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Introduction. Let R be a ring with identity and let £,-,- e Mn(R) be the usual nXn
matrix units, where ns=2 and l ' S i , ;=s/V. Let En(R) be the subgroup of GLn(R)
generated by all 7^(r) = /„ + /•£,-,-, where r e R and i ¥=j. For each (two-sided) /?-ideal q let
E,,(R, q) be the normal subgroup of E,,(R) generated by T^q), where q e q. The
subgroup E,,(R, q) plays an important role in the theory of GLn(R). For example,
Vaserstein has proved that, for a larger class of rings % (which includes all commutative
rings), every subgroup 5 of GLn(R), when R e <# and « ^ 3 , contains the subgroup
£„(/?, q0), where q0 is the /?-ideal generated by a,-,, rau-a^r (if^j, r e /?), for all
(a,y) s 5. (See [13, Theorem 1].) In addition Vaserstein has shown that, for the same class
of rings, En(R, q) has a simple set of generators when n > 3. Let En(R, q) be the subgroup
of £„(/?, q) generated by 7^(r)7;,.(9)7^(-r), where r e R, q e q. Then £„(/?, q) =
£„(/?, q), for all q, when fl e <<? and « s= 3. (See [13, Lemma 8].)

In this paper we are concerned with the question: how are E2(R,<)) and E2(R,q)
related? It is already known that Vaserstein's result does not in general extend to n = 2.
The author [9, Example 2.6] has shown that £2(Z, q) is of infinite index in £2(Z, q), for all
but finitely many Z-ideals q, where Z is the ring of rational integers. On the other hand
Menal and Vaserstein [10, Theorem 5(a)] have proved that E2(L, q) = E2(L, q), for all q,
where L is a (possibly non-commutative) S7?2-ring. (We recall [1, p. 231] that an SR,-ring,
where t & 2, is one which satisfies Bass's "f-th stable range" condition. By [1, (3.5)
Theorem, p. 239] fields and semi-local rings, for example, are S/?2-rings.) Menal and
Vaserstein's result however does not extend to S p r i n g s since every Dedekind ring (for
example, Z) is an 5/?3-ring, again by [1, (3.5), Theorem, p. 239].

This paper elaborates on these results. It would appear that, unless R has "sufficiently
many" units, E2{R, q) is likely to be of infinite index in E2(R, q). For our first principal
result, let O ( = O(d)) be the ring of integers of Q ( V - d ) , where Q is the set of rational
numbers and d is a positive integer. For each positive integer m, let Om be the order of
index m in O. (By definition, 0 = 0, . )

THEOREM A. Suppose that (d,m) ¥=• (1,1), (2,1), (3,1), (3,2), (7,1), (11,1). Then, for
all but finitely many q,

E2{Om, q) is of infinite index in E2(Om, q).

Our proof is based on results of Cohn [3] and Fine [5].
For our second principal result let D be a /c-ring with a degree function, where k is a

field, as defined by Cohn [3, p. 21]. (The simplest examples of such rings are the
polynomial rings in any number of indeterminates over k.)

THEOREM B. Let q be a proper D-ideal.

(i) Ifdimk(D/q) =

Glasgow Math. J. 38 (1996) 1-10.

https://doi.org/10.1017/S0017089500031189 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031189


2 A. W. MASON

(ii) Otherwise,

E2(D, q) is a non-normal subgroup of infinite index in E2(D, q).

Our proof is based on another result of Cohn [3].
Menal and Vaserstein's result [10, Theorem 5(a)] does extend to other rings,

including some SR3-rings, provided the rings have "many" units. For example, when A is
a Dedekind ring of arithmetic type with infinitely many units, it follows easily from a
result of Liehl [7] that E2(A, q) = E2(A, q), for all q. (The simplest examples of such rings
are Z[l//>], where p is a prime, and k[t, r"1] is the Laurent polynomial ring over a finite
field, k.

We conclude by determining precisely when E2(Z, q) = E2(Z, q), which completes the
results contained in [9, Example 2.6].

1. Orders in imaginary quadratic number fields. We begin by simplifying some of
our notation.

We denote the set of units in a ring R by R*. For each r e R, a e R*, we put

S(r) = T2,(r), T(r) = Tn(r), D(a) = diag(a, a"1).

For each x,y e R we put

ST(x,y) = S(x)T(y)S(-x) and TS(x,y) = T(x)S(y)T(-x).
Then E2(R, q) is generated by ST(r, q) and TS(r, q), where r & R and q s q.
Let d, O and Om be as above. We may assume that d is square-free. Let

\V-d, d = 1,2 (mod 4),

.+ V-d)/2, rf = 3(mod4).

It is well-known that

Om = Z + wmZ,

where wm = mw. It follows that every non-zero Om-ideal q is a Z-module of rank 2 and
consequently is of finite index in Om. We require a "canonical" set of Z-generators for
such a q.

LEMMA 1.1. Let q be a non-zero Om-ideal. Then there exist unique a,/3, y e Z with
the following properties:

(i) q = (aa)m + (})Z + yZ;
(ii) a > 0 and 0=£/3<y;
(iii) a | j8 and a | y;

(iv) |Om:q| = ay.

Proof. From the above q has Z-generators of the form

o)\==
 OL Wm "i~ B and co2

 = o? iom -I- i3

whereol,j8',a",j8"eZ,(a',o")?*(0,0)and(j8',/3( ')/(0,0).
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We now replace wl5 <u2 with wj, a>'2 where

and A e GL2(1). In this way we can assume a" = 0, a' ,/3">0 and O=£/3'</3". Let
a' = a, j8"=y and B' = B.

Now ywm e q and so a | B and a | y, The uniqueness of the a, )3, y follows, for
example, from the fact that y is the smallest positive integer in q. Part (iv) is obvious. D

NOTATION. We put

q = (a,/3*,y*),

where B = a/3* and y = ay*. (Then 0 =£ B* < y*.)
The principal result of this section depends upon Conn's theory of GL2 over

discretely normed rings. (See [3, § 5].)
To simplify our notation let

U=T(wm), T = T(l), /1 = [1 0J, 7 = -/2.

LEMMA 1.2. Suppose (d,m)^(l, 1), (2,1), (3,1), (3,2), (7,1), (11,1).
(i) E2(Om) = (U, T, A :A2 = (A T)3 = J, J2 = I2, UT = TU, J central).
(ii) 'E2(Om) = SL2(1) *c B,

the amalgamated product of

SL2(l) = (A;T:A2 = (ATf = J,J2 = I2, J central),

and

B = (J, U, T: UT = TU,J2 = I2, J central) = (1/21) X I2,

over

C = SL2(1)DB = (J,T J2 = I2, JT = TJ)s(1/21) x 1.

Proof. Cohn [3, p. 16] has defined a discretely normed ring and Dennis [4, Theorem
3] has proved Om is discretely normed precisely when (d,m) satisfies the above
restrictions.

By virtue of [5, Theorem (5.2)] E2(Om) has a presentation of the type described in [3,
Theorem (2.2)]. Using an approach similar to that of Fine in [5, Theorem 4.8.1, p. 120]
this presentation simplifies to that in (i) above.

Part (ii) follows immediately. (See also [5, Theorem 4.8.2 (1), p. 120].) D

NOTATION. Let q = (a, B*, y*) as above. We put

It is clear that E2(a, B*, y*) is the normal subgroup of E2(Om) generated by
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LEMMA 1.3. (i) E2(a,0,1) is of infinite index in E2(Om), when a 2*6.
(ii) £2(1, /3*, y*) is of infinite index in E2(Om), when y* s* 6.

Proof, (i) Let N be the normal subgroup of E2(Om) generated by J and U and let
G = E2(Om)IN. Then, by Lemma 1.2(i),

G = (a, t: a2 = t3 = 1) a PSL2(l),

where a (resp. r) is the image of A (resp. T) in G.
Now let M be the image of E2(a, 0,1) in G. Then G/M has a presentation of the form

which is one of the classical triangle groups. It is a classical result that this group is infinite
when a s= 6. Part (i) follows.

For part (ii) we repeat the argument with N the normal subgroup of E2(Om)
generated by / and UT13". O

COROLLARY 1.4. When a s= 6 or y* s* 6, E2(a, /3*, y*) is of infinite index in E2{Om).

Proof. Follows from Lemma 1.3 since E2(a, j3*, y*) =s£2(a,0,1) fl £2(l,/3*, y*).

D

We require one more lemma before our first principal result.

LEMMA 1.5. For all ideals q, E2(Om, q) is finitely generated.

Proof. We may assume that q #{0}. Then from the above 0m/q is finite and q is a
Z-module of rank 2. Let {au... , as} be a set of coset representatives of Om (mod q) and
let a>,, w2 be a Z-basis of q. Then E2(Om, q) is generated by

ST(ah coj) and TS(ah w;),

where l « / s £ s and; = 1,2. •

THEOREM 1.6. For all but finitely many Om-ideals q, E2(Om, q) is of infinite index in
E2(Om,q).

Proof. We may assume that q ̂ {0}. Let q = (a,/3*, y*) as above. By Lemma 1.5 it
suffices to prove that E2(a, /3*, y*) is infinitely generated when a s= 6 or y* 5= 6.

With the notation of Lemma 1.2(ii) we note that

|C:Cn£2(a,/3*,y*)|<oo,

since Tay' e E2(a, /3*, y*). Suppose that E2(a, /3*, y*) is finitely generated, where a 2s 6
or y*>6. Then, combining Lemma 1.2(ii) with a result of Karrass and Solitar
[6, Theorem 10], we conclude that

|£2(OJ:£2(a,/3*,y*)|<oc,

which contradicts Corollary 1.4. The result follows. •
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NOTES, (i) Theorem 1.6 is best possible in the sense that there are ideals q for which
E2(Om, q) = E2(Om, q). (Trivially, £2(Om,{0}) = £2(Om,{0}) = {/2} and E2(Om,Om) =
E2(Om,Om) = E2(Om).)

(ii) By Lemma 1.1 it follows, for example, that Theorem 1.6 holds for all non-zero q
where |0m:q |> 125.

(iii) The results for E2(Z, q) are very similar to the above and will be described in
detail in the last section.

2. k -rings with a degree function. Throughout this section D denotes a (commuta-
tive) k-hng with a degree function as defined by Cohn [3; p. 21], in which case D* = k*,
where k is a field. Examples of such D include

(i) polynomial rings in any number of indeterminates over k,
(ii) the coordinate ring C = C(^, P, k) of the affine curve obtained by removing a

closed point P from a projective curve <€ over k. (The simplest example of type (ii) is the
polynomial ring k[t].)

We begin with a "positive" result.

THEOREM 2.1. Let q be a D-ideal such that dim* (D/q) =£ 1. Then

E2(D, q) = E2(D, q) = E2(D) n SL2(D, q).

Proof. Since E2(D, D) = E2(D,D) = E2(D) we may assume that dim*(D/q) = 1, i.e.
D/ask.

Let X e E2(D) D SL2(D, q). Then

X=T(Xl)S(yi)...T(xn)S(yn),

where xuyu... ,xn,yn e D. Now

Xi = <?, + a,- and y, = <?, + j8,-,

for some qt, g, e q and a,, ft e <:, where l s i s n . It is clear that X can be written in the
form X = X)X2, where (i) Xx is a product of matrices of the type YT(q)Y~\ with
YeSL2(k) and q s q, and (ii) * 2 £ 5L2()t). (Note that ^ r ^ M " 1 = 5(-x).) Clearly
A'j E SL2(D, q). Hence A"2 e SL2(D, q) and so X2 = 72. It suffices therefore to prove that

7707)7-'e£2(D,q).

Let

Y =

There are two possibilities,
(a) a 5* 0: In this case

where a* = •vaT1 and /3* = pa~\ in which case
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(b) a = 0: In this case

The result follows. •

For the simplest case, namely D = k[t], Theorem 2.1 says that

E2(k[t], q) = E2(k[t], q)

where q = R or (t - a)R, for some a e k (R = k[t]).
The situation when dimk(D/q) > 1 is completely different. We require another result

[3] of Cohn.

DEFINITION. Let R be a ring. For each r e R we put

Let r,s e R and a e 7?*. The following identities are easily verified

E(r)E(0)E(s) = -E

E(r)E(a-')E(s) = E(r - a)D(a-')E(s - a).

Now each element X of E2(D) is by definition a product of matrices of the type S(r)
and T(S) and, since S(r) = -E(0)E(r) and T(s) = -£(-5)£'(0), A" is then a product of
matrices of the type E(r). If such an £(r), where r e D* U {0}, occurs in this product the
above identities can be used to reduce its "length". Cohn's result says that after all such
eliminations we are left with a unique standard form for X.

LEMMA 2.2. Let X e E2(D). Then X can be written uniquely in the following standard
form

X = D(a)E{ai)...E(an),

where a e k* and au...,aneD such that

(i) a, $ k, where 1< / < «, when n > 2 or
(ii) (au a2) ¥= (0,0), when n = 2.

Proof. See [3, Theorem (7.1)]. D

THEOREM 2.3. Let c\ be a non-zero D ideal, where dimk(D/q) > 1. Then E2(D, q) is a
non-normal subgroup of infinite index in E2(D, q).

Proof Choose x sD, where x $ q ©k and let Y = S(x)T(x). Let q e q, with 9 ^ 0 . It
suffices to prove that for each positive integer n

Y"S(q)Y-n * E2(D, q).

https://doi.org/10.1017/S0017089500031189 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031189


SUBGROUPS OF GENERAL LINEAR GROUPS 7

By means of the above identities it is clear that the standard form (Lemma 2.2) of
YnS(q)Y~" is

D(-l)E(0)E(x)E(-x). .. E(x)E(-x)E(q)E(x)E(-x). . . E(x)E(-x) (1)

(There are 2/1+2 terms in this product.)
Suppose that Z = Y"S(q)Y-" belongs to E2(D, q). Then

Z=Y]...YS,

where Y, = ST(at, <?,•) or TS(ah qt) for some a, g q and qt E q (1 =£ / =£ s), where s^l. It is
clear that s > 1. We note that

ST(ahqi) =

and

7S(a,, <?,) = £(-«,)(£(<?,)£(<*,)£ (0).

From the above identities it follows that

where X = 5 7 or 7"S. We may therefore assume that if Y( = X(ah r,) and Y,+1 =
Ar(a,+,,(7,+1), where X = ST or TS, and l « / < 5 , then a,^fl,+ 1. In addition, from the
standard form of Z, we conclude that at least one a, £ q U/c (otherwise Z e £2(Q©^))-
Assume from now on that / is the largest integer with this property.

We now write Z as a product of matrices of the type £(JC). Then

Z = ±E(a). . . E(±aj)E(Tqj)E(^aj)Y0,

where Vo e E2(c\®k) and Yo or -£(0)K0 e SL2(D, q). Reducing this to standard form and
comparing its last terms with those of (1) we conclude by Lemma 2.2 that Vo = E(q0) or
-£ (0 )£ (g 0 ) , f° r some q0 e q and hence that

E(x)E(-x) = £(=F9> + A)£(Tfl; + q0),

for some A e k. Again by Lemma 2.2 it follows that JC = =Fqs + A which contradicts the fact
that x $ q(Bk. •

3. Dedekind rings of arithmetic type. Throughout this section A denotes a
Dedekind ring of arithmetic type [2, p. 83]. By a classical theorem of Dirichlet it is known
that A* is finite if and only if A = Z, A = O = O(d), for some d, or A = C(<<?, P, k), for
some finite k. The preceding results (together with these of the last section) show that for
most A of this type the subgroup E2(A, q) is nearly always of infinite index in E2(A, q).

When A* is infinite however the situation is completely different.

THEOREM 3.1. Let A be as above and suppose that A* is infinite. Then, for all
A-ideals q, E2(A, q) = E2(A, q).

Proof. Let X e E2(A, q). Liehl [7, (20), p. 164] has proved that

X = S(al)T(ql)...S(an)nqn),
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for some ax,..., an eA and qu... , qn e q. Then

X = ST(af,qi)...ST(a*n,qn)S(a*n),

where

af = fl, + . . . + a , ( l « i « / i ) .

Now X = 12 (mod q) and so a* e q. Hence A1 E / ^C^ P)- C

4. The modular group. We conclude by determining precisely when E2(Z, q) =
E2(Z, q). This completes the results contained in [9, Example 2.6]. Now q = mZ, for some
m s= 0. We may assume that m > 0.

LEMMA 4.1. E2{Z,mZ) is (finitely) generated by ST(a,m) and TS(a,m), where
0=£a=£m - 1

Proof. Obvious. •

LEMMA 4.2. (i) When 3 « m « 5 , E2(Z, mZ) is a free group of rank

where /J. = \SL2(Z):SL(Z,mZ)\.
(ii) When m & 6, E2(Z, mZ) is a free group of infinite rank.

Proof. We denote the embedding of a subgroup S of SL2(Z) in PSL2(Z) by PS. Now,
for all m s* 3,

and, by [11, Theorem VIII.6, p. 143], PE2(Z, ml) is a free group.
When 1 ^ m =£ 5 it is well-known that

PE2(Z, mZ) = PSL2(1, ml).

(See, for example, [12, Theorem (i)].) It is known [11, Theorem VIII.7, p. 144] that the
rank of E2(l, ml) is

where p = \PSL2(l):PSL2(l,ml)\\ with 1 =s m «5 . Part (i) follows.
For part (ii) it is well-known that, when m ^ 6, PE2(1, ml) is of infinite index in

PSL2(Z). (See, for example, [12, Theorem (ii)].) Now PSL2(1) is a (non-trivial) free
product. (See, for example, [11, Theorem VIII.1, p. 139].) Part (ii) follows from [6,
Theorem 10]. •

We now come to our final result.

THEOREM 4.3. (i) E2(l, ml) = E2(l, ml), when 1 =s m =£ 4.
(ii) When m s* 5, E2(l, ml) is a non-normal subgroup of infinite index in E2(l, ml).

Proof. Suppose first that m>6. By Lemmas 4.1 and 4.2(ii) E2(l,ml) is a finitely
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generated subgroup of £2(Z, mZ), a free group of infinite rank. Hence £2(Z, mZ) is of
infinite index in £2(Z,/nZ) and is consequently non-normal in E2(Z,mZ) by
[8, Proposition 3.11, p. 17].

By Lemma 4.2(i) and [11, Theorem VII.15, p. 115] £2(Z,5Z) is free of rank 11. By
Lemma 4.1, £2(Z, 5Z) is free of rank r, where r «10. Hence £2(Z,5Z) is of infinite index
in £2(Z, 5Z) by [8, Proposition 3.9, p. 16]. Again by [8, Proposition 3.11, p. 17] and
Lemma 4.1, £2(Z, 5Z) is non-normal in £2(Z, 5Z). Part (ii) follows.

For part (i) we treat the cases m = 2,3,4, separately. (The case m = 1 is trivial.)
The case m=2: £2(Z,2Z) is generated by -I2, 5(2) and T(2). (See, for example,

[12, p. 149].) Now

-/ 2 = 7(2)5(-2)(75(l,2))"1

and so

£2(Z,2Z) = £2(Z,2Z).

The case m=3: It is known [12, p. 149] that £2(Z,3Z) is generated by 7(3),
P-]T(3)P, P~2T(3)P2, where

- C ~l\
Now P~]T(3)P= TS(-1, -3) and P~2T(3)P2 = 5T( -1 , -3) and so

£2(Z,3Z) = £2(Z,3Z).

The case m = 4: By [11, Exercises and problems, p. 137] a complete set of right coset
representatives for 5L2(Z, 2Z) (modulo 5L2(Z, 4Z)) is

±/2, ±7(2), ±5(2) and ±7(2)5(2).

From the above 5L2(Z, IT) = £2(Z, 2Z) is generated by -I2, 5(2) and 7(2) and so by
a Reidemeister-Schreier type argument 5L2(Z, 4Z) = £2(Z, 4Z) is generated by

5(4), 75(2,4), 7(4), 5(2)7(2)5(-2)7(-2) and 7(2)5(2)7(2)5(-2).

From the above [75(1,2)]2= 7(2)5(-2)7(2)5(-2) and so

7(2)5(2)7(2)5(-2) = 75(2,4)[75(1,2)]2.

In addition

5(2)7(2)5(-2)7(-2)75(2,4)[75(1,2)]2 = 57(2,4).

It follows that

£2(Z,4Z) = £2(Z,4Z). •
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