ON THE GENERATORS OF ELEMENTARY SUBGROUPS OF GENERAL LINEAR GROUPS

by A. W. MASON

(Received 24 March, 1993)

Introduction. Let R be a ring with identity and let $E_{ij} \in M_n(R)$ be the usual $n \times n$ matrix units, where $n \ge 2$ and $1 \le i$, $j \le N$. Let $E_n(R)$ be the subgroup of $GL_n(R)$ generated by all $T_{ij}(r) = I_n + rE_{ij}$, where $r \in R$ and $i \ne j$. For each (two-sided) R-ideal q let $E_n(R, q)$ be the normal subgroup of $E_n(R)$ generated by $T_{ij}(q)$, where $q \in q$. The subgroup $E_n(R, q)$ plays an important role in the theory of $GL_n(R)$. For example, Vaserštein has proved that, for a larger class of rings \mathscr{C} (which includes all commutative rings), every subgroup S of $GL_n(R)$, when $R \in \mathscr{C}$ and $n \ge 3$, contains the subgroup $E_n(R, q_0)$, where q_0 is the R-ideal generated by α_{ij} , $r\alpha_{ii} - \alpha_{jj}r$ ($i \ne j$, $r \in R$), for all $(\alpha_{ij}) \in S$. (See [13, Theorem 1].) In addition Vaserštein has shown that, for the same class of rings, $E_n(R, q)$ generated by $T_{ij}(r)T_{ji}(q)T_{ij}(-r)$, where $r \in R$, $q \in q$. Then $\hat{E}_n(R, q) = E_n(R, q)$, for all q, when $R \in \mathscr{C}$ and $n \ge 3$. (See [13, Lemma 8].)

In this paper we are concerned with the question: how are $\hat{E}_2(R, q)$ and $E_2(R, q)$ related? It is already known that Vaserštein's result does not in general extend to n = 2. The author [9, Example 2.6] has shown that $\hat{E}_2(\mathbb{Z}, q)$ is of infinite index in $E_2(\mathbb{Z}, q)$, for all but finitely many \mathbb{Z} -ideals q, where \mathbb{Z} is the ring of rational integers. On the other hand Menal and Vaserštein [10, Theorem 5(a)] have proved that $\hat{E}_2(L, q) = E_2(L, q)$, for all q, where L is a (possibly non-commutative) SR_2 -ring. (We recall [1, p. 231] that an SR_i -ring, where $t \ge 2$, is one which satisfies Bass's "t-th stable range" condition. By [1, (3.5) Theorem, p. 239] fields and semi-local rings, for example, are SR_2 -rings.) Menal and Vaserštein's result however does not extend to SR_3 -rings since every Dedekind ring (for example, \mathbb{Z}) is an SR_3 -ring, again by [1, (3.5), Theorem, p. 239].

This paper elaborates on these results. It would appear that, unless R has "sufficiently many" units, $\hat{E}_2(R, q)$ is likely to be of infinite index in $E_2(R, q)$. For our first principal result, let O(=O(d)) be the ring of integers of $\mathbb{Q}(\sqrt{-d})$, where \mathbb{Q} is the set of rational numbers and d is a positive integer. For each positive integer m, let O_m be the order of index m in O. (By definition, $O = O_1$.)

THEOREM A. Suppose that $(d, m) \neq (1, 1), (2, 1), (3, 1), (3, 2), (7, 1), (11, 1)$. Then, for all but finitely many q,

 $\hat{E}_2(O_m, \mathfrak{q})$ is of infinite index in $E_2(O_m, \mathfrak{q})$.

Our proof is based on results of Cohn [3] and Fine [5].

For our second principal result let D be a k-ring with a degree function, where k is a field, as defined by Cohn [3, p. 21]. (The simplest examples of such rings are the polynomial rings in any number of indeterminates over k.)

THEOREM B. Let q be a proper D-ideal. (i) If dim_k (D/q) = 1, then

$$\hat{E}_2(D,\mathfrak{q}) = E_2(D,\mathfrak{q}).$$

Glasgow Math. J. 38 (1996) 1-10.

(ii) Otherwise,

 $\hat{E}_2(D, \mathfrak{q})$ is a non-normal subgroup of infinite index in $E_2(D, \mathfrak{q})$.

Our proof is based on another result of Cohn [3].

Menal and Vaserštein's result [10, Theorem 5(a)] does extend to other rings, including some SR_3 -rings, provided the rings have "many" units. For example, when A is a Dedekind ring of arithmetic type with infinitely many units, it follows easily from a result of Liehl [7] that $\hat{E}_2(A, q) = E_2(A, q)$, for all q. (The simplest examples of such rings are $\mathbb{Z}[1/p]$, where p is a prime, and $k[t, t^{-1}]$ is the Laurent polynomial ring over a finite field, k.

We conclude by determining precisely when $\hat{E}_2(\mathbb{Z}, q) = E_2(\mathbb{Z}, q)$, which completes the results contained in [9, Example 2.6].

1. Orders in imaginary quadratic number fields. We begin by simplifying some of our notation.

We denote the set of units in a ring R by R^* . For each $r \in R$, $\alpha \in R^*$, we put

$$S(r) = T_{21}(r),$$
 $T(r) = T_{12}(r),$ $D(\alpha) = \text{diag}(\alpha, \alpha^{-1}).$

For each $x, y \in R$ we put

$$ST(x, y) = S(x)T(y)S(-x)$$
 and $TS(x, y) = T(x)S(y)T(-x)$.

Then $\hat{E}_2(R, q)$ is generated by ST(r, q) and TS(r, q), where $r \in R$ and $q \in q$. Let d, O and O_m be as above. We may assume that d is square-free. Let

$$\omega = \begin{cases} \sqrt{-d}, & d \equiv 1, 2 \pmod{4}, \\ (1 + \sqrt{-d})/2, & d \equiv 3 \pmod{4}. \end{cases}$$

It is well-known that

$$O_m = \mathbb{Z} + \omega_m \mathbb{Z},$$

where $\omega_m = m\omega$. It follows that every non-zero O_m -ideal q is a Z-module of rank 2 and consequently is of finite index in O_m . We require a "canonical" set of Z-generators for such a q.

LEMMA 1.1. Let q be a non-zero O_m -ideal. Then there exist unique $\alpha, \beta, \gamma \in \mathbb{Z}$ with the following properties:

- (i) $q = (\alpha \omega_m + \beta)\mathbb{Z} + \gamma \mathbb{Z};$
- (ii) $\alpha > 0$ and $0 \le \beta < \gamma$;
- (iii) $\alpha \mid \beta$ and $\alpha \mid \gamma$;
- (iv) $|O_m:\mathfrak{q}| = \alpha \gamma$.

Proof. From the above q has \mathbb{Z} -generators of the form

$$\omega_1 = \alpha' \omega_m + \beta'$$
 and $\omega_2 = \alpha'' \omega_m + \beta''$,

where $\alpha', \beta', \alpha'', \beta'' \in \mathbb{Z}, (\alpha', \alpha'') \neq (0, 0)$ and $(\beta', \beta'') \neq (0, 0)$.

We now replace ω_1 , ω_2 with ω'_1 , ω'_2 where

$$\begin{bmatrix} \omega_1' \\ \omega_2' \end{bmatrix} = A \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix},$$

and $A \in GL_2(\mathbb{Z})$. In this way we can assume $\alpha'' = 0$, $\alpha', \beta'' > 0$ and $0 \le \beta' < \beta''$. Let $\alpha' = \alpha, \beta'' = \gamma$ and $\beta' = \beta$.

Now $\gamma \omega_m \in \mathfrak{q}$ and so $\alpha \mid \beta$ and $\alpha \mid \gamma$, The uniqueness of the α , β , γ follows, for example, from the fact that γ is the smallest positive integer in \mathfrak{q} . Part (iv) is obvious.

NOTATION. We put

$$\mathfrak{q} = (\alpha, \beta^*, \gamma^*),$$

where $\beta = \alpha \beta^*$ and $\gamma = \alpha \gamma^*$. (Then $0 \le \beta^* < \gamma^*$.)

The principal result of this section depends upon Cohn's theory of GL_2 over discretely normed rings. (See [3, § 5].)

To simplify our notation let

$$U = T(\omega_m), \qquad T = T(1), \qquad A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \qquad J = -I_2.$$

LEMMA 1.2. Suppose $(d, m) \neq (1, 1), (2, 1), (3, 1), (3, 2), (7, 1), (11, 1).$ (i) $E_2(O_m) = \langle U, T, A : A^2 = (AT)^3 = J, J^2 = I_2, UT = TU, J central \rangle.$ (ii) $E_2(O_m) = SL_2(\mathbb{Z}) *_C B,$

the amalgamated product of

$$SL_2(\mathbb{Z}) = \langle A; T: A^2 = (AT)^3 = J, J^2 = I_2, J \text{ central} \rangle,$$

and

$$B = \langle J, U, T: UT = TU, J^2 = I_2, J \text{ central} \rangle \cong (\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}^2,$$

over

$$C = SL_2(\mathbb{Z}) \cap B = \langle J, T : J^2 = I_2, JT = TJ \rangle \cong (\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}.$$

Proof. Cohn [3, p. 16] has defined a *discretely normed ring* and Dennis [4, Theorem 3] has proved O_m is discretely normed precisely when (d, m) satisfies the above restrictions.

By virtue of [5, Theorem (5.2)] $E_2(O_m)$ has a presentation of the type described in [3, Theorem (2.2)]. Using an approach similar to that of Fine in [5, Theorem 4.8.1, p. 120] this presentation simplifies to that in (i) above.

Part (ii) follows immediately. (See also [5, Theorem 4.8.2 (1), p. 120].)

NOTATION. Let $q = (\alpha, \beta^*, \gamma^*)$ as above. We put

$$E_2(O_m, \mathfrak{q}) = E_2(\alpha, \beta^*, \gamma^*).$$

It is clear that $E_2(\alpha, \beta^*, \gamma^*)$ is the normal subgroup of $E_2(O_m)$ generated by

 $U^{\alpha}T^{\alpha\beta^*}$ and $T^{\alpha\gamma^*}$.

LEMMA 1.3. (i) $E_2(\alpha, 0, 1)$ is of infinite index in $E_2(O_m)$, when $\alpha \ge 6$. (ii) $E_2(1, \beta^*, \gamma^*)$ is of infinite index in $E_2(O_m)$, when $\gamma^* \ge 6$.

Proof. (i) Let N be the normal subgroup of $E_2(O_m)$ generated by J and U and let $G = E_2(O_m)/N$. Then, by Lemma 1.2(i),

$$G = \langle a, t : a^2 = t^3 = 1 \rangle \cong PSL_2(\mathbb{Z}),$$

where a (resp. t) is the image of A (resp. T) in G.

Now let M be the image of $E_2(\alpha, 0, 1)$ in G. Then G/M has a presentation of the form

$$G/M = \langle x, y : x^2 = y^2 = (xy)^{\alpha} \rangle,$$

which is one of the classical triangle groups. It is a classical result that this group is infinite when $\alpha \ge 6$. Part (i) follows.

For part (ii) we repeat the argument with N the normal subgroup of $E_2(O_m)$ generated by J and UT^{β^*} . \Box

COROLLARY 1.4. When
$$\alpha \ge 6$$
 or $\gamma^* \ge 6$, $E_2(\alpha, \beta^*, \gamma^*)$ is of infinite index in $E_2(O_m)$.

Proof. Follows from Lemma 1.3 since $E_2(\alpha, \beta^*, \gamma^*) \leq E_2(\alpha, 0, 1) \cap E_2(1, \beta^*, \gamma^*)$.

We require one more lemma before our first principal result.

LEMMA 1.5. For all ideals q, $\hat{E}_2(O_m, q)$ is finitely generated.

Proof. We may assume that $q \neq \{0\}$. Then from the above O_m/q is finite and q is a Z-module of rank 2. Let $\{a_1, \ldots, a_s\}$ be a set of coset representatives of $O_m \pmod{\mathfrak{q}}$ and let ω_1, ω_2 be a Z-basis of q. Then $\hat{E}_2(O_m, q)$ is generated by

 $ST(a_i, \omega_i)$ and $TS(a_i, \omega_i)$,

where $1 \le i \le s$ and j = 1, 2. \Box

THEOREM 1.6. For all but finitely many O_m -ideals q, $\hat{E}_2(O_m, q)$ is of infinite index in $E_2(O_m, \mathfrak{q}).$

Proof. We may assume that $q \neq \{0\}$. Let $q = (\alpha, \beta^*, \gamma^*)$ as above. By Lemma 1.5 it suffices to prove that $E_2(\alpha, \beta^*, \gamma^*)$ is infinitely generated when $\alpha \ge 6$ or $\gamma^* \ge 6$.

With the notation of Lemma 1.2(ii) we note that

$$|C: C \cap E_2(\alpha, \beta^*, \gamma^*)| < \infty,$$

since $T^{\alpha\gamma^*} \in E_2(\alpha, \beta^*, \gamma^*)$. Suppose that $E_2(\alpha, \beta^*, \gamma^*)$ is finitely generated, where $\alpha \ge 6$ or $\gamma^* \ge 6$. Then, combining Lemma 1.2(ii) with a result of Karrass and Solitar [6, Theorem 10], we conclude that

$$|E_2(O_m):E_2(\alpha,\beta^*,\gamma^*)|<\infty,$$

which contradicts Corollary 1.4. The result follows. \Box

NOTES. (i) Theorem 1.6 is best possible in the sense that there are ideals q for which $\hat{E}_2(O_m, q) = E_2(O_m, q)$. (Trivially, $\hat{E}_2(O_m, \{0\}) = E_2(O_m, \{0\}) = \{I_2\}$ and $\hat{E}_2(O_m, O_m) = E_2(O_m, O_m) = E_2(O_m, O_m) = E_2(O_m)$.)

(ii) By Lemma 1.1 it follows, for example, that Theorem 1.6 holds for all non-zero q where $|O_m:q| > 125$.

(iii) The results for $\hat{E}_2(\mathbb{Z}, q)$ are very similar to the above and will be described in detail in the last section.

2. k-rings with a degree function. Throughout this section D denotes a (commutative) k-ring with a degree function as defined by Cohn [3; p. 21], in which case $D^* = k^*$, where k is a field. Examples of such D include

(i) polynomial rings in any number of indeterminates over k,

(ii) the coordinate ring $C = C(\mathcal{C}, P, k)$ of the affine curve obtained by removing a closed point P from a projective curve \mathcal{C} over k. (The simplest example of type (ii) is the polynomial ring k[t].)

We begin with a "positive" result.

THEOREM 2.1. Let q be a D-ideal such that $\dim_k (D/q) \leq 1$. Then

$$E_2(D, \mathfrak{q}) = E_2(D, \mathfrak{q}) = E_2(D) \cap SL_2(D, \mathfrak{q}).$$

Proof. Since $\hat{E}_2(D, D) = E_2(D, D) = E_2(D)$ we may assume that $\dim_k(D/q) = 1$, i.e. $D/q \cong k$.

Let $X \in E_2(D) \cap SL_2(D, \mathfrak{q})$. Then

$$X = T(x_1)S(y_1)\ldots T(x_n)S(y_n),$$

where $x_1, y_1, \ldots, x_n, y_n \in D$. Now

$$x_i = q_i + \alpha_i$$
 and $y_i = \hat{q}_i + \beta_i$,

for some $q_i, \hat{q}_i \in q$ and $\alpha_i, \beta_i \in k$, where $1 \le i \le n$. It is clear that X can be written in the form $X = X_1 X_2$, where (i) X_1 is a product of matrices of the type $YT(q)Y^{-1}$, with $Y \in SL_2(k)$ and $q \in q$, and (ii) $X_2 \in SL_2(k)$. (Note that $AT(x)A^{-1} = S(-x)$.) Clearly $X_1 \in SL_2(D, q)$. Hence $X_2 \in SL_2(D, q)$ and so $X_2 = I_2$. It suffices therefore to prove that

$$YT(q)Y^{-1} \in \hat{E}_2(D, \mathfrak{q}).$$

Let

$$Y = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}.$$

There are two possibilities.

(a) $\alpha \neq 0$: In this case

$$Y = S(\alpha^*)D(\alpha)T(\beta^*),$$

where $\alpha^* = \gamma \alpha^{-1}$ and $\beta^* = \beta \alpha^{-1}$, in which case

$$YT(q)Y^{-1} = ST(\alpha^*, \alpha^2 q).$$

(b) $\alpha = 0$: In this case

 $YT(q)Y^{-1} = S(-\gamma^2 q).$

The result follows. \Box

For the simplest case, namely D = k[t], Theorem 2.1 says that

$$\hat{E}_2(k[t], \mathfrak{q}) = E_2(k[t], \mathfrak{q})$$

where q = R or $(t - \alpha)R$, for some $\alpha \in k$ (R = k[t]).

The situation when $\dim_k(D/q) > 1$ is completely different. We require another result [3] of Cohn.

DEFINITION. Let R be a ring. For each $r \in R$ we put

$$E(r) = \begin{bmatrix} r & 1 \\ -1 & 0 \end{bmatrix}$$

Let $r, s \in R$ and $\alpha \in R^*$. The following identities are easily verified

$$E(r)E(0)E(s) = -E(r+s),$$

$$E(r)D(\alpha) = D(\alpha^{-1})E(r\alpha^{2}),$$

$$E(r)E(\alpha^{-1})E(s) = E(r-\alpha)D(\alpha^{-1})E(s-\alpha).$$

Now each element X of $E_2(D)$ is by definition a product of matrices of the type S(r)and T(S) and, since S(r) = -E(0)E(r) and T(s) = -E(-s)E(0), X is then a product of matrices of the type E(r). If such an E(r), where $r \in D^* \cup \{0\}$, occurs in this product the above identities can be used to reduce its "length". Cohn's result says that after all such eliminations we are left with a unique *standard form* for X.

LEMMA 2.2. Let $X \in E_2(D)$. Then X can be written uniquely in the following standard form

$$X = D(\alpha)E(a_1)\ldots E(a_n),$$

where $\alpha \in k^*$ and $a_1, \ldots, a_n \in D$ such that

- (i) $a_i \notin k$, where 1 < i < n, when n > 2 or
- (ii) $(a_1, a_2) \neq (0, 0)$, when n = 2.

Proof. See [3, Theorem (7.1)]. \Box

THEOREM 2.3. Let q be a non-zero D ideal, where $\dim_k(D/q) > 1$. Then $\hat{E}_2(D, q)$ is a non-normal subgroup of infinite index in $E_2(D, q)$.

Proof. Choose $x \in D$, where $x \notin q \oplus k$ and let Y = S(x)T(x). Let $q \in q$, with $q \neq 0$. It suffices to prove that for each positive integer n

$$Y^n S(q) Y^{-n} \notin \hat{E}_2(D, \mathfrak{q}).$$

6

By means of the above identities it is clear that the standard form (Lemma 2.2) of $Y_n S(q) Y^{-n}$ is

$$D(-1)E(0)E(x)E(-x)...E(x)E(-x)E(q)E(x)E(-x)...E(x)E(-x)$$
(1)

(There are 2n + 2 terms in this product.)

Suppose that $Z = Y^n S(q) Y^{-n}$ belongs to $\hat{E}_2(D, q)$. Then

$$Z = Y_1 \ldots Y_s,$$

where $Y_i = ST(a_i, q_i)$ or $TS(a_i, q_i)$ for some $a_i \notin q$ and $q_i \in q$ $(1 \le i \le s)$, where $s \ge 1$. It is clear that s > 1. We note that

$$ST(a_i, q_i) = E(0)E(a_i)E(-q_i)(E(-a_i))$$

and

$$TS(a_i, q_i) = E(-a_i)(E(q_i)E(a_i)E(0)).$$

From the above identities it follows that

$$X(r, s_1)X(r, s_2) = X(r, s_1 + s_2),$$

where X = ST or *TS*. We may therefore assume that if $Y_i = X(a_i, \tau_i)$ and $Y_{i+1} = X(a_{i+1}, q_{i+1})$, where X = ST or *TS*, and $1 \le i < s$, then $a_i \ne a_{i+1}$. In addition, from the standard form of Z, we conclude that at least one $a_i \ne q \cup k$ (otherwise $Z \in E_2(q \oplus k)$). Assume from now on that j is the largest integer with this property.

We now write Z as a product of matrices of the type E(x). Then

 $Z = \pm E(a) \dots E(\pm a_i) E(\mp q_i) E(\mp a_i) Y_0,$

where $Y_0 \in E_2(q \oplus k)$ and Y_0 or $-E(0)Y_0 \in SL_2(D, q)$. Reducing this to standard form and comparing its last terms with those of (1) we conclude by Lemma 2.2 that $Y_0 = E(q_0)$ or $-E(0)E(q_0)$, for some $q_0 \in q$ and hence that

$$E(x)E(-x) = E(\mp q_i + \lambda)E(\mp a_i + q_0),$$

for some $\lambda \in k$. Again by Lemma 2.2 it follows that $x = \mp q_j + \lambda$ which contradicts the fact that $x \notin q \oplus k$. \Box

3. Dedekind rings of arithmetic type. Throughout this section A denotes a Dedekind ring of arithmetic type [2, p. 83]. By a classical theorem of Dirichlet it is known that A^* is finite if and only if $A = \mathbb{Z}$, A = O = O(d), for some d, or $A = C(\mathcal{C}, P, k)$, for some finite k. The preceding results (together with these of the last section) show that for most A of this type the subgroup $\hat{E}_2(A, q)$ is nearly always of infinite index in $E_2(A, q)$.

When A^* is infinite however the situation is completely different.

THEOREM 3.1. Let A be as above and suppose that A^* is infinite. Then, for all A-ideals q, $\hat{E}_2(A, q) = E_2(A, q)$.

Proof. Let $X \in E_2(A, q)$. Liehl [7, (20), p. 164] has proved that

$$X = S(a_1)T(q_1)\ldots S(a_n)T(q_n),$$

for some $a_1, \ldots, a_n \in A$ and $q_1, \ldots, q_n \in q$. Then

 $X = ST(a_1^*, q_1) \dots ST(a_n^*, q_n)S(a_n^*),$

where

 $a_i^* = a_1 + \ldots + a_i \qquad (1 \le i \le n).$

Now $X \equiv I_2 \pmod{\mathfrak{q}}$ and so $a_n^* \in \mathfrak{q}$. Hence $X \in \hat{E}_2(A, \mathfrak{q})$.

4. The modular group. We conclude by determining precisely when $\hat{E}_2(\mathbb{Z}, q) = E_2(\mathbb{Z}, q)$. This completes the results contained in [9, Example 2.6]. Now $q = m\mathbb{Z}$, for some $m \ge 0$. We may assume that m > 0.

LEMMA 4.1. $\hat{E}_2(\mathbb{Z}, m\mathbb{Z})$ is (finitely) generated by ST(a, m) and TS(a, m), where $0 \le a \le m - 1$

Proof. Obvious.

LEMMA 4.2. (i) When $3 \le m \le 5$, $E_2(\mathbb{Z}, m\mathbb{Z})$ is a free group of rank

$$1 + \frac{\mu}{12}$$
,

where $\mu = |SL_2(\mathbb{Z}): SL(\mathbb{Z}, m\mathbb{Z})|$.

(ii) When $m \ge 6$, $E_2(\mathbb{Z}, m\mathbb{Z})$ is a free group of infinite rank.

Proof. We denote the embedding of a subgroup S of $SL_2(\mathbb{Z})$ in $PSL_2(\mathbb{Z})$ by PS. Now, for all $m \ge 3$,

$$E_2(\mathbb{Z}, m\mathbb{Z}) \cong PE_2(\mathbb{Z}, m\mathbb{Z}),$$

and, by [11, Theorem VIII.6, p. 143], $PE_2(\mathbb{Z}, m\mathbb{Z})$ is a free group.

When $1 \le m \le 5$ it is well-known that

$$PE_2(Z, mZ) = PSL_2(\mathbb{Z}, m\mathbb{Z})$$

(See, for example, [12, Theorem (i)].) It is known [11, Theorem VIII.7, p. 144] that the rank of $E_2(\mathbb{Z}, m\mathbb{Z})$ is

$$1+\frac{\rho}{6}$$
,

where $\rho = |PSL_2(\mathbb{Z}): PSL_2(\mathbb{Z}, m\mathbb{Z})||$ with $1 \le m \le 5$. Part (i) follows.

For part (ii) it is well-known that, when $m \ge 6$, $PE_2(\mathbb{Z}, m\mathbb{Z})$ is of infinite index in $PSL_2(\mathbb{Z})$. (See, for example, [12, Theorem (ii)].) Now $PSL_2(\mathbb{Z})$ is a (non-trivial) free product. (See, for example, [11, Theorem VIII.1, p. 139].) Part (ii) follows from [6, Theorem 10]. \Box

We now come to our final result.

THEOREM 4.3. (i) $\hat{E}_2(\mathbb{Z}, m\mathbb{Z}) = E_2(\mathbb{Z}, m\mathbb{Z})$, when $1 \le m \le 4$.

(ii) When $m \ge 5$, $\hat{E}_2(\mathbb{Z}, m\mathbb{Z})$ is a non-normal subgroup of infinite index in $E_2(\mathbb{Z}, m\mathbb{Z})$.

Proof. Suppose first that $m \ge 6$. By Lemmas 4.1 and 4.2(ii) $\hat{E}_2(\mathbb{Z}, m\mathbb{Z})$ is a finitely

generated subgroup of $E_2(\mathbb{Z}, m\mathbb{Z})$, a free group of infinite rank. Hence $\hat{E}_2(\mathbb{Z}, m\mathbb{Z})$ is of infinite index in $E_2(\mathbb{Z}, m\mathbb{Z})$ and is consequently non-normal in $E_2(\mathbb{Z}, m\mathbb{Z})$ by [8, Proposition 3.11, p. 17].

By Lemma 4.2(i) and [11, Theorem VII.15, p. 115] $E_2(\mathbb{Z}, 5\mathbb{Z})$ is free of rank 11. By Lemma 4.1, $\hat{E}_2(\mathbb{Z}, 5\mathbb{Z})$ is free of rank r, where $r \leq 10$. Hence $\hat{E}_2(\mathbb{Z}, 5\mathbb{Z})$ is of infinite index in $E_2(\mathbb{Z}, 5\mathbb{Z})$ by [8, Proposition 3.9, p. 16]. Again by [8, Proposition 3.11, p. 17] and Lemma 4.1, $\hat{E}_2(\mathbb{Z}, 5\mathbb{Z})$ is non-normal in $E_2(\mathbb{Z}, 5\mathbb{Z})$. Part (ii) follows.

For part (i) we treat the cases m = 2, 3, 4, separately. (The case m = 1 is trivial.)

The case m = 2: $E_2(\mathbb{Z}, 2\mathbb{Z})$ is generated by $-I_2$, S(2) and T(2). (See, for example, [12, p. 149].) Now

$$-I_2 = T(2)S(-2)(TS(1,2))^{-1}$$

and so

$$\hat{E}_2(\mathbb{Z}, 2\mathbb{Z}) = E_2(\mathbb{Z}, 2\mathbb{Z}).$$

The case m = 3: It is known [12, p. 149] that $E_2(\mathbb{Z}, 3\mathbb{Z})$ is generated by T(3), $P^{-1}T(3)P$, $P^{-2}T(3)P^2$, where

$$P = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

Now $P^{-1}T(3)P = TS(-1, -3)$ and $P^{-2}T(3)P^2 = ST(-1, -3)$ and so $\hat{E}_2(\mathbb{Z}, 3\mathbb{Z}) = E_2(\mathbb{Z}, 3\mathbb{Z}).$

The case m = 4: By [11, Exercises and problems, p. 137] a complete set of right coset representatives for $SL_2(\mathbb{Z}, 2\mathbb{Z})$ (modulo $SL_2(\mathbb{Z}, 4\mathbb{Z})$) is

 $\pm I_2$, $\pm T(2)$, $\pm S(2)$ and $\pm T(2)S(2)$.

From the above $SL_2(\mathbb{Z}, 2\mathbb{Z}) = E_2(\mathbb{Z}, 2\mathbb{Z})$ is generated by $-I_2$, S(2) and T(2) and so by a Reidemeister-Schreier type argument $SL_2(\mathbb{Z}, 4\mathbb{Z}) = E_2(\mathbb{Z}, 4\mathbb{Z})$ is generated by

S(4), TS(2,4), T(4), S(2)T(2)S(-2)T(-2) and T(2)S(2)T(2)S(-2).

From the above $[TS(1,2)]^2 = T(2)S(-2)T(2)S(-2)$ and so

$$T(2)S(2)T(2)S(-2) = TS(2,4)[TS(1,2)]^2.$$

In addition

$$S(2)T(2)S(-2)T(-2)TS(2,4)[TS(1,2)]^2 = ST(2,4)$$

It follows that

$$\hat{E}_2(\mathbb{Z}, 4\mathbb{Z}) = E_2(\mathbb{Z}, 4\mathbb{Z}). \quad \Box$$

REFERENCES

1. H. Bass, Algebraic K-theory (Benjamin, 1968). 2. H. Bass, J. Milnor and J-P. Serre, Solution of the congruence subgroup problem for SL_n $(n \ge 3)$ and Sp_{2n} $(n \ge 2)$, Publ. Math. Inst. Hautes Étud. Sci. 33 (1967), 59-137. 3. P. M. Cohn, On the structure of the GL_2 of a ring, Publ. Math. Inst. Hautes Étud. Sci. 30 (1966), 5-53.

4. R. K. Dennis, The GE_2 -property of discrete subrings of \mathbb{C} , *Proc. Amer. Math. Soc.* **50** (1975), 77–82.

5. B. Fine, Algebraic Theory of the Bianchi groups (Marcel Dekker, 1989).

6. A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, *Trans. Amer. Math. Soc.* 150 (1970), 227-255.

7. B. Liehl, On the groups SL_2 over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153-171.

8. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory (Springer-Verlag, 1977).

9. A. W. Mason, Congruence hulls in SL_n, J. Pure Appl. Algebra. 89 (1993) 255-272.

10. P. Menal and L. N. Vaserštein, On the structure of GL_2 over stable range one rings, J. Pure Appl. Algebra 64 (1990), 149-162.

11. M. Newman, Integral Matrices (Academic Press, 1972).

12. R. A. Rankin, Subgroups of the modular group generated by parabolic elements of constant amplitude, Acta Arith. 18 (1971), 145-151.

13. L. N. Vaserštein, On the normal subgroups of GL_n over a ring, Lecture Notes in Mathematics 854 (Springer-Verlag, 1981), 456-465.

14. K. Wohlfahrt, An extension of F. Klein's level concept, Illinois J. Math. 8 (1964), 529-535.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GLASGOW GLASGOW G12 8QW SCOTLAND

e-mail: awm@MATHS.GLA.AC.UK.