughput rate for a fixed speed, and volumetric flow rates of ore across a chain of belts must be

Table 2. Summary statistics after calculating wear rate metrics using the set of pooled
belt lifetimes.

Metric R2 SD R2
� �

SE

Throughput-based

Max (mm/Mt) 0.908 0.124 4.48� 10�2

Mean (mm/Mt) 0.895 0.152 3.94� 10�2

Time-based

Max (mm/week) 0.904 0.125 1.50� 10�2

Mean (mm/week) 0.892 0.151 1.29� 10�2

The sample mean R2 value, sample SD of R2, and sample mean standard error of regression slope are
evaluated on the sample of 165 belt lifetimes.

72

6 5 1 55 1

1 2 3 4 5 6 7
Number of belt lifetimes

Frequency

Figure 6. Bar plot of number of lifetimes per conveyor. Most conveyors (72) in the data only have a single
belt lifetime.
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consistent to avoid overloading or starving equipment. All variables are hypothesized to contribute in
some way to explaining wear rate, and therefore will be included in modeling.

The relationship between conveyor duty, a categorical variable, and the other continuous explanatory
variables is shown in Figure 8. Some observations from these plots include:

• stacker, shiploader, and reclaimer conveyors have similar short lengths;
• while belt width and strength are in principle continuous quantities, only a few fixed values are
present in our data (perhaps specific to the operation);

• all reclaimer belts are 1,800mm wide; and
• transfer (including car dumper) and yard (including wharf and tunnel) belts have the greatest range
of design parameters.

Conveyor duty acts as a proxy for a host of design and operational factors that make conveyors unique.
Duties that have a large range of continuous variable values (e.g., transfer belts) could be scrutinized more
closely in future work to identify aspects that better discriminate conveyors and potentially produce more
accurate predictions. If data were available, it may be better to eliminate duty and instead enumerate the
underlying specific factors that they reflect.

5. Model Evaluation Framework

The goal is to develop a model capable of predicting maximum wear rate (mm/Mt) from the explanatory
variables and estimate its performance on out-of-sample conveyors. Prediction performance in this article
is measured as the root mean square error (RMSE) for predictions based on the model for conveyor belts
unseen in model training. We rank models by the percentage improvement (decrease) in RMSE over the
uninformative null models (which simply predict the mean wear rate). RMSE was chosen for ease of
interpretation (its units are mm/Mt), and because it is a common metric in regression analysis. The
percentage improvement over the null algorithm is included to provide a baseline level of performance
and to quantify the additional predictive power of a model.

We use a cross-validation framework to test twomodeling algorithms: linear regression (ordinary least
squares) and random forest. The framework presented in this article can be applied to estimate the
performance of any type of algorithm for building predictive models. Linear regression was chosen for its
simplicity and prevalence in prediction problems, and random forest was included to test whether such a
nonlinear, more flexible modeling approach would produce better predictions for this problem. The intent
is neither to make definitive statements about the comparative performance of linear regression and
random forests, nor to find the “best”model through extensive tuning, but rather to demonstrate how this
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Figure 7.Pair-wise Pearson correlation (rounded to one decimal place) between continuous explanatory
variables.
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model evaluation framework can be used to compare modeling algorithms, and to show how insights into
the relationship a model has “learnt” from the data can be extracted.

5.1. Repeated k-fold cross-validation

To estimate out-of-sample prediction error, amodel should be evaluated on data that were not used to build
the model (Hastie et al., 2009; Hurvich and Tsai, 1990). We use repeated k-fold cross-validation, which
involves splitting the data into k subsets of roughly equal size. A single subset is set aside as the test set,
and the remaining k�1 subsets are used as a training set to fit a model. The loss function (in our case,
RMSE) is evaluated on the test set. This is repeated for each subset to produce k loss function values. For
higher precision, the entire process is repeated n times with different splits, resulting in nk loss function
values. The arithmetic mean of this set is taken to be the estimate of out-of-sample prediction error for a
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Belt speed (m/s) Belt strength (kNpm)

% Fines Belt length (m)
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Figure 8. Swarm plot showing the distribution of continuous explanatory variables by conveyor duty.
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model-fitting algorithm; we refer to this value as the cross-validation statistic. The standard deviation
(SD) of the nk loss function values is also computed to provide a measure of model performance stability.

Stated more precisely for regression, let D denote the sampled data,

D¼ x1,y1ð Þ,…, xm,ymÞð g yi∈ℝ,f (3)

where yi is the prediction target value and xi is the corresponding vector of explanatory variables.
Let hD :x↦by be a trained model instance that maps new observations x to predicted values by, obtained
by inputting data D to an algorithm A :D↦hD. The loss function L : y,byð Þ↦ℝ evaluates predictions by¼
hD xð Þ against known values y.

After partitioningD into k subsets, letDi denote the data in the ith subset, andD�i ¼ DDið Þ denote the
data with the ith subset removed. Let xi,yi ∈ Di and x�i,y�i ∈ D�i refer to the explanatory variable
vectors and corresponding prediction target values respectively of these mutually exclusive subsets ofD.
If the number of repeats n¼ 1, the out-of-sample prediction error or cross-validation statistic for the
algorithm A is calculated as

1
k

Xk
i¼i

L yi,hD�i xi
� �� �

: (4)

When n> 1, the entire process is repeated with n different sets of k partitions of D. The resulting nk loss
function evaluations are pooled and the arithmetic mean calculated. The optimal number of folds is often
reported as being 5≤ k ≤10 (Hastie et al., 2009; Kohavi, 1995); in this article, we use k¼ 10 and n¼ 100.

We expect wear rates of different belts from the same conveyor to be highly correlated. This could lead
to a potential source of bias in the results if different belts from the same conveyor appear in both training
and test sets within the cross-validation process. To eliminate this, we form the k subsets by shuffling
conveyor IDs and pairing each with a value from the sequence f1,2,…,k,1,2,…g until the conveyor IDs
are exhausted. Belts from each conveyor are assigned to the corresponding subset, producing k subsets.
With 95 conveyors and k¼ 10, the result is five subsets containing nine conveyors and five subsets of
10 conveyors. Most subsets will also be roughly equal in size (number of belt lifetimes), with a small
number of larger subsets containing conveyors with multiple belt lifetimes. The resulting subsets are then
examined to verify that each level of the conveyor duty variable appears in at least two distinct subsets, to
ensure that the modeling algorithm is always trained with data that contains every conveyor duty. This is
particularly important for linear regression, where at least one observation of each level of categorical
variable is required to estimate all of the coefficients. If this condition is not met, the random split is
rejected, conveyor IDs reshuffled, and the process repeated until a valid set of subsets are produced. This
process of generating subsets was automated and run n times, and the same random splits were used for
assessing both linear regression and random forest algorithms.

In practice, after cross-validation the same algorithm A is applied to the entire dataset to produce a
model instance that could be used in a production setting. In this sense, we use repeated k-fold cross-
validation as a framework for estimating the performance of a model fitting process (algorithm), rather
than any particular model instance. Because the cross-validation framework estimates loss using a model
trained on a subset of the available sample, and model performance typically increases with the size of
training data, we expect our estimate to include some pessimistic bias (Kohavi, 1995).

5.2. Modeling algorithms

The first algorithm tested is ordinary least squares linear regression, which was chosen for its simplicity
and wide applicability. The second algorithm tested is a random forest, implemented in the R package
randomForest (Liaw andWiener, 2002). A random forest is an ensemble model consisting of a collection
of decision tree predictors, each trained on a random subset of the training data sampled with replacement
to a size equal to that of the training data (a bootstrap sample). Decision trees are grown by recursively
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splitting each terminal node of the tree, where the optimal split is found by searching overmtry randomly
selected predictor variables, until a tree depth limiting condition is met (minimum node size or maximum
number of terminal nodes). Predictions from a random forest are made by passing the vector of
explanatory variables into each decision tree making up the forest and averaging the terminal node values.

A feature of random forests is the out-of-bag error estimate. In a bootstrap sample of size n, the
probability of any particular observation being selected in the first draw is 1=n. Therefore, the probability
that an observation is not selected is 1�1=n. It follows that for the n independent draws making up the
bootstrap sample, the expected proportion of data excluded is 1�1=nð Þn. It can be shown that this
proportion approaches 1=e ≈ 1=3 as n grows to infinity. These data are “out-of-bag” (OOB), and therefore
can be used to estimate prediction performance similarly to k-fold cross-validation.

There are several parameters of a random forest that can impact performance, including: ntree, the
number of trees to grow; mtry, the number of randomly chosen candidate variables for splitting; and
nodesize, the minimum size of terminal nodes. The ntree parameter is understood to increase model
performance for regression with more trees at the cost of computation time, converging to a steady
maximum beyond which additional computational effort does not afford any improvement (Breiman,
2001). The OOB error as a function of ntree for our data is shown in Figure 9, demonstrating that a plateau
is reached after roughly 500–1,000 trees. We set ntree to 1,000 for which the computational cost was not
prohibitively high for our data and hardware.

The randomForest package provides a function tuneRF for tuning the mtry parameter to minimize the
OOB error, which we use inside the training step of the cross-validation process. It is important to note that
the cross-validation statistic is itself a randomvariable, and algorithmor tuning parameter selection based on
its value can introduce optimistic bias, resulting in underestimating the out-of-sample prediction error and
effectively over-fitting to the test data (Cawley and Talbot, 2010). Because the OOB data are still limited to
the k�1 training parts and do not overlapwith the test data, tuningmtry byminimizing theOOBerror inside
the cross-validation process does not introduce an optimistic bias in this way, and can be considered part of
the training process. We will use the cross-validation estimate to compare linear regression and random
forest algorithms. However, as this involves only a single pre-specified comparison, we assume any
optimistic bias associated with selection using the cross-validation statistic is negligible in this instance.

A limitation of using the OOB error in training to tune the random forest is that the bootstrap sampling
process is completely random and does not respect the same constraints established in the cross-validation
splitting. Specifically, two belts from the same conveyor can be both in-bag and out-of-bag, potentially
resulting in sub-optimal selection of tuningparameters for out-of-samplepredictionperformance. Furthermore,
wewill not attempt to tune the value of nodesize, and instead use the package default value of 5. Implementing
a modified bootstrap sampling process and tuning nodesize are two potential areas for future work.

The optimal value of mtry found in each nk trained random forest is shown in Table 3. For our data, a
value of 1 was optimal in roughly 80% of forests, which is equivalent to randomly selecting a variable at

0.027

0.028

0.029

0.030

0 500 1,000 1,500
Number of trees

MSE

Figure 9. Out of bag prediction error as a function of the number of trees in the random forest. At each
point, 100 forests were grown and errors averaged to produce a smooth curve. Error decreases

monotonically and reaches a plateau.
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each node for splitting when growing regression trees, and minimizes correlation between trees in the
forest. The function tuneRF starts with mtry¼ ⌊nx=3⌋¼ 2, (where nx is the number of explanatory
variables and ⌊�⌋ is the floor function which returns the integer part of a real number) and searches by
inflating and deflating this value by a factor of 2, which is why 3 does not appear in the results.

Because tuningmtry is a part of themodel training process, in practice when training a random forest in
a production setting using all of the data, mtry should not be fixed to 1; instead the same tuning process
should be repeated. Analyzing the distribution of optimal values is still informative and provides a
measure of model stability.

6. Results and Discussion

This section presents the results of the model evaluation framework and provides some insights into the
learnt relationship between wear rate and the explanatory variables of the random forest.

6.1. Prediction error

The samplemean loss function value (cross-validation statistic), sample SD of loss values, and the percent
improvement in RMSE over the uninformative null model are summarized in Table 4. SD RMSE

� �
were

calculated over mean loss values for each test set, pooled over each repeat of the cross-validation process
(a total of kn values) to measure performance stability.

Both random forest and simple linear regression outperformed the null model, demonstrating that the
explanatory variables contain predictive information for wear rate that generalizes to out-of-sample
conveyors. Random forest performed better than simple linear regression (RMSE of 0.152 vs. 0.160),
though the difference (7.75� 10–3) is much smaller than the SD of the difference (2.97� 10�2, calculated
over kn RMSE pairs), suggesting no difference between the performance of the two methods.

The random forest has amedianR2 value of 0:58, calculated against test data over each cross-validation
split (SD¼ 0:29). This shows that while the model is effective in using information from the explanatory
variables to narrow the likely range of belt wear rate R2 > 0

� �
, a relatively large amount of unexplained

variance remains, suggesting that there are possibly other factors not in our data that could be gathered to
produce better predictions.

Table 4. Prediction performance results.

Model type RMSE SD RMSE
� �

% decrease over null

Null 0.284 0.0976 –

Linear regression 0.160 0.0557 43.6

Random forest 0.152 0.0648 46.3

Table 3. Stability of optimal mtry values, the number of variables
randomly sampled as candidates at each split when growing trees.

Optimal mtry value Count

1 795

2 204

4 1

This parameter is tuned to minimize out-of-bag error on training data in every
cross-validation fold. The value is 1 almost 80% of the time.
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Because the prediction target y (belt wear rate measured as slope of regression line of measured
thickness over throughput) used to train themodel is a variable with nonconstant variance, the accuracy of
the predictive model should be interpreted carefully. That is, an assumption of linear regression is
homoscedasticity, and this is likely to be violated here. Also, a thorough approach to estimating the
overall prediction error with respect to the true physical wear rate (estimated by y) would include
information about the uncertainty of both the predictivemodel and the regression process used to generate
wear rates. The mean standard error of the regression slopes is sufficiently small (4.48� 10–2) relative to
the RMSE of the linear regression (1.60� 10–1) and random forest (1.52� 10–1) models, so we can
ignore the effect of the intermediate regression modeling in estimating the wear rates.

6.2. Variable importance and effects

While our primary purpose of modeling in this problem is prediction and not inference, it is often desirable
or even essential for model predictions to be explainable. It is also useful to understand the relative
importance of input variables and how they relate to the predicted values. One method for assessing the
importance of variables that can be applied regardless of the choice of algorithm is the permutationmethod.

The permutation method takes a trained model instance and proceeds as follows.

1. Calculate the loss (RMSE) on a dataset unseen in training.
2. Shuffle (permute) the values of a single explanatory variable, and recalculate the loss on the same

data using the shuffled values.
3. Store the deterioration in loss after shuffling, restore the original ordering of values, and repeat

the process for remaining explanatory variables.

A version of this method is implemented by the randomForest package that makes use of OOB data.
However, as previously discussed, the OOB data can still include conveyors seen in training which could
bias results. Instead of using this method, we reuse the repeated cross-validation procedure and demon-
strate an approach that is compatible with any algorithm. The permutation method steps are repeated in
each cross-validation partition and the difference in RMSE before and after permuting each explanatory
variable is stored resulting in nk values for each variable. Themean and SD of the change inmodel RMSE
for the random forest is shown in Figure 10.

The limitations of this technique should be consideredwhen interpreting these results.Most importantly,
they should not be taken to be a direct answer to questions about the importance of factors for the underlying
physical process of belt wear. Controlled experiments are a better approach for such questions. Instead, the
results reflect how important the variables are for prediction performance for a specific choice of algorithm
and performance metric. Second, permutation importance tends to spread importance across collinear
variables and shows bias toward categorical variableswithmany levels (Altmann et al., 2010; Strobl, 2007).

Belt strength
% Fines

Belt speed
Drop height

Belt width
Conveyor duty

Belt length
Load frequency

0.00 0.01 0.02 0.03

Δ RMSE

Figure 10. Permutation importance results, shown as the deterioration in RMSE as a result of shuffling
each variable. Larger values indicate the variable is more important to prediction accuracy. Lines

represent one SD of ΔRMSE over each test set in cross-validation.
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These results suggest that load frequency, belt length, and conveyor duty are the most important
variables for prediction accuracy. The necessarily strong correlation between length and load frequency
makes it difficult to separate the importance of these two variables; Strobl et al. (2009) and Strobl (2007))
suggest a conditional permutation approach which may provide greater insight. Conveyor duty is the next
most important variable, indicating that further efforts in “unpacking” duty into individual variables
characterizing the conveyor may provide clearer insight into the effect of conveyor duty onwear rate. Belt
width was expected to be an important variable due to its effect on belt loading and capacity, though it is
only moderately important relative to other variables. Belt speed, strength, drop height, and % fines are
similarly low in importance in these models.

Finally, to provide some insight into the relationship between the most important variables and
predicted wear rate, partial dependence plots shown in Figure 11 were generated using the pdp package
for R (Greenwell, 2017). These figures correspond to a random forest model with fixed parameters
mtry¼ 1 and ntree¼ 1,000. The joint effects of conveyor duty paired with loading frequency, belt
length, and belt width were inspected, along with individual conditional expectation plots (Goldstein
et al., 2013), which did not suggest the presence of any remarkable interactions. Therefore, only single
predictor partial dependence plots are shown.

Figure 11 shows that predicted wear rates increase with greater load frequencies and decrease for longer
and wider belts. Stacker conveyors have the highest wear rate among the duty levels, and yard conveyors
have the lowest. The range of effect size for load frequency and conveyor duty are similar and larger than for
belt length andwidth. The relatively large effect size of load frequency and its reasonably linear relationship
to wear rate, coupled with the lack of remarkable interactions may explain why the performance difference
between the random forest and linear regression models is small.

7. Conclusions

The ultrasonic belt thickness data, while relatively low in resolution, showwear patterns that are typically
strongly linear over the belt lifetime. Combining these data with material tracking records support
throughput-based metrics, which are more robust in cases where conveyor utilization is inconsistent.
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Figure 11. Partial dependence plots of random forest model with top four variables.
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We trained linear regression and random forest models to learn a relationship between conveyor
specifications and worst-case wear rate that generalizes to out-of-sample conveyors. The random forest
approach performed slightly better, with RMSE¼ 0:152 (46.3% better than an uninformative model with
no explanatory variables), and amedian R2 value of 0.58 on unseen conveyors. This delivers an improved
ability to predict wear rates of new conveyor installations, or for those conveyors where thickness data are
unavailable.

Variable importance measures derived from the permutation method indicate that belt length (both
directly and indirectly through the calculated loading frequency variable) and conveyor duty contribute
themost to the random forest’s predictive accuracy, followed by belt width, with belt speed, strength, drop
height and % fines being relatively less important. It is unsurprising that load frequency is important, as
the loading zone is known by subject matter experts to bewheremost belt wear occurs. Conveyor duty is a
catch-all variable that describes a broad range of conveyor design and application attributes, so its high
importance is also consistent with prior expectations. Drop height displayed little predictive value, andwe
hypothesize that the naive approach of taking the vertical pulley distance while neglecting the design of
the transfer chute and loading area is overly crude. More careful characterization of the velocity of
material at the loading point relative to the belt would be an interesting area for future work. Finding that
the composition of the conveyed material (% fines) is relatively unimportant was unexpected, though the
limitations of the permutation importancemethodmeans that this should not be equated to concluding that
it is irrelevant to the underlying belt wear process.

Partial dependence plots provide a window into the relationship of any “black box” algorithm in a
supervised learning problem. Applied to the random forest, the most remarkable finding was that stacker
conveyors have significantly higher predicted wear rates than other duties. This was surprising when
compared against the shiploader duty, which is similar to the stacker inmany aspects. Closer inspection of
these two duties is recommended to understand the reasons for this difference, potentially leading to a
better understanding of belt wear.More data for each conveyor dutywill allow the individual duty types to
be used in the modeling instead of aggregated types in our data. This could also produce greater insights
into the effect of conveyor duty and potentially better prediction performance.

The cross-validation model evaluation framework, permutation method for variable importance, and
partial effects plots described in this work can be applied to any supervised learning problem. These
techniques provide a more complete picture of predictive models than point statistics from a single data
split where data are limited, but are under-represented in reliability literature. We have used cross-
validation to estimate out-of-sample conveyor prediction performance; a limitation of this procedure is
that “out-of-sample” is still limited to the universe of conveyors (real or conceptual) that are similar to the
population of conveyors represented by the data. We expect that the results would generalize to other
conveyors owned or planned to be built by the mining company that provided the data, assuming they are
similar in kind and application. Radical changes to conveyor design or operation, or conveyors in different
bulk materials handling operations are expected to behave differently. The modeling process presented is
portable and could be applied to other populations of conveyors.

The objective of this workwas not to eliminate the need for regular belt thickness testing; this would be
a risky proposition even if the models provided better prediction performance. However, benefits of these
predictive models go beyond estimating remaining useful life. For example, the model could be used to
identify and study belts wearing unusually fast or slow compared to a prediction, to improve understand-
ing of belt wear and replicate best practices, thus lifting plant performance. Additionally, building
predictive models that benefit from easily-accessible, high-quality data motivates best practices for data
collection and governance. We believe there is a lot of low-hanging fruit to improve prediction
performance. Future work could focus on: (a) new variables, for example, velocity of material relative
to belt at loading zone, belt rubber grade, conveyor rise/inclination angle, and other variables from
Figure 1; (b) higher resolution and more frequent belt thickness data; (c) time series conveyor operational
data from SCADA systems; (d) better characterization of the load, for example, tons per meter, tons per
belt cycle; and (e) testing other algorithms.
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