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Abstract

Obesity is characterised by chronic low-grade inflammation, and lycopene has been reported to display anti-inflammatory effects.

However, it is not clear whether lycopene supplementation modulates adipokine levels in vivo in obesity. To determine whether lycopene

supplementation can regulate adipokine expression in obesity, male Wistar rats were randomly assigned to receive a control diet (C, n 6) or

a hyperenergetic diet (DIO, n 12) for 6 weeks. After this period, the DIO animals were randomised into two groups: DIO (n 6) and DIO

supplemented with lycopene (DIO þ L, n 6). The animals received maize oil (C and DIO) or lycopene (DIO þ L, 10 mg/kg body weight

(BW) per d) by oral administration for a 6-week period. The animals were then killed by decapitation, and blood samples and epididymal

adipose tissue were collected for hormonal determination and gene expression evaluation (IL-6, monocyte chemoattractant protein-1

(MCP-1), TNF-a, leptin and resistin). There was no detectable lycopene in the plasma of the C and DIO groups. However, the mean lyco-

pene plasma concentration was 24 nmol in the DIO þ L group. Although lycopene supplementation did not affect BW or adiposity, it sig-

nificantly decreased leptin, resistin and IL-6 gene expression in epididymal adipose tissue and plasma concentrations. Also, it significantly

reduced the gene expression of MCP-1 in epididymal adipose tissue. Lycopene affects adipokines by reducing leptin, resistin and plasma

IL-6 levels. These data suggest that lycopene may be an effective strategy in reducing inflammation in obesity.
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Obesity is characterised by chronic low-grade inflammation(1).

Its aetiology is multifactorial, and the current epidemic is

partially due to the increased availability and consumption

of highly palatable diets and reduced energy expenditure(2),

which leads to increased adipose tissue. It is recognised as

one of the major risk factors for the development of chronic

and disabling diseases(3).

White adipose tissue is a dynamic endocrine organ that

releases several adipokines and pro-inflammatory factors(4).

It has been shown that high levels of pro-inflammatory

adipokines in obesity may contribute to the reduction in

lipid oxidation in insulin-sensitive organs, leading to lipotoxi-

city and insulin resistance(5). IL-6 is an important acute-phase

mediator with both pro- and anti-inflammatory properties(6),

and exhibits many biological functions. In addition to its

role as the main acute-phase protein synthesis regulator, it is

induced with other cytokines, such as TNF-a(7). TNF-a is a

key modulator of adipocyte metabolism, with a direct role in

several insulin-mediated processes, including glucose homeo-

stasis and lipid metabolism. High levels of TNF-a are a major

contributor to the development of adipose tissue insulin resist-

ance(8). Also, it is associated with significant tissue damage

from reactive oxygen species and the promotion of angiogen-

esis(9). Moreover, elevated TNF-a concentrations and IL-6

have been linked to insulin resistance in obesity(10). In

addition, IL-6 and TNF-a promote leptin production by the

adipose tissue, but leptin enhances inflammatory cytokine

production as well(5). Hyperleptinaemia is correlated with

pro-inflammatory responses and with the chronic sub-

inflammatory state observed in obesity(11). Moreover, leptin
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induces cholesterol uptake by macrophages, angiogenesis

and platelet aggregation, and stimulates oxidative stress in

endothelial cells, inhibiting vasorelaxation and increasing the

risk of atherosclerosis(12). Resistin, another pro-inflammatory

adipokine, appears to act through binding to Toll-like receptor

4, a cell-surface receptor and a key component of the inflam-

matory response to bacterial lipopolysaccharide(13). Located at

the site of inflammation, resistin is a molecule that shows a

strong correlation with other inflammatory markers, such as

IL-6 and TNF-a(14). Also, resistin is associated with decreased

insulin sensitivity(13) and seems to be correlated with the

development of obesity-related diseases, such as non-alcoholic

fatty liver disease(15,16). Studies have suggested that circulating

concentrations of pro-inflammatory molecules reflect excess

body fat and predispose an individual to a higher risk of devel-

oping metabolic diseases(17,18). In addition, the adipose tissue

hypersecretion of pro-inflammatory adipokines, such as IL-6,

TNF-a, leptin and resistin, may play an important role in the

pathophysiology of obesity-related complications(19).

Lycopene is a lipophilic carotenoid which is responsible for

the red colour in various fruits and vegetables(20) and is com-

monly found in tomatoes(21). This carotenoid is well known

for its antioxidant properties(22–24), and has been reported

to display anti-inflammatory effects in adipocytes(25) and

liver(26), along with preventing CVD(27). Evidence is increasing

that lycopene or tomato preparations can decrease inflamma-

tory markers(25–28), and may improve diseases with chronic

inflammatory backgrounds such as obesity(29). However, the

effect of lycopene on pro-inflammatory adipokines, especially

leptin and resistin, in obesity has not yet been evaluated.

Since pro-inflammatory adipokines, such as IL-6, TNF-a,

leptin and resistin, have been linked to adiposity, and lyco-

pene presents anti-inflammatory effects, we hypothesise that

lycopene supplementation can modulate epididymal adipose

tissue in vivo, reducing the expression of pro-inflammatory

cytokines in obesity. The decreased production of these adi-

pokines by lycopene could have a major impact on obesity

and the prevalence of obesity-related diseases.

Methods

Animals and experimental protocol

Male Wistar rats (10 weeks old, weighing approximately

350 g), from the Animal Center of Botucatu Medical School,

São Paulo State University, UNESP (Botucatu, SP, Brazil),

were initially divided to receive either a commercial chow

diet (C, n 6; 12 % energy from fat) or a high-fat diet (49·7 %

energy from fat) and sugar in the drinking water (300 g/l)

(DIO, n 12), for 6 weeks. The high-fat diet was designed

in our laboratory to contain a powdered commercial chow

diet – NUVILAB CR-1 (Nuvitalw; Sogorb Indústria e Comércia

Ltda), a wafer biscuit, condensed milk, palm oil, vitamins and

minerals. The diet-induced obesity model was adapted from

our previous study(30), which was used to mimic obesity

from Western occidental dietary habits. The nutritional com-

position of the diets is presented in Table 1. After 6 weeks

under a nutritional overload, DIO rats were randomly

assigned into two groups: DIO (n 6) and DIO supplemented

with lycopene-rich tomato oleoresin (DIO þ L, n 6). Tomato

oleoresin was mixed with maize oil equivalent to 10 mg lyco-

pene/kg body weight (BW) per d(31,32) and given orally every

morning for a 6-week period(33,34). To avoid differences in the

energy provided, all groups received the same maize oil

volume (approximately 2 ml/kg BW per d). Rats were

housed in individual cages in an animal facility at the Internal

Medicine Experimental Laboratory, Botucatu Medical School,

UNESP, under a controlled ambient temperature (22–268C)

and lighting (12 h light–12 h dark cycle) condition. Dietary

consumption was measured daily, and BW was assessed

weekly. The animals were killed by decapitation under deep

sodium pentobarbital anaesthesia (50 mg/kg, intraperitoneal

injection). Plasma and epididymal adipose tissues were collec-

ted at 12 weeks and stored at 2808C until ready for analysis.

Epididymal adipose tissue was selected because of its similar

inflammation patterns in visceral fat(35). The experiment was

conducted in accordance with the Guidelines for the Care

and Use of Experimental Animals and the diets followed the

specifications from Nutrient Requirements of the Laboratory

Rats. The protocol was approved by the local Ethical Commit-

tee for Animal Research (protocol no. 920-2012).

Lycopene preparation

Tomato oleoresin (Lyc-O-Mato 6 % dewaxed; LycoRed Natural

Products Industries) was mixed with maize oil and stored at

48C in the dark until used as described previously(24). The

tomato oleoresin–maize oil mixture was stirred for 20 min in

a water-bath at 548C before being fed to the animals. Each

millilitre of the solution contained 5 mg of total lycopene.

Stability of lycopene was monitored at 450 nm, and confirmed

by diode-array spectra, as described previously(36). Lycopene

Table 1. Nutritional composition of the diets

Diet

Components Control Hyperenergetic

Protein (%) 25 21
Carbohydrate (%) 58 45
Fat (%) 5 29
% Energy from protein 26·5 16·0
% Energy from carbohydrate 61·5 34·3*
% Energy from fat 12·0 49·7
% Energy from saturated fat 2·1 24·7
% Energy from unsaturated fat 9·9 25·0
Energy (kcal/g) 3·77 5·25
Energy (kJ/g) 15·77 21·97
Fatty acid composition (%)

Palmitic (16 : 0) 14·0 40·6
Stearic (18 : 0) 2·7 6·2
Oleic (18 : 1n-9c) 23·4 36·5
Linoleic (18 : 2n-6) 53·1 11·3

Others 6·8 5·4
Vitamin/mineral mixture† – Added

* Energy from sugar in the drinking water (300 g/l) was not included.
† Based on the vitamin/mineral amounts of the chow diet, for each kg of the hyper-

energetic diet, the following nutrients were added: Fe, 25·2 mg; K, 104·8 mg;
Se, 73·1mg; molybdenum sulphate, 150·0mg; vitamin B12, 34·5mg; vitamin B6,
6 mg; biotin, 0·12 mg; vitamin E, 32·6 mg; vitamin D, 61·2mg; vitamin A, 4·6 mg.
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was stable in the tomato oleoresin–maize oil mixture for

9 weeks at 2208C.

Total body fat

Total body fat was measured as the sum of epididymal, retro-

peritoneal and visceral fat deposits, and was used to calculate

the adiposity index(37) to confirm obesity in the animals.

Plasma lycopene analysis

A 400ml aliquot of plasma was used for lycopene analysis, as

described previously(24). Briefly, plasma samples were

extracted with 3 ml chloroform–methanol (2:1) followed by

3 ml hexane. The samples were dried under N2 and resus-

pended in 100ml ethanol, of which 25ml were injected into

the HPLC. The results were adjusted by an internal standard

containing echinenone. The inter- (n 3) and intra-assay (n 8)

CV was 9 %. The recovery of the added internal standard

was consistently .90 %. All sample processing and analyses

were performed under red light.

Biochemical measurements

Glucose concentration was assayed from the tip of the tail and

determined by using a glucometer (Accu-Chek Go Kit; Roche

Diagnostic Brazil Limited). Hormonal concentrations of insulin,

leptin, adiponectin (Millipore), resistin (Immuno-Biological

Laboratories, Inc.), TNF-a and IL-6 (R&D Systems, Inc.)

were measured by an immunoassay, using a microplate

reader (Spectra Max 190; Molecular Devices). The glucose:insu-

lin ratio was used for insulin sensitivity assessment(38).

Gene expression

Total RNA was extracted from epididymal adipose tissue using

the reagent TRIzol (Invitrogen). The SuperScript II First-Strand

Synthesis System for RT-PCR (Invitrogen) kit was utilised for the

synthesis of 20ml of complementary DNA from 1000 ng of total

RNA. The mRNA levels of leptin (assay Rn 00565158_m1;

Applied Biosystems), resistin (assay Rn 00595224 m1; Applied

Biosystems), TNF-a (assay Rn 00562055_m1; Applied Biosys-

tems), IL-6 (assay Rn 01410330_m1; Applied Biosystems)

and monocyte chemoattractant protein-1 (MCP-1, assay Rn

00580555_m1; Applied Biosystems) were determined by

real-time PCR. Quantitative measurements were made with a

commercial kit (TaqMan qPCR; Applied Biosystems) in a

detection system (StepOne Plus; Applied Biosystems). Cycling

conditions were as follows: enzyme activation at 508C for

2 min, denaturation at 958C for 10 min, complementary DNA

products were amplified for forty cycles of denaturation at

958C for 15 s and annealing/extension at 608C for 1 min. Gene

expression was quantified in relation to the values of the

C group after normalisation by an internal control (cyclophilin:

assay Rn 00690933_m1; Applied Biosystems) by the method

22DDCT , as described previously(39).

Statistical analysis

Results are expressed as means and standard deviations, and

significance of differences were calculated by one-way

ANOVA followed by Tukey’s post hoc test, using SigmaStat ver-

sion 3.5 for Windows (Systat Software, Inc.). Differences were

considered significant at P,0·05. Power calculations for the

main outcome variables were above 80 %.

Results

Body weight and body fat

Food intake was reduced in the DIO groups; however, energy

intake was similar among the groups. The animals showed the

same BW at baseline. At the end of the experiment, the hyper-

energetic-fed animals showed a significant BW and adiposity

index when compared with control rats. In comparison with

the DIO group (Table 2), consumption of the lycopene-

containing maize oil mixture (DIO þ L) did not interfere

with BW and the adiposity index (Table 2).

Lycopene uptake and absorption

In the present study, lycopene was analysed as the total of

both cis and all-trans isomers in plasma. Due to the lack of

Table 2. Body weight (BW), dietary intake and adiposity index

(Mean values and standard deviations, n 6)

Groups

C DIO DIO þ L

Variables Mean SD Mean SD Mean SD

Initial BW (g) 341a 27 350a 31 358a 34
Final BW (g) 489a 58 579b 71 560b 65
Food intake (g/100 g BW per d) 6·2b 0·3 2·5a 0·1 2·6a 0·4
Water intake (ml/100 g BW per d) 8·4b 1·0 7·5a,b 0·4 6·5a 1·2
Energy intake (kcal/100 g BW per d)* 23·6a 1·2 22·5a 0·6 21·7a 2·3
Energy intake (kJ/100 g BW per d)* 98·7a 5·0 94·1a 2·5 90·8a 9·6
Adiposity index (%) 5·3a 1·2 9·5b 1·7 9·6b 1·8

C, control; DIO, animals subjected to diet-induced obesity; DIO þ L, DIO supplemented with lycopene for 6 weeks.
a,b Mean values with unlike superscript letters were significantly different (P,0·05; one-way ANOVA with Tukey’s post hoc test).
* Energy intake includes energy from sugar in the drinking water.

Lycopene modulates adipokines in obesity 1805

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114513001256  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114513001256


lycopene in the fed diets(24), there was no detectable lycopene

in the plasma of the C or DIO groups. However, after 6 weeks

of carotenoid supplementation, lycopene plasma concen-

trations were evident in the DIO þ L group (Table 3).

Insulin sensitivity

The hyperenergetic diet was associated with a significant

increase in glucose and insulin levels when compared

with the C animals, showing reduced insulin sensitivity.

Glucose and insulin levels were not modulated by lycopene

supplementation. Also, lycopene showed no effect on insulin

sensitivity (Table 3).

Adipokine levels

The consumption of the hyperenergetic diet was associated

with a significant increase in inflammatory marker expression,

such as IL-6, MCP-1 and leptin. However, resistin and TNF-a

expression in epididymal adipose tissue showed no difference

between the C and DIO groups. Lycopene supplementation

restored the gene expressions of IL-6, MCP-1 and leptin to

the C levels, while a decreased resistin gene expression in epi-

didymal adipose tissue (Table 4). The plasma levels of TNF-a,

IL-6, leptin and resistin were found to be significantly elevated

in the DIO group. Lycopene supplementation significantly

decreased leptin levels, and restored the plasma concen-

trations of IL-6 and resistin to the C levels. There was no

difference between the DIO and DIO þ L groups in plasma

TNF-a concentrations (Table 3). As a recent inflammatory

biomarker(40), the leptin:adiponectin ratio was calculated.

The DIO group showed an increase in the leptin:adiponectin

ratio (C: 0·21 (SD 0·07) v. DIO: 1·11 (SD 0·26), P,0·001), while

the lycopene-supplemented group presented a lower ratio

(DIO: 1·11 (SD 0·26) v. DIO þ L: 0·56 (SD 0·11), P,0·001).

Discussion

Obesity is usually associated with the consumption of

hyperenergetic diets and a decrease in energy expenditure(2),

resulting in the expansion of the adipose tissue mass and

inducing a chronic inflammatory state(19). A high SFA intake

from a hyperenergetic diet has been associated with

obesity-linked inflammation, and induces inflammation-

related gene expression in adipose tissue(41). In the present

study, lycopene displayed anti-inflammatory effects(25,28)

in plasma (0·01–0·04mM) after 6 weeks of supplementation

in concentrations below the range that can be normally

seen in human subjects (0·2–0·9mM)(42). This can be related

mainly to low lycopene bioavailability(42), and also in part to

the animals fasting overnight. A previous study has found

that a peak accumulation of lycopene in rat plasma occurs

between 4 and 8 h after a single oral administration(43).

Experimental high-fat diet models are considered appropri-

ate to study obesity and its consequences(44). In addition to

BW gain, the present experimental model induced an increase

in body adiposity from the DIO animals (DIO and

DIO þ L)(45,46). As with our recent study(37), animals from

the DIO groups consumed smaller dietary amounts and similar

energy intakes than those without the treatment (C group;

Table 2). Even though the protocol devised for the present

study was able to induce obesity, it showed that body adi-

posity is the best indicator of obesity(47). The expansion in

weight, and especially body fat, occurs because the aug-

mentation of fat consumption is not accompanied by a

proportional increase of fat oxidation. This leads to the

deposit of fat as TAG(48,49) in adipose tissue.

Many studies have demonstrated that white adipose tissue

represents an important site of inflammation(1), showing insu-

lin resistance and direct associations between adipose tissue

and concentrations of TNF-a, IL-6 and C-reactive protein(17).

Here, we demonstrate, in vivo, that the DIO-treated group

showed an increase in the epididymal adipose tissue gene

expression of IL-6 and MCP-1 (Table 4) and in the plasma

concentrations of IL-6 and TNF-a (Table 3). Given that

mRNA levels do not always represent the protein content,

which exerts functional activity, plasma concentration is

more relevant than mRNA levels. The divergent data between

mRNA levels and plasma concentrations of TNF-a could be

explained in part by the stability and translational efficiency

Table 3. Plasma measurements of lycopene, adipokines, glucose, insulin and the glucose:insulin ratio

(Mean values and standard deviations, n 6)

Groups

C DIO DIO þ L

Variables Mean SD Mean SD Mean SD

Lycopene (nmol) ND ND 23·6 10·4
Leptin (ng/ml) 3·7a 1·4 10·5c 2·2 7·4b 1·2
Resistin (ng/ml) 6·3a 2·1 10·1b 1·8 7·5a 1·3
IL-6 (pg/ml) 136a 5·0 150b 7·6 132a 5·7
TNF-a (pg/ml) 9·5a 3·8 16·7b 2·9 13·9a,b 2·8
Glucose (mg/l) 952a 82 1077b 50 1057a,b 122
Insulin (ng/l) 22a 4 33b 8 30a,b 7
Glucose:insulin ( £ 1026) 43·7b 5·2 34·3a 7·1 36·3a,b 6·2

C, control; DIO, animals subjected to diet-induced obesity; DIO þ L, DIO supplemented with lycopene for 6 weeks; ND,
not detected.

a,b,c Mean values with unlike superscript letters were significantly different (P,0·05; one-way ANOVA with Tukey’s
post hoc test).
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of mRNA(9). Similarly, there was a decrease in insulin

sensitivity accompanied by an increase in glucose and insulin

levels (Table 3). Plasma IL-6 concentrations (Table 3) and

the gene expression of MCP-1 and IL-6 (Table 4) were

restored by lycopene supplementation in vivo, which is

in agreement with the data of ex vivo and adipocyte

models(28). However, plasma TNF-a, glucose and insulin

levels and insulin sensitivity (Table 3) were not modulated

by the 6 weeks of lycopene supplementation in the present

study. The probable mechanism that clarifies this lack can in

part be explained by increased TNF-a. In fact, TNF-a seems

to act locally at the site of adipose tissue through autocrine

or paracrine pathways, affecting insulin resistance(8) by insulin

receptor substrate proteins(50). The processes affecting insulin

receptor substrates involve proteasome-mediated degradation,

phosphatase-mediated dephosphorylation and Ser phos-

phorylation of insulin receptor substrate-1, which converts

insulin receptor substrate-1 into an inhibitor of the insulin

receptor Tyr kinase activity(51,52).

Leptin is a pleiotropic adipocytokine produced and secreted

by adipose tissue(11). Experimental studies have suggested that

leptin sensitivity may be under hormonal and nutritional con-

trol(53). As reported in the studies of diet-induced obesity(54,55),

an increase of leptin in epididymal adipose tissue gene

expression (Table 4) and plasma levels (Table 3) was found

in DIO animals in the present experiment. Previous reports

have shown a positive correlation between adipose tissue

amounts and the expression of leptin(56,57), indicating that

increased levels of leptin result from increased body fat(49).

Although there was no change in the adiposity index by

lycopene supplementation (Table 2), the present data show

that leptin plasma levels were lower in the DIO þ L group,

possibly by the down-regulation of its gene expression level

in epididymal adipose tissue. High levels of leptin can stimu-

late pro-inflammatory cytokines and play an important role in

obesity(11,58). In addition, hyperleptinaemia has been corre-

lated with inflammation levels, since its serum concentration

is elevated during active disease (rheumatoid arthritis), and

is decreased when the disease is controlled(59,60). Also, a

recent study has reported that the leptin:adiponectin ratio

is correlated with BMI and may be a useful biomarker for

inflammation(40). Here, we demonstrated that the increased

leptin:adiponectin ratio in the DIO group was significantly

decreased by lycopene supplementation. This suggests inflam-

matory attenuation associated with lycopene treatment in

obese rats. Given that obesity is recognised as a chronic and

systemic inflammatory disease(61), the present data suggest

that lycopene supplementation may attenuate the inflamma-

tory response in obesity, at least in part, by minimising

hyperleptinaemia and improving the leptin:adiponectin ratio.

Resistin concentration has been reported to be increased in

obesity(57,62), and to be a link to obesity and insulin resist-

ance(63). The DIO animals did not show an increase in resistin

gene expression in epididymal adipose tissue when compared

with the C group (Table 4). However, resistin plasma concen-

tration was greater in the DIO group than in the C group

(Table 3). Increased resistin expression has been correlated

with inflammatory markers, coronary artery disease(64) and

atherosclerosis in patients with the metabolic syndrome(65).

Furthermore, resistin itself has been found to induce the

expression of cytokines and chemokines in human articular

chondrocytes(66). Also, in patients with gestational diabetes,

elevations in serum resistin were correlated with serum IL-6

levels, but not with insulin levels. This suggests that changes

in insulin sensitivity in these patients were mediated by

inflammatory pathways that may involve resistin(67). Both

gene expression and plasma resistin levels were decreased

with lycopene supplementation, which has been shown to

display anti-inflammatory effects(25,28), suggesting less inflam-

mation in adipose tissue. The exact mechanism of lycopene

affecting leptin and resistin levels remains to be determined.

To the best of our knowledge, this is the first study which

shows that lycopene can modulate both leptin and resistin

gene expression and plasma concentrations in obese rats.

In summary, it was observed that lycopene has the ability to

down-regulate adipokine mRNA levels in epididymal adipose

tissue, such as leptin, resistin, IL-6 and MCP-1, along with the

ability to restore leptin, resistin and plasma IL-6 concentrations

in diet-induced obese rats. Therefore, it is highly probable that

lycopene supplementation attenuates inflammation levels in

adipose tissue. This could evidence the health effects of this

carotenoid. This is the first time that lycopene has been

shown to modulate leptin and resistin levels. Therefore, diet-

ary lycopene may be proposed as an effective strategy to

reduce inflammation in diet-induced obesity. Although the

adopted experimental design did mimic the clinical situation,

it gives no information regarding as to whether these findings

are applicable to human subjects or not. However, it addresses

some important benefits by using additional non-pharmaco-

logical therapy that is based on natural compounds in the

treatment of human obesity. Moreover, the present study rep-

resents a contribution to the role of lycopene on inflammation

related to obesity.
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