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Abstract. We show that 17:9% of all elliptic curves over Q, ordered by their exponential height,
are semistable, and that there is a positive density subset of elliptic curves for which the root
numbers are uniformly distributed. Moreover, for any a > 1=6 (resp. a > 1=12) the set of Frey
curves (resp. all elliptic curves) for which the generalized Szpiro Conjecture jD�E�j �a N12a

E
is false has density zero. This implies that the ABC Conjecture holds for almost all Frey triples.
These results remain true if we use the logarithmic or the Faltings height. The proofs make
use of the ¢bering argument in the square-free sieve of Gouveª a and Mazur. We also obtain
conditional as well as unconditional lower bounds for the number of curves withMordell^Weil
rank 0 and X 2, respectively.
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1. Introduction

Denote by D�E� and NE the minimal discriminant and the conductor of an elliptic
curve E=Q. The Szpiro Conjecture [20] asserts that for every e > 0 there exists a
constant C1�e� > 0 such that

jD�E�j < C1�e�N6�e
E : �1�

This statement is optimal, in that for any constant C1�0� > 0 there exists in¢nitely
many curves E=Q for which (1) is false with e � 0 [14]. The Szpiro Conjecture is
closely related to the ABC Conjecture, which asserts that for any e > 0 there exists
a constant C2�e� > 0 such that, for any pairwise coprime integers A;B;C with
A� B � C � 0,

max�jAj; jBj; jCj� < C2�e�
Y

pjABC
p1�e: �2�

These two conjectures are related through a special family of elliptic curves. An
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integer triple �A;B;C� is called a Frey triple if

�A;B� � 1;A� B � C � 0; C > 0;
and A � 0 �mod 16�;B � ÿ1 �mod 4�: �3�

Given a such a triple, Frey [6] showed that the curve EA;B;C : y2 � x�x� A��xÿ B� is
semistable. Such curves are called Frey curves. It is known that the ABC Conjecture
is true if and only if (1) is true for all Frey curves (which in turn is true if and only if
(1) is true for all elliptic curves; resp. all semistable curves [15]). In particular,
the Szpiro Conjecture is true if and only if the ABC Conjecture is true (where
in the `only if' direction, the exponent 1� e in (2) is to be replaced by 6=5� e;
cf. [15, x3]). In this paper we show that the Szpiro Conjecture is true for the set
of all elliptic curves over Q (resp. Frey curves) except for a set of density zero,
by deriving asymptotic formulae for various collections of elliptic curves of bounded
height. It follows that the ABC Conjecture holds for almost all Frey triples (with the
weaker exponent 6=5� e). We also apply these asymptotic results to study questions
about equidistribution of root numbers, and to derive lower bounds for the number
of elliptic curves of rank 0 and X 2, respectively.

Denote by c4�E�; c6�E� and j�E� the usual quantities associated to a minimal
Weierstrass equation ofE=Q. Then the exponential height and the logarithmic height
of E=Q are de¢ned to be

he�E� � max�jc4�E�j1=4; jc6�E�j1=6� and hl�E� � log he�E�;

respectively. Choose t in the upper half complex plane such that E�C� 'C=�Z� tZ�.
Denote by d12�t� the usual normalized weight 12 cusp form. Then the Faltings height
of E=Q is de¢ned to be

hF �E� � 1
12
�log jD�E�j ÿ log jd12�t�im�t�6j�:

We have the following crucial relation ([19, p. 259]; cf. the remark at the end of
Section 10):

hF �E� �O�1�W hl�E�W hF �E� �O�log hl�E��: �4�

Given a real number x > 0, de¢ne

S�x� � fE=Q: he�E�W xg;
Ss�x� � fE 2 S�x�:E is semistableg;
S0�x� � fE 2 Ss�x�:E has good reduction at 2 and 3g:

Let dE be the product of the odd prime divisors of D�E�. For any integerD, denote by
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ED the twist of E by Q� ����
D
p �. For t � �1, de¢ne

St�x� � E 2 S�x�:
E is semistable at all p > 2; both E

and Eÿ1 are additive at 2; j�E� is

a 2-adic unit, and dE � t �mod 4�

8><>:
9>=>;:

Clearly #S0�x�W#Ss�x�W#S�x�, and #S�x�W 4x10. While not every pair of
integers �c4; c6� with jc4j < x4; jc6j < x6 gives rise to a minimal Weierstrass equation
over Q, one would expect that a positive portion of them do, and hence one would
expect that #S�x� �� x10. It is not so clear what to expect for the size of Ss�x�.
Our ¢rst result states that there are indeed asymptotic formula for the size of all
four sets above.

THEOREM 1. With respect to the exponential height, 17:9% of all elliptic curves
over Q are semistable. More precisely,

#S�x� � 5 � 7 � 114 � 132 � 31 � 61 � 233 � 727
221317p10

x10 �O
x10

log x

� �
�

� 1:094� 10ÿ3x10;

#Ss�x� � 5
2534p2

x10 �O
x10

log x

� �
� 1:954� 10ÿ4x10;

#S0�x� � 5 � 7
2536p2

x10 �O
x10

log x

� �
� 1:520� 10ÿ4x10;

#St�x� � 5
22035p2

x10 �O
x10

log x

� �
� 1:988� 10ÿ9x10; for t � �1:

For any positive real numbers a;C and any semistable curve E=Q, consider the
following statement:

SZ�a;C�: hF �E�W a logNE � C log logNE :

For any a > 1=2 (and replacing log logNE by 1) this is equivalent to the Szpiro
Conjecture [20].

The ¢rst part of the following theorem is essentially [7, Thm. 2] (cf. Section 7).

THEOREM 2. (a) For any real number a > 1=12 there exists a constant Ca > 0
depending only on a, such that

#fE 2 Ss�x�:SZ�a;Ca� is false for Eg � oa�x10�:

(b) If a < 1=12, then for any constant C, the set of semistable curves for which
SZ�a;C� is false has positive density.
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De¢ne

F �x� � fE 2 Ss�x�:E is a Frey curveg:

While the Szpiro Conjecture is true for all elliptic curves overQ (resp. all semistable
curves) if and only if it is true for all Frey curves,the method in [7] does not seem to
yield for Frey curves an analog of Theorem 2(a). By sieving lattice points in
homogeneous expanding domains we obtain the following result.

THEOREM 3. (a) There exists a constant d > 0 such that

#F �x� � dx4 �O�x4 logÿ1=2 x�:

Numerically, d � 0:01148.
(b) There exists an absolute constant c > 0, such that for any number a > 1=6 there

exists a constant Ca depending on a only, such that

# E 2 F �x� :
SZ�a;Ca� is
false for E

� �
� O

�
x4

log
1
12 x
� x4

2c�1ÿ
1
6a� log1=2 x

�
:

(c) If a < 1=6, then for any constant C, the set of Frey curves for which SZ�a;C� is
false has positive density.

Utilizing Theorem 3 we can deduce that the ABC Conjecture with a weaker
exponent holds for almost all Frey triples. More precisely, for any positive numbers
a; g > 0 and any coprime integers A;B;C with A� B � C � 0, consider the
following statement

ABC�l; g�: max�jAj; jBj; jCj� < g
Y

pjABC
pl:

For any a > 1 this gives the ABC Conjecture.

COROLLARY 1. For any l > 6=5 there exists a constant Cl > 0 depending on l
only, such that the number of Frey triples �A;B;C� for which ABC�l;Cl� fails
and with max�jAj; jBj; jCj� < x, is �l x2= log1=12 x.

We now study the question of equidistribution of root numbers. Following
Rohrlich [16], we denote byW �E� the global root number of E=Q. It takes the value
�1, and it is equal to the sign of the functional equation of the L-function of the
(modular) elliptic curve E=Q.

Let S�1 �
S

x>0 S�1�x�. For any elliptic curve E=Q, denote by Eÿ1 the quadratic
twist of E by Q� �������ÿ1p �.
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THEOREM 4. (a) Suppose E 2 S�. Then Eÿ1 2 S� as well. Both E and E� have the
same exponential height, and W �E� �W �Eÿ1� � 0. Consequently,X

E2S�
he�E��x

W �E� � 0:

(b) Denote by o�E� the number of distinct prime divisors of D�E�. ThenX
E2S0�x�

�ÿ1�o�E�W �E� � O�x10 logÿ1=2 x�:

COROLLARY 2. Let e � �1; then

#fE 2 S�1�x�:W �E� � eg � #S�1�x�
2

;

#fE 2 S0�x�: �ÿ1�o�E�W �E� � eg � #S0�x�
2
�O�x10 logÿ1=2 x�:

In particular, a positive portion of all elliptic curves over Q have root number �1
(resp. ÿ1).

Assuming the generalized Riemann hypothesis for the L-function of elliptic curves
plus the modularity conjecture, Brumer [1] showed that the average analytic rank of
elliptic curves overQ, ordered by their Faltings height, is W 2:3; Brumer informed us
that Heath-Brown has improved this to W 2:0 (unpublished). However, from these
conditional results we still cannot deduce that a positive portion of the curves have
rank zero. By working with quadratic twists we have the following partial results.
Denote by rankMW �E� and rankan�E� the Mordell^Weil rank and analytic rank
of E=Q, respectively. Recall that by the work of Kolyvagin et al., these two
quantities coincide if E is modular and rankan�E�W 1.

THEOREM 5. We have the unconditional estimate

#fE=Q: he�E�WX ; rankan�E=Q� � 0g � #S�X �1=3:

Assume the Riemann hypothesis for the zeta functions of the Rankin^Selberg
convolutions of the weight 3=2-modular forms associated to semi-stable elliptic curves
by the Shintani^Shimura lift. Then we have the lower bound

#fE=Q: he�E�WX ; rankan�E=Q� � 0g �e #S�X �1ÿe:

In view of their computations with curves of prime conductors, Brumer and
McGuiness [2] asked if for every nonnegative integer n there exists a positive portion
of elliptic curves with rank n. Little seems to have been proved in this direction; for
the record we state the following result.
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THEOREM 6. We have the unconditional estimate

#fE=Q: he�E�WX ; rankMW �E=Q�X 2g � #S�X �1=2;

In view of the crucial relation (4), we get

COROLLARY 3. The six Theorems above plus Corollary 2 remain true if we use the
logarithmic or Faltings height instead of the exponential height, and if were place
x10 and log x by e10x and x, respectively.

We now give an outline of the paper. In Section 2, we give for any prime p
(including 2 and 3) suf¢cient and necessarily conditions for a given Z-Weierstrass
equation W to be minimal at p. These conditions involve congruence of c4�W �
and c6�W � modulo pn�p� with n�p� < 12. This allows us to count elliptic curves by
counting pairs of integers satisfying conditions conducive to sieving arguments;
cf. for instance the proof of Theorem 1 in Sections 3 and 4. In Sections 5 and 6,
we apply the ¢bering argument of Gouveª a and Mazur [9] to bound the number
of pairs of integers c4; c6 such that c34 ÿ c26 have large prime divisors;
cf. Proposition 5. This estimate yields the zero-density statements in Theorems 2
and 3; the positive density statements follow from the square-free sieve of
nonhomogeneous (resp. homogeneous) cubics. In Section 9, we combine
Proposition 5 with Rohrlich's root number calculation [16] and character sums
estimates to derive the equidistribution statements in Theorem 4. Finally, in
Section 11 we prove Theorem 5 by applying nonvanishing theorems of quadratic
twists of L-functions associated to elliptic curves with square-free discriminants;
and we prove Theorem 6 by constructing a family of elliptic curves with two
independent Q-rational nontorsion points, by lifting to Z elliptic curves over F3

whose groups of F3-rational points are not cyclic.
There are two equidistribution statements in Theorem 4. The ¢rst one is arithmetic

in nature. The second statement is more analytic, involving the square-free sieve and
character sums estimates. Now, one might object to averaging over �ÿ1�o�E�W �E� as
being unnatural, and in any case we expect that the stronger equidistribution
statements

X
E2S0�x�

�ÿ1�o�E� �? o�x10� and
X

E2S0�x�
W �E� �? o�x10� �5�

to be true. The analytic argument in Section 10 can be adapted to show that the
second part of (5) follows from the ¢rst part. But this ¢rst part seems to be a very
deep problem in analytic number theory: consider the related problem of establishing
(5) for curves with square-free discriminants; our argument for Theorem 4 also
carries over to this case. The analog of the ¢rst part of (5) then becomes (for c4
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and c6 lying in certain congruence classes modulo powers of 2 and 3)X
jc4 j<x4
jc6 j<x6

m
c34 ÿ c26
1728

� �
?�o�x10�; �19�

where m is the Mo« bius function. On the other hand, even the much simpler assertionX
nW x

m�n� � o�x�

is equivalent to the prime number theorem; more precisely, the nonvanishing of the
Riemann zeta function on the line Re�s� � 1 [5, x3:1:4]. It would be interesting
to relate (6) to questions about nonvanishing of L-functions.

2. Minimal Weierstrass Equation

In this section we determine those pairs of integers c4; c6 which arise from the
minimal Weierstrass equations of elliptic curves over Q. Denote by c4�W �; c6�W �
and D�W � the quantities corresponding to a Weierstrass equation W over Z. We
will make repeated use of the basic relation

c4�W �3 ÿ c6�W �2 � 1728D�W �: �7�
Our starting point is the following result of Kraus [13] (independently discovered by
Mestre).

PROPOSITION 1. Let c4; c6 and D be integers such that c34 ÿ c26 � 1728D 6� 0.Then
there exists a Weierstrass equation W over Z with c4�W � � c4 and c6�W � � c6 if
and only if the following conditions hold:

. v3�c6� 6� 2, and

. either c6 � ÿ1 �mod 4�, or both v2�c4�X 4 and c6 � 0 or 8 �mod 32�. &

In view of this result, our task is to give conditions on c4 and c6 such that

(1) c34 ÿ c26 � 0 �mod 1728�;
(2) c4 and c6 satisfy the hypothesis of Proposition 1, and hence correspond to some

Weierstrass equation;
(3) this equation is minimal over Z.

The ¢rst requirement is achieved by imposing congruence conditions; for future
references we will also determine the corresponding reduction type. We will make
repeated use of the following standard fact.

LEMMA 1. If an elliptic curve E=Q has bad reduction at p (including 2 and 3), then
the reduction type is multiplicative if and only if p j6 c4�E�.
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Proof. Cf. [17, p. 180]. &

PROPOSITION 2. For two integers c4; c6, we have c34 ÿ c26 � 0 �mod 1728� precisely
when, for each of p � 2 and 3, one of the following conditions hold:

p � 3:

(a) v3�c4�X 2 and v3�c6�X 3 (additive or not minimal at 3); or
(b) v3�c4� � 1 and v3�c6�X 3 (good);
(c) c4 � 1� 3a; c6 � 1� 9b, with a � b �mod 3�. The reduction type is either good or

multiplicative, with the former type precisely when

a 6� 2b �mod 9� if a 6� 2 �mod 3�; or
aÿ 2b� 6 6� 0 �mod 9� if a � 2 �mod 3�:

p � 2:

(d) v2�c4�X 4 and v2�c6� � 3 (good); or
(e) v2�c4�X 4 and v2�c6�X 5 (additive or not minimal at 2 ); or
(f) c4 � 1� 16a; c6 � ÿ1� 8b, with a � b �mod 4�.The reduction type is either good

or multiplicative, with the former type precisely when a 6� b �mod 8�; or
(g) c4 � 1� 8a; c6 � ÿ1� 4b, with the following choices for a; b1 �mod 16�:

good reduction: �1; 15�; �9; 7�; �3; 9�; �11; 1�; �5; 11�; �13; 3�;
�7; 13�; �15; 5�;

multiplicative: �1; 7�; �9; 15�; �3; 1�; �11; 9�; �5; 3�; �13; 11�;
�7; 5�; �15; 13�:

Proof. We give the argument for p � 2; the case p � 3 is similar and simpler.
If c4 is even, then cases (d) and (e) follows immediately from Proposition 1. Now,

suppose c4 is odd, and hence so is c6 by (7). Then c26 � 1 �mod 8�, whence
c4 � 1 �mod 8� by (7). Write c4 � 1� 8a; c6 � ÿ1� 4b. Then (7) becomes

3a � ÿb� 2b2 �mod 8�: �8�

If a is even, then so is b, and (21) becomes 3�a=2� � ÿ�b=2� �mod 4�. Moreover, we
have bad reduction (necessarily multiplicative, by Lemma 1) precisely when (8) holds
modulo 16. These give case (f) of the Proposition.

Now, suppose a is odd. From (8) we see that the choices for a; b �mod 8� are
�1; 7�; �3; 1�; �5; 3�; �7; 5�. Moreover, we have bad (multiplicative) reduction if and
only if 3a� 3 � 23a2 � ÿb� 2b2 �mod 16�.

These give case (g) of the Proposition. &

Any pair c4; c6 in Proposition 2 already satis¢es Proposition 1, and, hence, comes
from some Weierstrass equation over Z. It remains to decide if this equation is
minimal over Z.
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PROPOSITION 3. Let c4; c6 be as in Proposition 2. Then the corresponding
Weierstrass equation is minimal over Z if and only if the following conditions are
satis¢ed for every prime p:

p > 3:
(a) vp�c4� < 4 or vp�c6� < 6;

p � 3:

(b) c4; c6 are prime to 3 and are as given by Proposition 2(c); or
(c) vp�c4� � 1 and vp�c6�X 3 (good ); or
(d) vp�c4� � 2; 3 and vp�c6�X 3 (additive); or
(e) vp�c4� � 4 and

. vp�c6� � 3; 4; 5; 7; 8; or

. vp�c6� � 6 and �c4=34; c6=36� does not satisfy Proposition 2(c);
Such pairs give rise to additive reduction.

(f) vp�c4� > 4 and vp�c6� � 3; 4; 5; 6; 7; 8 (additive).

p � 2:

(g) c4; c6 are prime to 2 and are as given by Proposition 2(f,g);
(h) vp�c4�X 4 and vp�c6� � 3 (good ); or
(i) vp�c4�X 4 and vp�c6� � 5 (additive); or
(j) vp�c4� � 4; vp�c6� � 6, and �c4=24; c6=26� does not satisfy Proposition 2(f,g).

Such pairs give rise to additive reduction.
(k) 4 < vp�c4� < 8 and vp�c6�X 6 (additive); or
(l) vp�c4�X 8 and vp�c6� � 6; 7; 8; 10 (additive).

Proof. Given a Weierstrass equation W , any Z-change of variables scales c4�W �
and c6�W � by a factor of rÿ4 and rÿ6 respectively for some integer r 6� 0. The con-
ditions for p > 3 then follow from Proposition 1. Moreover,we can assume that
for p � 2 and 3, either vp�c4� < 8 or vp�c6� < 12. The rest now follows from Prop-
osition 2. &

LEMMA 2. Suppose E=Qp has bad reduction overQp. Then for any nonzero D 2 Zp,
E has good reduction over Qp�

����
D
p � if and only if ED (the quadratic twist of E by

D) has good reduction over Qp.
Proof. Since good reduction is preserved by ¢eld extensions, the `if ' part of the

Lemma is clear. So suppose E has good reduction over K � Qp�
����
D
p �. Unrami¢ed

extensions do not affect reduction types and E=Qp has bad reduction, so K=Qp

is rami¢ed. By the Nëron^Ogg^Shafarevich criterion [17, Thm. 7.1], we need to show
that the l-adic representation rED;l of G � GQp

associated to ED is unrami¢ed for
some prime l 6� p.

By Hensel's lemma we can assume thatD is an integer; replacingD byDÿ pn with

n suf¢ciently large, we can further assume that D is a negative integer. Thus the

nontrivial coset ofGK in G is generated by the image inG of the complex conjugation
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t. In particular, thas order 2 in G, and hence t � rE;l�t� is either � 1 0

0 1

� �
or is

conjugate to 1 0

0 ÿ1

� �
. Since t generates the Galois group of the rami¢ed extension

K=Qp and since E has good reduction over K , the image under rE;l of the inertia

subgroup of G is generated by t. Thus if t is not scalar, then detrE;l is rami¢ed,

contradicting the fact that the l-adic cyclotomic character over Qp is unrami¢ed

if p 6� l. If t � 1 0

0 1

� �
, then rE;l is unrami¢ed, and hence E has good reduction over

Qp, a contradiction. Finally, if t � ÿ 1 0

0 1

� �
, then, denoting by wD the quadratic

character of G associated to K=Qp, we getrED;l�t� �
ÿ
rE;l 
 wD

��t� � 1 0

0 1

� �
, so

ED has good reduction over Qp, as desired. &

PROPOSITION 4. Suppose E=Q2 has additive reduction at 2, and that its j-invariant
is a 2-adic unit. Then E acquires good reduction over a quadratic extension L=Q2, and
the local root number of E=Q2 depends on L only. This extension L is determined by
the following congruence conditions:

L � Q2�
�������
ÿ1
p
� or Q2�

���
3
p
�:

c4 � 24g4; c6 � 26g6 with g4 �mod 27�; g6 �mod 26� given by

�1; 33�; �9; 5�; �17; 25�; �25; 29�; �33; 17�; �41; 53�; �49; 9�; �57; 13�; �65; 1�;
�73; 37�; �81; 57�; �89; 61�; �97; 49�; �105; 21�; �113; 41�; �121; 45�:
In this case the local root number is ÿ 1:

L � Q2�
���
2
p
� or Q2�

�����
10
p
�:

c4 � 26g4; c6 � 29g6 with g4 �mod 27�; g6 �mod 26� given by

�1; 31�; �9; 59�; �17; 39�; �25; 35�; �33; 47�; �41; 11�; �49; 55�; �57; 51�; �65; 63�;
�73; 27�; �81; 7�; �89; 3�; �97; 15�; �105; 43�; �113; 23�; �121; 19�:
In this case the local root number is � 1:

L � Q2�
�������
ÿ2
p
� or Q2�

���������
ÿ10
p

�:
c4 � 26g4; c6 � 29g6 with g4 �mod 27�; g6 �mod 26� given by

�1; 33�; �9; 5�; �17; 25�; �25; 29�; �33; 17�; �41; 53�; �49; 9�; �57; 13�; �65; 1�;
�73; 37�; �81; 57�; �89; 61�; �97; 49�; �105; 21�; �113; 41�; �121; 45�:
In this case the local root number is ÿ 1:

Proof. Since j�E� is a 2-adic unit, E=Q2 has potentially good reduction, and the
automorphism group of the reduced curve (over F2) has order 2 [17, p. 325]. From
([16], bottom of p. 127) and the reference therein we see that E=Q2 acquires good
reduction over an extension of Q2 of degree W 2. Suppose further that E=Q2 is
additive. The hypothesis that j�E� is a 2-adic unit means that 3v2�c4�E�� �
v2�D�E��, while by [17, Exer. 7.2] we have v2�D�E�� < 24. Combine Proposition 3
with the relation (7), we see that
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(i) 26jj�g34 ÿ g26�, where g4 � c4 and g6 denote the odd part of c4 and c6, respectively;
and

(ii) in either v2�c4�E�� � 4 and v2�c6�E�� � 6, or v2�c4�E�� � 6 and v2�c6�E�� � 9.

Set

n � v2�c4�E�� ÿ 4
2

:

Then a routine application of Tate's algorithm shows that

y2 � x3 ÿ 27g42
2nxÿ 54g62

3n

is a minimal Weierstrass equation of E=Q2. Condition (i) is satis¢ed by specifying
g4 �mod 27� and g6 �mod 26�. Note that if g04 � g4 �mod 27� and g06 � g6 �mod 26�, then
by Tate's algorithm the reduction type over Q2 of the two corresponding curves are
identical; moreover, the same holds if we twist the two curves by the same quadratic
¢eld. Thus to determine the quadratic extension L=Q2 over which E has good
reduction, it suf¢ces to pick any pair g4 �mod 27� and g6 �mod 26� and then check
each of the six rami¢ed quadratic extensions of Q2 using Lemma 2. Finally, the
root number computation follows immediately from [16, Prop. 2(iii)]. This completes
the proof of the Proposition. &

3. Counting Elliptic Curves: Conditions at p > 3

Let a1; a2;M1 and M2 be integers. De¢ne three sets

T0�x; y; a1; a2;M1;M2� � �a; b�:
jajW x; a � a1 �mod M1�;
jbjW y; b � a2 �mod M2�

( )
;

T �x; y; a1; a2;M1;M2� �
�a; b� 2 T0�x; y; a1; a2;M1;M2�: for all
p > 3; either vp�a� < 4 or vp�b� < 6

� �
;

T 0�x; y; a1; a2;M1;M2� �
�a; b� 2 T0�x; y; a1; a2;M1;M2�:

p j6 gcd�a; b� for any p > 3

� �
:

LEMMA 3. For yX x > eM1M2 , we have the estimates

#T �x; y; a1; a2;M1;M2� � xy
M1M2z�10�

Y
pj6M1M2

1
1ÿ pÿ10

�O
xy

log x

� �
;

#T 0�x; y; a1; a2;M1;M2� � xy
M1M2z�2�

Y
pj6M1M2

1
1ÿ pÿ2

�O
xy

log x

� �
:

Proof. To simplify the notations, write T0 for T0�x; y; a1; a2;M1;M2�, etc. De¢ne

T1 � f�a; b� 2 T0: p4ja) p6 j6 a for all p with 3 < p < log xg;
T2 � f�a; b� 2 T0: vp�a�X 4 and vp�b�X 6 for some pX log xg:
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Then

#T1 ÿ #T2 W#T W#T1: �9�

To estimate #T it then suf¢ces to estimate #T1 and #T2.
Let n runs through all integers including 1 which are W xy, prime to M1M2, and

whose prime divisors are all < log x. Let

Nn � #f�a; b� 2 T0: n4ja and n6jbg

Denote by m the Mo« bius function. Then

#T1 �
X
n

m�n�#Nn �
X
n

m�n� xy
n10M1M2

�O�1�
� �

� xy
M1M2

X
n

j�n�
n10
�O

X
n

1

 !

The O-term is bounded in terms of the number of integers W xywhose prime divisors
are all < log x. By [21, p. 359], this quantity is

� xyeÿ log�xy�=2 log log x � �xy�1ÿ1=2 log log x � xy= log x:

On the other hand, if x > e6M1M2 , then

Y
p>log x

pjn6M1M2

�1ÿ pÿ10� � 1�O
X

m>log x

mÿ10
 !

� 1�O�logÿ9 x�;

so the inverse of the left side above is also 1�O�logÿ9 x�. Consequently,

#T1 � xy
M1M2z�10�

Y
pj6M1M2

�1ÿ pÿ10�ÿ1 �O xy= log x� �;

where the O-constant is absolute. On the other hand,

#T2 �
X

x1=4>pX log x

xy
p10
�O�1�

� �
� xy= log9 x� x1=4= log x:

Combine these two estimates with (9) then yields the ¢rst part of the Lemma. To
handle the second part, we work with the sets

T 01 � f�a; b� 2 T0: p j6 ab for every p such that 3 < p < log xg;
T 02 � f�a; b� 2 T0: pj�a; b� for some pX log xg

and repeat the arguments as before. &
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4. Counting Elliptic Curves: Conditions at 2 and 3

To compute S�x�:� #fE=Q: he�E�W xg, we need to count the number of pairs �c4; c6�
in the set T �x4; x6; 1; 1; 1; 1� which satisfy one of conditions fb; c; d; e; f g in
Proposition 3 and one of conditions fg; h; i; j; k; lg there. Let e � z�10��1ÿ 2ÿ10�ÿ1
�1ÿ 3ÿ10�ÿ1. As u runs through the labels fb; c; d; e; f g, Lemma 3 furnishes a positive
constant t3;u such that

#
�a; b� 2 T �x4; x6; 1; 1; 1; 1�: �a; b�
satisfies condition �u� in Prop. 3

� �
� 4t3;ux10

e
�O�x10= log4 x�:

For w 2 fg; h; i; j; k; lg we de¢ne t2;w analogously. Note that

#T �x4; x6; 1; 1; 1; 1� � 4x10

e
�O�x10= log x�:

Thus #S�x� is equal to

4x10

e
1ÿ �1ÿ

X
u

t3;u� ÿ �1ÿ
X
w

t2;w� � �1ÿ
X
u

t3;u��1ÿ
X
w

t2;w�
 !

�

�O�x10= log4 x�

� 4x10

e

X
u

t3;u

 ! X
w

t2;w

 !
�O�x10= log4 x�:

The ¢rst part of Theorem 1 then follows an elementary computation of the t's via
Lemma 3. We summarize the results as follow:

u b c d e f
t3;u 1=34 2=35 26=37 1502=314 1=38

�����
w g h i j k l
t2;w 1=29 1=28 1=210 511=219 15=215 27=219

�����
To count Ss�x� we proceed as before, with e replaced by z�2��1ÿ 2ÿ2�ÿ1�1ÿ 3ÿ2�ÿ1,
the set T �x4; x6; 1; 1; 1; 1� replaced by T 0�x4; x6; 1; 1; 1; 1�, and that for p � 3 we have
only conditions �b; c� of Proposition 3; and for p � 2 only conditions �g; h�.Note that
the constants t3;u and t2;w so obtained are the same as the previous ones. The
calculation for S0�x� is similar to that for Ss�x�, but this time t3;b � 8=36 and
t2;g � 1=210.

Finally, to count St�x� we use the set T 0�x4; x6; 1; 1; 1� for the semistable condition
at p > 3. At p � 3 we use conditions (b, c) of the table above. The conditions for
p � 2 are determined by the second and the third case of Proposition 4. Note that
among those pairs �g4; g6� that are congruent to any one of the pairs in Proposition
4, exactly half of them satisfy 2ÿ6�g34 ÿ g26� � 1 �mod 4� (resp. ÿ1 �mod 4�). The
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asymptotic constant is then equal to

4x10

z�2��1ÿ 2ÿ2��1ÿ 3ÿ2�
1
34
� 2
35

� �
32� 1

2
� 1

213
� 1

215

� �
:

This completes the proof of Theorem 1.

5. Local Densities

For any integer m > 1, de¢ne

r�m� � number of integer pairs �a; b� incongruent mod m; such
that a3 ÿ b2 � 0 �mod m�; and that gcd�m; a; b� � 1:

�
Let M > 1 be an integer divisible only by powers of 2 and 3, and let a; b be integers
prime to M. De¢ne r�m; a; b;M� as we did with r�m� above with the additional
conditions that a � a �mod M� and b � b �mod M�.

Denote by j the Euler j-function, and by �c� (resp. hci) the largest integer W c
(resp. < c).

The following is an extension to the non-homogeneous cubic c34 ÿ c26 of [9, Lem. 1].

LEMMA 4. (a) Let pW 3. For any integer vX 1 and any a; b prime to 6, we have

r�pv; a; b;M�W r�pv� � O�p7v=6�:

(b) Let p > 3, and let r1�p� be the number of solutions of x6 ÿ 1 � 0 �mod p�. Then
for any vX 1 and any a; b prime to 6, we have the equality

r�pv� � r�pv; a; b;M� � r1�p�
Xhv=6i
l�0

j�pvÿ6l�:

Proof. Note that r�pv; a; b;M�W r�pv�, and that the congruence conditions are
irrelevant if p > 3. Thus it suf¢ces to prove the Lemma for r�pv� only.

Let �a; b� be a pair of integer solution of c34 ÿ c26 � 0 �mod pv�, such that if p > 3
then p j6 �a; b�, but without the extra congruence mod M. Then

(i) if either vp�a� < v=3 or vp�b� < v=2, then 3vp�a� � 2vp�b�. Call this common value
l the ord of this solution. Note that l < v and 6jl.

(ii) any pair of integers �a; b� with both vp�a�X v=3 and vp�b�X v=2 is a solution
ofc34 ÿ c26 � 0 �mod pv�.

These two cases are clearly disjoint, and the type (ii) solution contributes to r�pv�
only if pW 3, in which case the contribution is p�v=2���2v=3�. We now count the type
(i) solutions according to their ord.
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Let �a; b� be a solution of ord l. Then a � a1pl=3; b � b1pl=2 with

p j6 a1b1 and a31 ÿ b21 � 0 �mod pvÿl�: �10�

First, suppose p � 3. If vÿ l � 1, then there are 3 solutions. Suppose inductively that
there are 3n solutions mod 3n. Let �a1; b1� one such solution; then

�a1 � 3nx�3 ÿ �b1 � 3ny�2 � a31 ÿ b21 ÿ 6yb1 �mod 3n�1�:

If we set the equation above to 0 �mod 3n�1�, then y �mod 3� is uniquely determined
since 3 j6 b1. Thus every 1 �mod 3n� solutions lifts to exactly three 1 �mod 3n�1�
solutions. By induction we see that there are 3n type (i) solutions 1 �mod 3n� for
every n. Together with the type (ii) solutions we then obtained part (a). The same
argument takes care of the case p � 2.

Now, suppose p > 3. From (10) we get

a1 � a22 �mod pvÿl� and b1 � b22 �mod pvÿl�

with

a62 ÿ b6 � 0 �mod pvÿl� and p j6 a2b2:

We can rewrite this as

b2 � a2x �mod pvÿl� with x6 � 1 �mod pvÿl�; p j6 a2b2: �11�

Since p > 3 and v > l, the number of solutions 1 �mod pvÿl� to x6 � 1 is r1�p�, so
the number of solutions 1 �mod pvÿl� to (11) is r1�p�j�pvÿl�. The Lemma then
follows. &

Following Gouveª a and Mazur, a real-valued function h de¢ned on the set of all
prime powers pv for all p and v > 0 is called a prime-power function. Extending
hmultiplicatively to a function on the positive integers, it then makes sense to speak
of the Dirichlet series associated to h. Also, we say that h is negligible if there exists
positive constants c > 1; s < 1, and A > 1 such that

log 1�
X
vX 1

jh�pv�jpÿvs
0@ 1A������

������WApÿc

for all real sX s and all primes p.
Let t0 be the prime-power function whose associated Dirichlet series is three times

that of the Dedekind zeta function of Q� �������ÿ3p �. Also, de¢ne three prime-power
functions as follow:
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Since a�pv� � 0 if p > 3 and is O�pv=6� if pW 3, it follows that a is negligible. We
claim that gÿ t0 is also negligible. Since a� gÿ t0 � tÿ t0 by Lemma 4(b), it follows
that tÿ t0 is negligible.

To verify the claim, take p > 3 and write g�pv; a; b;M� as

r1�p�j�p�=p� r1�p�
Xhv=6i
l�1

j�pvÿ6l�pÿv

� r1�p� ÿ r1�p�=p�O r1�p�
Xhv=6i
l�1

pÿ6l
 !

� r1�p� ÿ r1�p�=p�O
ÿ
r1�p�=p5�:

�12�

Let g0�pv; a; b;M� be r1�p� if v � 1 and is 0 otherwise. It follows from (12) that gÿ g0 is
negligible, and that the Dirichlet series associated to g0 ÿ t0 converges for any s > 0.
The latter implies that g0 ÿ t0 is negligible, and hence so is gÿ t0 � �gÿ g0��
�g0 ÿ t0�, as claimed.

For any integer m > 0, de¢ne sÿ1=2�m� to be the sum of the ÿ 1
2th power of the

positive divisors of n.

LEMMA 5. For any a; b and M as before, we have the estimate

X
mW x

sÿ1=2�m�r�m; a; b;M�=m � O�x�:

Proof. Note that sÿ1=2�m� < 1 for all m, so �tÿ t0�sÿ1=2 is also negligible. The
Lemma then follows by combining [9, Lem. 6] applied to tÿ t0, with the Tauberian
theorem applied to the Dirichlet series associated to t0 (i.e. the zeta function of
Q� �������ÿ3p �). &

6. A Fibering Argument

The following estimate is the backbone of our subsequent sieve arguments.

a�pv; a; b;M� g�pv; a; b;M� t�pv; a; b;M�
p > 3

0 r1�p�
Xhv=6i
l�0

j�pvÿ6l�pÿv r�pv; a; b;M�pÿv

pW 3
r�pv; a; b;M�pÿv 0 r�pv; a; b;M�pÿv

38 SIMAN WONG

https://doi.org/10.1023/A:1017514507447 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017514507447


PROPOSITION 5. Let c4 and c6 run through all pairs of integers with
jc4jW x4; jc6jW x6 and with no common prime divisor > 3. Write D � c34 ÿ c26. ThenX

log x
10 <p<x

6

X
c4 ;c6
p2 jD

1� x10 logÿ1=2 x: �13�

Proof. For p > 3, the number of integer pairs �a; b� which are incongruent mod p2

such that p j6 ab and a3 ÿ b2 � 0 �mod p2�, is p�pÿ 1�.Thus the contribution to (13)
from primes pW x4

����������
log x

p
is bounded from the above by

X
log x
10 <pW x4

�������
log x
p p�pÿ 1� 2x4

p2
�O�1�

� �
2x6

p2
�O�1�

� �� �
�

X
log x
10 <pW x4

�������
log x
p x10=p2 � x6

ÿ �

� x10
X

n>log x

1=n2 � x4 logÿ1=2 x
log x

x6

� x10 logÿ1=2 x:

It remains to work with those primes p > x4
����������
log x

p
.

Given any integer m 6� 0, de¢ne

U�c6;m� � # jc4jW x4:
c34 ÿ c26 � mp2 for some prime p
such that x4 logÿ1=2 x < p < x6

� �
rc6 �m� � #fc4 �mod m�: c34 ÿ c26 � 0 �mod m�g:

;

Using the method of large sieve plus the Riemann hypothesis for curves, Hooley
[11, x4:3] showed that, for m < A3x4 logÿ4=3 x (A3 a constant),

U�c6;m� � O�sÿ1=2�m�rc6 �m�
�����������
x4=m

p
�: �14�

Moreover, Gouveª a and Mazur [9, Lem. 11] showed that the O-constant is
independent of c6.

Remark. Gouveª a and Mazur assumed that both m and c6 are positive; a quick
inspection of their argument shows that this hypothesis was not invoked. Also, note
that the proof the Sublemma there makes no use of the fact that the polynomial
fb�u� there is homogeneous in u and b.

The contribution to (13) from primes p > x4
����������
log x

p
is thenX

x4
�������
log x
p

<p<x6

X
c4 ;c6
p2 jD

1�
X
jc6jW x6

X
jmjW

x4= log x

U�c6;m�;

where on the right side we sum over all c6 and (in U) c4, with no divisibility condition
on �c4; c6�. Interchange the order of summation and invoke Hooley's estimate (14) as
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in [9, p. 19], we getX
jmjW

x4= log x

X
jc6jW x6

U�c6;m�W
X

jmjW x4= log x

x6

m

X
0W jc6j<m

U�c6;m�

�
X

jmjW x4= log x

x6

m

�����
x4

m

r
sÿ1=2�m�

X
0W jc6j<m

rc6 �m�
0@ 1A

� x8
X

jmjW x4= log x

1����
m
p sÿ1=2�m� r�m�m

:

Combine Lemma 5 with partial summation, we see that the contribution to (13) from
p > x4

����������
log x

p
is

� x8
x2

log1=2 x
� x10 logÿ1=2 x;

as desired. &

7. Szpiro Conjecture

Denote by E�a; b� the elliptic curve over Q given by the model y2 � x3 � ax� b. For
any K > 1, de¢ne

S0�A;B;K� � E�a; b�: jajWA; jbjWB; p4ja) p6 j6 b;
log jD�E�a; b��jXK logNE�a;b�

( )
: �15�

Then [7, Thm. 2] states that

lim
A;B!1

#S0�A;B;K�
AB

� 0:

This is essentially Theorem 2(a), except that the Weierstrass equations in (15) need
not be minimal at 2 and 3, and that Theorem 2 deals with semistable curves only.
In light of Proposition 3, these requirements can be achieved by imposing congruence
conditions on a and b in (15). The arguments in [7] readily adapt to such congruence
conditions, from which Theorem 2(a) follows. Theorem 2(b) is an immediate
consequence of the following Proposition.

PROPOSITION 6. Let Sf �x� be the set of elliptic curves E=Q of height W x such that
D�E� are square-free and are prime to 6. Then #Sf �x� � x10.

Proof. The discriminant of the Weierstrass equation

y2 � x3 � 2434Axÿ 2436B:

is 64A3 � 27B2. If 3 j6 A and 2 j6 B, then by Proposition 2 this equation has good
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reduction at 2 and 3. De¢ne

R0�x� � f�A;B�: 0 < AW x4=243; 0 < BW x6=2333; 3 j6 A; 2 j6 Bg;
R�x� � f�A;B� 2 R0�x�: 64A3 � 27B2 is square-freeg:

Thus R�x� corresponds naturally to a subset of Sf �x�. We claim that #R�x� �
x10=2733p2, from which the Proposition follows. This is very similar to the proof
of Theorem 1 so we will be brief.

For any integer M > 0, denote by r�M� the number of integer pairs �A;B�
which are incongruent mod M, such that 3 j6 A; 2 j6 B, and that
64A3 � 27B2 � 0 �mod M�. De¢ne

sM�x� � f�A;B� 2 R0�x�: 64A3 � 27B2 � 0 �mod M�g;
R1�x� � f�A;B� 2 R0�x�: p2 j6 64A3 � 27B2 for any prime p < log xg;
R2�x� � f�A;B� 2 R0�x�: p2j64A3 � 27B2 for some prime pX log xg:

Then #R�x� � #R1�x� �O�#R2�x��. We now compute the size of these two sets.
The congruence conditions on A and B imply that #sM�x� � 0 if 4jM or 9jM. Thus

as m runs through square-free integers whose prime divisors are all less than
�log x�=10, we get

#R1�x� �
X
m

m�m�#sm2 �x�

�
X
�6;m��1

m�m�r�m2� 2
3

x4

243m2 �O�1�
� �

1
2

x6

2333m2 �O�1�
� �

� x10

2735
X
�6;m��1

m�m�r�m2�
m4 �O�x6

X
m

r�m2��

� x10

2735
Y

3<p<log x
10

1ÿ r�p2�
p4

� �
�O�x6

X
m

r�m2��:

For any prime p > 3 we have r�p2� � p2. Combined with the Chinese remainder
Theorem, we get r�m2�Wm2. Since mW

Q
p<log x

10
p < x0:14, #R1�x� is equal to

x10

2735�1ÿ 2ÿ2��1ÿ 3ÿ2�z�2� �O
x10

log2 x

� �
� x10

2733p2
�O

x10

log2 x

� �
:

Now, the error term #R2�x� is at most
P

log x
10 W p<x6 #sp2 �x� By Proposition 5 this is

� x10 logÿ1=2 x. This completes the proof of Proposition 6. &
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Remark.This argument can be re¢ned to give an asymptotic formula for the size of
Sf �x�, as we did for S�x� and S0�x�. We do not require such a result and so will not
pursue this.

8. Counting Frey Curves

Recall that a subset D of Rn is �nÿ 1�-Lipschitz parameterizable if its boundary @D
can be covered by the images of a ¢nite number of functions ji: �0; 1�nÿ1!Rn, such
that for each i, there exists a constant li > 0, called the Lipschitz constant for
ji, such that jj�x� ÿ j�y�jW lijxÿ yj for any x; y 2 �0; 1�nÿ1. The following Lemma
is a straight-forward adaptation of the argument in [12, p. 128].

LEMMA 6.Let D be a subset ofRn such that @D is �nÿ 1�-Lipschitz parameterizable.
Let L � Rn be a lattice with fundamental domain F. Fix an element P 2 L. Then for
any integer mX 1 and any tW 1,

#
ÿ
tD \ �P �mL�� � vol�D�

vol�F �
t
m

� �n
�O�tnÿ1�;

where the O-constant depends only on L; n and the Lipschitz constants, but not on m
and P. &

Recall that a Frey curve is a semistable curve corresponding to a Frey triple
�A;B;C� as de¢ned in the Introduction. Note that the sign condition in (3) uniquely
pin down a Frey triple among its six permutations (astriples of numbers).

LEMMA 7. Distinct Frey triples correspond to non-isomorphic Frey curves.
Proof. Suppose that two Frey triples �A;B;C� and �a; b; g� correspond to

isomorphic curves. Then there is a Q-rational change of variables

X � u2x� r;Y � u3y� u2sx� t

taking theWeierstrass equationY 2 � X �X � A��X ÿ B� to y2 � x�x� a��xÿ b�. The
latter equation does not have a xy-term or a y-term, so s � t � 0. Thus

x�x� a��xÿ b� � x� r
u2

� �
x� r� A

u2

� �
xÿ rÿ B

u2

� �
;

whence one of r; r� A; rÿ B is zero. If r � 0, then the set fa; bg is equal to the set
fA=u2;B=u2g. Since �a; b� � �A;B� � 1, that means u2 � 1. Since a;A are even
and b;B are odd, it follows that a � A and b � B.

Now, suppose that r� A � 0. Then fa; bg � fÿA=u2; �ÿAÿ B�=u2g. Again u2 � 1
and a;A are even, but b � ÿ1 �mod 4� while ÿAÿ B � 1 �mod 4�, a contradiction.
A similar argument shows that rÿ B � 0 is impossible. &
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Proof of Theorem 3. In view of Lemma 7, counting Frey curves of bounded height
is equivalent to counting the size of the set

F 0�x� � f�A;B;C�:EA;B;C is a Frey curve and he�EA;B;C�W xg:

A minimal Weierstrass equation of the Frey curve EA;B;C : y2 � x�x� A��xÿ B� is

y2 � xy � x3 � Aÿ B ÿ 1
4

x2 ÿ AB
16

x:

Thus

c4�EA;B;C� � A2 ÿ AB � B2 �16�
and

c6�EA;B;C� � �A� B��A2 � B2 � 13AB=2�:
Recall that A � 0 �mod 16�;B � ÿ1 �mod 4�, and �A;B� � 1. Let M � A=2;
N � B ÿ A=2, and denote by D the 2-dimensional region bounded by

3M2 �N2 W 1 and �3M �N��3M2 � 15MN �N2�W 1:

The boundary of D is clearly 1-Lipschitz parameterizable. Let L � f�8m0; 4n0�:
m0; n0 2 Zg � Z2 and let P � �1; 0�. Then we are reduced to count the number of
points �m; n� 2 x2D \ �P � L� with the additional property that �m; n� � 1. As l runs
through all square-free integers whose prime divisors are W log x, we get

#f�m; n� 2 x2D \ �P � L�: �m; n� � 1g
�
X
l

m�l�#fx2D \ �P � lL�g �O�x4= log x�

�
X
l

m�l�# vol�D�
32

x4

l2
�O�x2�

� �
�O�x4= log x�

� x4
vol�D�
32

Y
pW x2
�1ÿ pÿ2� �O�x2 � x2= log x�

� x4
vol�D�
32z�2� �O�x4= log x�:

Approximate D by rectangular grids and we get numerically vol�D� � 0:2233. This
completes the proof of Theorem 3(a).

LEMMA 8. Let

G�x� �
�
EA;B;C 2 F �x�: jAj; jBj > x2= log x; jc6�E�j > x6= log x;

jD�EA;B;C�j > he�EA;B;C�= log3 x

�
:

Then
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i(i) jc4�EA;B;C�j � x4= log2 x.
(ii) #G�x� � #F �x� �O�x4 logÿ1 x�.

Proof. Since c4�EA;B;C� � A2 ÿ AB � B2 is a positive de¢nite quadratic form in A
and B,

(iii) if he�EA;B;C�W x then jAj; jBj � x2;
(iv) we have jc4�EA;B;C�j � x4= log2 x provided that

jAj; jBj > x2= log x: �17�
This gives (i).

For any ¢xed g 2 R, the number of pairs of integers jAj; jBj � x2 satisfying (17)
and jA� gBj < x2 logÿ1 x, is �g x4 logÿ1 x. In light of (iii) and the factorizations

c6�EA;B;C� � �A� B� Aÿÿ13�
��������
153
p

4
B

 !
Aÿÿ13ÿ

��������
153
p

4
B

 !
;

D�EA;B;C� � AB�A� B�
16

� �2

;

we get (ii). &

LEMMA 9.Denote by r�M� the number of pairs of integers �A;B� incongruentmodM
such that AB�A� B� � 0 �mod M�. Then there exists an absolute constant C > 0,
independent of M, such that r�M�WCM.

Proof. Hensel's lemma plus the Chinese remainder theorem. &

We now tackle Theorem 3(b). If E 2 G�x�, then the condition D�EA;B;C� >
he�EA;B;C�= log3 x plus the crucial relation (4) imply that

hF �x�W 1
12

log jD�E�j �O�log log x�

with an absolute O-constant. Since

D�EA;B;C� � AB�A� B�
16

� �2

�18�

and since NEA;B;C � square-free part of D�EA;B;C�, we need to show that for any
a > 1=6, the number of Frey curves in F �x� for which N6a

E < jAB�A� B�j has density
zero. Set x � log1=2 x. We have to consider three cases:

ii(i) p2jAB�A� B� for some prime pX x3;
i(ii) p2jAB�A� B� for some prime p with xW p < x3;
(iii) if p2jAB�A� B� then p < x.

Proof. Since �A;B� � 1 and jAj; jBj � x2, case (ii) is handled as we did with the
¢rst sum in Proposition 5, and case (i) is already handled by Gouveª a and Mazur
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[9, x8]. These together yield an upper bound� x4=xwith an absolute O-constant. For
case (iii), write jAB�A� B�j � pa11 � � � parr and let m � maxfai: pi < xg. The prime
number theorem gives

P
pW x log p � x� o�x�, so

emx �
Y
pi W x

pi

0@ 1Am

X
Y
pi W x

paii X
jAB�A� B�j

NE

X jAB�A� B�j1ÿ 1
6a � ÿ

x12 logÿ2 x
�1ÿ 1

6a;

where the O-constants are absolute. Thus there exists an absolute constant c > 0
such that m > c

ÿ
1ÿ 1

6a

�
x. For every Frey curve EA;B;C in case (iii) we can then ¢nd

a prime p < x such that AB�A� B� is divisible by p�c�1ÿ
1
6a�x�. The number of such case

(iii) curves is then at most

�
X
p<x

r
ÿ
p�c�1ÿ

1
6a�x�
�
2x2pÿ�c�1ÿ

1
6a�x�

� �2
� x4

X
p<x

pÿ�c�1ÿ
1
6a�x� �O x2

X
p<x

1

 !
� x4=2�c�1ÿ

1
6a�x�;

where the O-constants are absolute. This completes the proof of Theorem 3(b).
Finally, for part (c) it suf¢ces to show that a positive portion of the Frey curves

have fouth power free discriminants. Since 16jA and 2 j6 B, by (18) it suf¢ces to show
that ab�16a� b� is square-free for a positive portions of integer pairs �a; b�. This
follows immediately from [9, Thm. 3]. This completes the proof of Theorem 3.&

Proof of Corollary 1. By [15, x3], for any constants l > 1 and Cl > 0 there exists a
constant C 0l depending on Cl only, such that SZ�l;Cl� is true for a Frey curve EA;B;C

if and only if ABC�6l=5;C0l� is true for the Frey triple �A;B;C�. By (16), we have

max�jc4�EA;B;C�j1=2; jc6�EA;B;C�j1=3� �� max�jAj; jBj�
�� max�jAj; jBj; jCj�

since A� B � C � 0. Apply Theorem 3(b) and we are done. &

9. Root Numbers of Elliptic Curves

For any ¢nite prime p and any elliptic curve E=Q, denote by Wp�E� the local root
number of E=Qp. Then the global root number of E=Q is given by W �E� �
ÿQp Wp�E�:

LEMMA 10. Suppose E=Q has multiplicative reduction at p > 2. Then

Wp�E� � ÿ ÿc6�E�p

� �
:
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Proof. If E is multiplicative at p, then Wp�E� � ÿ1 if and only if E is split
multiplicative at p [16, Prop. 3], and the latter holds if and only ifÿc6�E�=c4�E�
is a square in Q�p [18, p. 441]. Since E is multiplicative at p, we have p j6 c4�E� [17,
p. 180]. Thus if p > 2, the relation c34 ÿ c26 � 1728D implies that c4�E� is a square
(mod p) and that p j6 c6�E�. The Lemma then follows. &

LEMMA 11. For any curve E=Q, we have c4�Eÿ1� � r4c4�E� and c6�Eÿ1� � ÿr6c6�E�,
where

r �
1 if both E and Eÿ1 have additive reduction at 2;
2 if E is good or multiplicative at 2;
1=2 if E is additive at 2 and Eÿ1 is good or multiplicative at 2:

8<:
Proof. The Weierstrass equation y2 � x3 ÿ 27c4�E�xÿ 54c6�E� is a model of E=Q

[17, p. 42], so y2 � x3 ÿ 27c4�E�x� 54c6�E� is a model of Eÿ1=Q. The c4; c6 and
D of the latter equation is 24c4�E�; 26c6�E� and 212D�E�, so

c4�Eÿ1� � 2
t

� �4

c4�E�; c6�Eÿ1� � 2
t

� �6

c6�E�;

and (19)

D�Eÿ1� � 2
t

� �12

D�E�;

for some positive integer t not divisible by any odd prime.

Case I. E and Eÿ1 both have additive reduction at 2.
By Proposition 3, E being additive at 2 implies that v2�c4�E��X 4, so if t � 1

then (19) implies that v2�c4�Eÿ1��X 8. By Proposition 3 again it then follows
that v2�c6�Eÿ1�� � 6; 7; 8, or 10. By (100) that means v2�c6�E�� � 0; 1; 2, or 4,
contradicting Proposition 3. If 4jt, then by Proposition 3, Eÿ1 being additive at
2 implies that v2�c4�E��X 8 and v2�c6�E��X 11, which is impossible. Thus t � 2.

Case II. E is good or multiplicative at 2.
If E has good reduction at 2, then Eÿ1 has additive reduction at 2. From the third

relation in (19) we see that t � 1.
Now, suppose E is multiplicative at 2. Then there exists an element d 2 Q�2 such

that Ed is the Tate curve over Q2; note that Q2�
���
d
p �=Q2 is unrami¢ed. Twisting

by ÿd then takes Eÿ1 to the Tate curve over Q2. This time Q2�
�������ÿdp �=Q2 is rami¢ed,

so by [16, Prop. 3(ii)] Eÿ1 is additive at 2, and hence 2 divides c4�Eÿ1� by [17,
p. 180]. On the other hand, E is multiplicative at 2, so c4�E� is odd. Invoke (19)
and we are done.

Case III. E is additive at 2, and Eÿ1 is good or multiplicative at 2.

46 SIMAN WONG

https://doi.org/10.1023/A:1017514507447 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017514507447


This follows from case II above, once we note that �Eÿ1�ÿ1 � E. This completes the
proof of the Lemma. &

LEMMA 12.Suppose E=Q2 has additive reduction, and that j�E� is a 2-adic unit. Then

W2�E�W2�Eÿ1� � ÿ1:

Proof. This is an immediate consequence of Proposition 4 and [16, Prop. 2(iii)].&

COROLLARY 4. Let t � �1. Then for E 2 St�x�, we have W �Eÿ1� � ÿt.
Proof. Since E=Q is semistable for p > 2, so does Eÿ1. By Lemma 10, the root

number of Eÿ1 is equal to

ÿW2�Eÿ1�
Y

pjD�Eÿ1�
p>2

ÿc6�Eÿ1�
p

� �

� ÿW2�Eÿ1�
Y

pjD�Eÿ1 �
p>2

ÿ ÿc6�E�
p

� � ÿ1
p

� �
:

If p > 2, then p divides D�E� if and only if it divides D�Eÿ1�. Thus

W �Eÿ1� � ÿW2�Eÿ1�
Y
pjD�E�
p>2

Wp�E� ÿ1p
� �

� W �E�W2�E�W2�Eÿ1� ÿ1dE

� �
:

Apply Lemma 12 and we are done. &

Let P;Q be coprime, nonzero integers withQ odd but possibly negative. De¢ne the
extended Jacobi symbol via

P
Q

� �
� the usual Jacobi symbol �P=jQj� if jQj > 1;

1 otherwise:

�
Suppose P is also odd; then the law of quadratic reciprocity takes the following form
[3, p. 73]:

P
Q

� �
� �ÿ1�Pÿ12 Qÿ1

2 � sgn�P�ÿ1
2

sgn�Q�ÿ1
2

Q
P

� �
;

where sgn�d� � d=jdj. For future reference we compute the symbol �ÿc6=D� for those
pairs �c4; c6� corresponding to elliptic curves in S0�x� such that gcd�6; c4c6� � 3.
Similar formula can be obtained easily in the other cases.

So, suppose gcd�6; c4c6� � 3. By Propositions 2 and 3 we can write c4 � 3g4;
c6 � 3ng6 with nX 3; 3 j6 g4g6; gcd�g4; g6� � 1, and D � �g34 ÿ 32nÿ3g26�=43. Since
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c6 � ÿ1 �mod 4�, we get

ÿc6
D

� �
� �ÿ1�sgn�c6 ��12

sgn�c3
4
ÿc2

6
�ÿ1

2
g34 ÿ 32nÿ3g26
ÿc6

� �
43

ÿc6

� �
� �ÿ1�sgn�c6 ��12

sgn�c3
4
ÿc2

6
�ÿ1

2
g4
ÿ3
� � g4

g6

� � �20�

10. Proof of Theorem 4

The odd part of the discriminant of any elliptic curve over Q is invariant under twist
by ÿ1. If E 2 St�x�, then by Lemma 11 the height of E and Eÿ1 are the same.
Consequently, Eÿ1 2 St�x� as well, and the ¢rst part of Theorem 4 then follows from
Lemma 12. We now tackle the second part.

Given nonzero integersm; nwith n > 1, we write njjm if njm and if gcd�n;m=n� � 1.
Note that if E=Q has height < x, then p2jD implies that p < x6. As n runs through all
perfect squares such that every prime divisor of nis < log x=10, we have the
decomposition

ÿ
X

E2S0�x�
�ÿ1�o�E�W �E�

�
X
c4;c6

ÿc6
D

� �
ÿ
X
n

X
c4 ;c6
njjD

ÿc6
D

� �
�
X
n

X
c4 ;c6
njjD

ÿc6
D

� �Y
pjn

ÿc6
p

� �
�

�O
X

log x
10 <pW x4

�������
log x
p

X
c4;c6
p2 jD

1

0B@
1CA�O

X
x4

�������
log x
p

<p<x6

X
c4 ;c6
p2 jD

1

0B@
1CA;

�21�

where c4; c6 run through all pairs of integers jc4jW x4; jc6jW x6 corresponding to
curves in S0�x�. We now show that each of the ¢ve terms on the right side of (21)
is � x10 logÿ1=2 x, from which the second part of Theorem 4 follows. Note that
the last two terms are covered by Proposition 5.

The ¢rst term in (21): We break down the sum into four pieces, depending on the
value of gcd�6; c4c6�. We will work out the details only for the case where the
gcd is 3; the other three cases are handled in the same way.

So, consider the ¢rst term in (21) taken over pairs �c4; c6� such that
gcd�6; c4c6� � 3. We will call this the restricted ¢rst term. By Proposition 2, we have

. c4 � 3g4; c6 � 3mg6, with 3 j6 g4g6 and nX 3;

. c4; c6 satisfy conditions (f,g) of Proposition 2;

. p j6 �c4; c6� for any prime p > 3.

To compute this restricted ¢rst term, we invoke the root number formula (20)
according to the sign of c34 ÿ c26.
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If c34 ÿ c26 < 0, then by (20) the root number is

�ÿ1�sgn�c6 ��12
g4
ÿ3mg6

� �
� �ÿ1�sgn�c6 ��12

g4
ÿ3
� �m g4

g6

� �
:

Note that Proposition 2(f,g) imposes conditions on g4 �mod 27� and g6 �mod 26�. Fix
one such set of congruence conditions, say g4 � a �mod 27� and g6 � b �mod 26�.
Denote by j the Euler-j function. Then the restricted ¢rst term becomes

1
j�26�j�27�

X
w4

X
jg4jW x4=3

w4�g4=a�
X1
m�3

g4
ÿ3
� �m

�

�
X
w6

X
jg4 j3=2
3mÿ3=2<jg6jW x63m

�ÿ1�sgn�c6 ��12 w6�g6=b�
X

jg4jW j3mÿ1g6j2=3

g4
g6

� �
;

where w4 (resp. w6) runs through all primitive Dirichlet characters of conductor 27

(resp. 26) plus the trivial one. The product w4��� �g6
� �

is a Dirichlet character of
conductor dividing 26 � 4g4. Since gcd�6; g6� � 1, if this product of characters is trivial
then g4 must be a square, for which there are W

����������
x4=3

p
� 2 possibilities, each

contributing � x6=3m to the inner-most sum. If this product of characters is
nontrivial, then the Polya^Vinogradov inequality [4, p. 135] plus the trivial estimate
shows that the inner-most sum is � min� �������jg4jp

log jg4j; x6=3m�. In addition, since
3m divides jc4jW x6, we have mW 6 log x= log 3 < 6 log x. Consequently, the whole
expression above is

�
X
jg4jW x4

X6 log x

m�3

�������
jg4j

p
log jg4j �

X
jg4 jWx4

jg4 j�

X1
m�3

x6=3m

� log x
Z x4

2

��
t
p

ln tdt � x6 log2 x� x8 � x8:

If c34 ÿ c26 > 0, then the inner-most g6-sum is now taken over the interval
jg6jW jg4j3=233=2ÿm. The Polya^Vinogradov argument still applies, yielding the same
upper bound � x8.

Proposition 2(f,g) imposes ¢nitely many congruence conditions on g4 and g6 at 2,
so in the end the contribution to the ¢rst term in (21) from those pairs �c4; c6� with
gcd�6; c4c6� � 3 is � x8. The same goes for the three cases of �6; c4c6�, so the total
contribution of the ¢rst term in (21) is � x8.

The second term in (21): Write n � p2m1
1 � � � p2mr

r . Then njjD if and only if p2mi jjD for
every i. Thus to achieve njjD it suf¢ces to impose congruence conditions on c4
and c6 1 �mod p2mi�1

i � for every pi > 3 as well as congruence conditions at 2 and
3, as prescribed by Proposition 2. As before we will discuss only the case where
gcd�6; c4c6� � 3, and we will ¢x one set of congruence condition g4 �mod 27� and
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g6 �mod 26�. Recall that
P

p<A log p < �2 log 2�A for any AX 1 [10, p. 341]. For any
prime p > 3 and any integer mX 1, induction gives

# �a; b� 2 �Z=pm�1Z�2: pmjj�a3 ÿ b2�
and p j6 ab

� �
� pm�pÿ 1�2: �22�

Thus for any given n as above the total number of possible congruence conditions at
the primes > 3 is

W
Yr
i�1

pmi
i �pi ÿ 1�2 W ���

n
p Y

p<log x
10

p2 <
���
n
p

x
4 log 2
10 <

���
n
p

x0:28: �23�

Also, let

n4 � 27
Y
pi>3

p2mi�1
i W 128nx0:14; n6 � 26

Y
pi>3

p2mi�1
i W 64nx0:14: �24�

Fix one such collection of congruence conditions a �mod n4�; b �mod n6�. Then the
restricted second term is

1
j�n4�j�n6�

X
w4

X
jc4jW x4

w4�c4=a�
X
w6

X
jc6jW x6

w6�c6=b�
ÿc6
D

� �
; �25�

where w4 and w6 run through all primitive Dirichlet characters mod n4 and n6,
respectively, plus the trivial one. When c34 ÿ c26 < 0, combine formula (20) with (25)
and we get

1
j�n4�j�n6�

X
w4

X
jg4jW x4=3

w4�g4=a��

�
X1
m�3

g4
ÿ3
� �mX

w6

X
jg4 j3=2
3mÿ3=2<jg6jW x6=3m

�ÿ1�sgn�g6 ��12
g4
g6

� �

This time the product of characters w6�g6=b� g4
g6

� �
has conductor dividing 4n6g4.

Furthermore, under the hypothesis gcd�6; c4c6� � 3 and njjD, we see that
gcd�n6; g4� � 1. Thus if this product of characters is trivial, then up to a factor
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dividing 4, each of g4 and n6 is a square. Consequently, the expression above is

� 1
j�n4�j�n6�

X
w4;w6

� X
jg4jW x4

X6 log x

m�3

������������
jg4jn6

p
log�jg4jn6� �

X
jg4 jW x4

jg4 j�

X1
m�3

x6

3m

�

� 1
j�n4�j�n6�

X
w4;w6

�����
n6
p

x6 log x� x8
ÿ �

since log�n6� � log x

� �����
n6
p

x6 log x� x8

� ���
n
p

x6:07 log x� x8: by �24�:

We get the same estimate too when c34 ÿ c26 > 0.
To recapitulate, for any perfect square nwhose prime divisors are all< log x, if we

restrict c4; c6 to those with gcd�6; c4c6� � 3 and satisfy a given congruence condition
given by (22) for every prime p > 3 dividing n, then the restricted second term
in (21) is

� ���
n
p

x6:07 log x� x8:

By (23), the total number of congruence classes is � ���
n
p

x0:28, so the total contri-
bution of the second term in (21) for n < x is

Xx
n�1
n�&

���
n
p

x0:28
ÿ � ���

n
p

x6:07 log x� x8
ÿ �

� x6:35 log x
X

tW
��
x
p

t2 � x8:28
X

tW
��
x
p

t� x9:28:
�26�

On the other hand, the contribution of the second term in (21) for x < nW x6 is

�
X

x<nW x6

n�&

X
c4 ;c6
njjD

1�
X

x<nW x6

n�&

���
n
p

x0:28
ÿ � 2x4

n4
�O�1�

� �
2x6

n6
�O�1�

� �

�
X

x<nW x6

n�&

���
n
p

x0:28
ÿ � x10

n2
Q

p<log x
10
p2
� x6

n
Q

p<log x
10
p

 !

�
X

x<nW x6

n�&

x10:28

n3=2
� x6:14���

n
p

� �

� x10:28
X
t>
��
x
p

tÿ3 � x6:14
X
t<x3

1=t � x9:28:

�27�

Combine (26) and (27) and we see that the total contribution of the second term in
(21) is � x9:28.

ON THE DENSITY OF ELLIPTIC CURVES 51

https://doi.org/10.1023/A:1017514507447 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017514507447


The third term in (21): The extra factor
Q

pjn�ÿc6=p� is a character of conductor
W
Q

p<logx
10
p < x0:14, so the argument for the second term now yields an upper

bound� x9:28�0:14 � x9:42 for the third term in (21), which is acceptable.
Since the last two terms in (21) are handled by Proposition 5, we have veri¢ed that
every term in (21) is� x10 logÿ1=2 x. This completes the proof of Theorem 4.

Remark. Theorem 4 clearly holds for logarithmic height. To see that it holds
for the Faltings height we need to prove (5). From the proof of corollary 2.3 in
[19, p. 259], we get the relation

O�1�W hl�E� ÿ hF �E�W 6 log 1� log max
ÿjj�E�j; jj�E�D�E�j�ÿ �

:

Since j�E� � c4�E�3=D�E�, the relation (4) follows immediately.

11. Lower Bounds For Other Ranks

Proof of Theorem 5.Let E=Q be a modular curve of conductorN, and let L�E; s� be
its L-function. It follows from the Rankin^Selberg method that there exists an
absolute constant c > 0 such that, as D runs through all fundamental discriminants
such that the root number of the twisted curve ED is �1, we have the lower bound
[8, p. 76]X

DWN2

L�ED; 1� > cN2:

In particular, there exists a twist withD� N2 such that L�ED; 1� 6� 0. By the work of
Kolyvagin et al., it follows that the Mordell^Weil rank of ED�Q� is zero. Apply these
remarks to the curves in Proposition 6, which are modular by the work of Wiles and
Taylor^Wiles, and we obtain the ¢rst part of Theorem 5. To prove the second part,
note that the hypothesis there implies that for every e > 0 there exists an absolute
constant c�e� > 0 independent of E, such that [8, p. 77]X

DWNe

L�ED; 1� > c�e�Ne:

Continue as before and we get the second part of Theorem 5. &

Proof of Theorem 6. The reduction mod 3 of the Weierstrass equation

Ea;b: y2 � x3 � 3ax2 ÿ �1� 3a�x� 9b2 �28�
is y2 � x3 ÿ x, which is nonsingular over F3, so Ea;b de¢nes an elliptic curve over Q
for any integers a; b. Now Ea;b�F3� ' Z=2Z� Z=2Z and is generated by the image
of the Q-rational points P1 � �0; 3b� and P2 � �1; 3b�.
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LEMMA 13. Let a � b � 1 �mod 11�; then P1 and P2 generate a free, rank 2 subgroup
of Ea;b�Q�.

Proof. Suppose otherwise; then t1P1 � t2P2 2 Ea;b�Q�tor for some integers t1; t2,not
both zero. Moreover, we can assume that at least one ti is odd. If a � b � 1 �mod 11�,
then Ea;b has good reduction at 11, so the prime-to-11 part of Ea;b�Q�tor injects
into Ea;b�F11�. On the other hand, if a � b �mod 11�, then #Ea;b�F11� � 11, while
Mazur's Theorem implies that Ea;b�Q� has no 11-torsion. Thus t1P1 � t2P2 � 0.
Since P1 and P2 generate Ea;b�F3� ' Z=2Z� Z=2Z and at least one ti is odd, this
is a contradiction. &

Proof. Replace x by xÿ a and the Weierstrass equation (28) becomes

y2 � x3 � �ÿ3a2 ÿ 3aÿ 1�x� �2a3 � 3a2 � a� 9b2�: �29�
Now, 3a2 � 3a� 1 is square-free for a positive portion of the integers a � 1 �mod 11�
(cf. [11, p. 62]*), so for such a and any b � 1 �mod 11�, the Weierstrass equation (29)
is minimal at every prime (including 2 and 3). Consequently for such a and b, we
have c4�Ea;b� �� a2 and c6�Ea;b� �� max�jaj3; b2�. At most four pairs of integers
�a; b� give rise to the same equation (127), so the number of Ea;b of height W x
and with Mordell^Weil rank X 2, is � x2x3 � x5. This completes the proof of
Theorem 6. &
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