CNS SPECTRUMS®

THE INTERNATIONAL JOURNAL OF NEUROPSYCHIATRIC MEDICINE

REVIEW ARTICLES

The Future of Depression Psychopharmacology

R.H. Belmaker

Impulse-Control Disorders in Parkinson's Disease

J.M. Ferrara and M. Stacy

ORIGINAL RESEARCH

Obsessive-Compulsive Disorder With and Without Tic Disorder:

A Comparative Study From India

T.S. Jaisoorya, Y.C.J. Reddy, S. Srinath, and K. Thennarasu

CASE REPORT

Psychosis Associated with Anti-N-methyl-D-aspartate Receptor Antibodies

K.M. Nasky, D.R. Knittel, G. Manos

TRENDS IN PSYCHOPHARMACOLOGY

Tailoring Treatment of Depression for Women Across the Reproductive Lifecycle:
The Importance of Pregnancy, Vasomotor Symptoms, and Other
Estrogen-Related Events in Psychopharmacology

D.D. Wise, A. Felker, and S.M. Stahl

BRAIN REGIONS OF INTEREST

The Subgenual Anterior Cingulate Cortex in Mood Disorders

W.C. Drevets, J. Savitz, and M. Trimble

COMMUNIQUE

Obsessive-Compulsive Disorder After Streptococcal Infection in a Frontal Lobe-Resected Patient

Index Medicus citation: CNS Spectr

And now presenting... the newest medication to help your patients with fibromyalgia.

Cymbalta is now approved for the management of fibromyalgia.

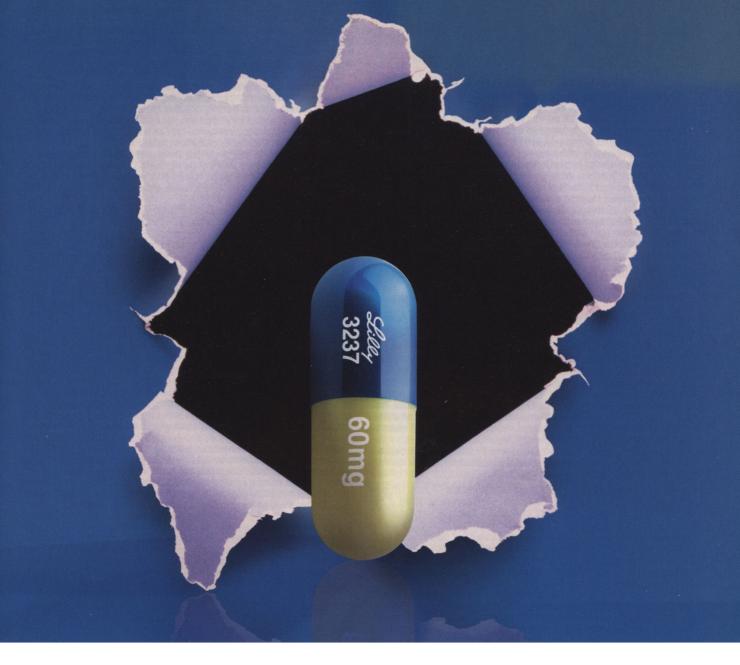
Important Safety Information

- Antidepressants increased the risk of suicidal thinking and behavior (suicidality) in short-term studies in children, adolescents, and young adults with major depressive disorder (MDD) and other psychiatric disorders.
- Patients of all ages started on therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior.
- Cymbalta is not approved for use in pediatric patients.

Cymbalta should not be used concomitantly with monoamine oxidase inhibitors (MAOIs) or in patients with uncontrolled narrow-angle glaucoma.

Clinical worsening and suicide risk: All patients being treated with an antidepressant for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially within the first few months of treatment and when changing the dose. Consider changing the therapeutic regimen if the depression is persistently worse or there are symptoms that are severe, sudden, or were not part of the patient's

presentation. If discontinuing treatment, taper the medication. Families and caregivers of patients being treated with antidepressants for any indication should be alerted about the need to monitor patients.


Hepatic failure, sometimes fatal, has been reported in patients treated with Cymbalta. Cymbalta should be discontinued in patients who develop jaundice or other evidence of clinically significant liver dysfunction and should not be resumed unless another cause can be established.

Cymbalta should ordinarily not be prescribed to patients with substantial alcohol use or evidence of chronic liver disease.

Cases of orthostatic hypotension and/or syncope as well as cases of hyponatremia have been reported.

Development of a potentially life-threatening serotonin syndrome may occur with SNRIs and SSRIs, including Cymbalta treatment, particularly with concomitant use of serotonergic drugs, including triptans. Concomitant use is not recommended.

SSRIs and SNRIs, including Cymbalta, may increase the risk of bleeding events. Patients should be cautioned about the risk of bleeding associated with concomitant use of Cymbalta and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation.

On discontinuation, adverse events, some of which may be serious, have been reported with SSRIs and SNRIs. A gradual reduction in dose rather than abrupt cessation is recommended when possible.

Co-administration of Cymbalta with potent CYP1A2 inhibitors or thioridazine should be avoided.

Caution is advised in using Cymbalta in patients with conditions that may slow gastric emptying (eg, some diabetics).

Cymbalta should ordinarily not be administered to patients with any hepatic insufficiency or patients with end-stage renal disease (requiring dialysis) or severe renal impairment (CrCl <30 mL/min).

As observed in DPNP clinical trials, Cymbalta treatment worsens glycemic control in some patients with diabetes. In the extension phases up to 52 weeks, an increase in HbA_{1c} in both the Cymbalta (0.5%) and routine care groups (0.2%) was noted.

If symptoms of urinary hesitation develop during Cymbalta treatment, this effect may be drug-related. In postmarketing experience, urinary retention has been observed.

The most commonly reported adverse events (≥5% and at least twice placebo) for Cymbalta vs placebo in controlled clinical trials (N=4843 vs 3048) were: nausea, dry mouth, somnolence,* constipation,* decreased appetite,* and increased sweating.

* Events for which there was a significant dose-dependent relationship in fixed-dose studies, excluding three MDD studies which did not have a placebo lead-in period or dose titration.

See Brief Summary of full Prescribing Information, including Boxed Warning, on following spread.

DD51852 0808 PRINTED IN USA © 2008, ELI LILLY AND COMPANY. ALL RIGHTS RESERVED. Cymbalta is a registered trademark of Eli Lilly and Company.

www.insidecymbalta.com

(duloxetine hydrochloride) Delayed-release Capsules

Brief Summary: Consult the package insert for complete prescribing information.

WARNING: SUICIDALITY AND ANTIDEPRESSANT DRUGS

Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Cymbalta or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Cymbalta is not approved for use in pediatric patients. [See Warnings and Precautions and Use in Specific Populations.]

INDICATIONS AND USAGE: Major Depressive Disorder—Cymbalta is indicated for the acute and maintenance treatment of major depressive disorder (MDD).

Generalized Anxiety Disorder—Cymbalta is indicated for the acute treatment of generalized anxiety disorder (GAD).

Diabetic Peripheral Neuropathic Pain—Cymbalta is indicated for the management of neuropathic pain (DPNP) associated with diabetic peripheral neuropathy.

Fibromyalgia—Cymbalta is indicated for the management of fibromyalgia (FM).

CONTRAINDICATIONS: Monoamine Oxidase Inhibitors—Concomitant use in patients taking monoamine oxidase inhibitors (MAOIs) is contraindicated due to the risk of serious, sometimes fatal, drug interactions with serotonergic drugs. These interactions may include hyperthermia, rigidity, myoclonus, autonomic instability with possible rapid fluctuations of vital signs, and mental status changes that include extreme agitation progressing to delirium and coma. These reactions have also been reported in patients who have recently discontinued serotonin reuptake inhibitors and are then started on an MAOI. Some cases presented with features resembling neuroleptic malignant syndrome [see Warnings and Precautions].

Uncontrolled Narrow-Angle Glaucoma—In clinical trials, Cymbalta use was associated with an increased risk of mydriasis; therefore, its use should be avoided in patients with uncontrolled narrow-angle glaucoma [see Warnings and Precautions].

WARNINGS AND PRECAUTIONS: Clinical Worsening and Suicide Risk—Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment.

Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18-24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and oider.

The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk of differences (drug vs placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1.

Table 1

Age Range	Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated
	Increases Compared to Placebo
<18	14 additional cases
18-24	5 additional cases
	Decreases Compared to Placebo
25-64	1 fewer case
≥65	6 fewer cases

No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide.

It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression.

All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases.

The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality.

Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient's presenting symptoms.

If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that discontinuation can be associated with certain symptoms [see Warnings and Precautions, Discontinuation of Treatment with Cymbalta].

Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for Cymbalta should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose.

Screening Patients for Bipolar Disorder—A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that Cymbalta (duloxetine) is not approved for use in treating bipolar depression.

Hepatotoxicity—There have been reports of hepatic failure, sometimes fatal, in patients treated with Cymbalta. These cases have presented as hepatitis with abdominal pain, hepatomegaly, and elevation of transaminase levels to more than twenty times the upper limit of normal with or without jaundice, reflecting a mixed or hepatocellular pattern of liver injury. Cymbalta should be discontinued in patients who develop jaundice or other evidence of clinically significant liver dysfunction and should not be resumed unless another cause can be established.

Cases of cholestatic jaundice with minimal elevation of transaminase levels have also been reported. Other postmarketing reports indicate that elevated transaminases, bilirubin, and alkaline phosphatase have occurred in patients with chronic liver disease or cirrhosis.

Cymbalta increased the risk of elevation of serum transaminase levels in development program clinical trials. Liver transaminase elevations resulted in the discontinuation of 0.3% (82/27,229) of Cymbalta-treated patients. In these patients, the median time to detection of the transaminase elevation was about two months. In placebo-controlled trials in any indication, elevation of ALT >3 times the upper limit of normal occurred in 1.1% (85/7,632) of Cymbalta-treated patients compared to 0.2% (13/5,578) of placebo-treated patients. In placebo-controlled studies using a fixed dose design, there was evidence of a dose response relationship for ALT and AST elevation of >3 times the upper limit of normal and >5 times the upper limit of normal, respectively.

Because it is possible that duloxetine and alcohol may interact to cause liver injury or that duloxetine may aggravate pre-existing liver disease, Cymbalta should ordinarily not be prescribed to patients with substantial alcohol use or evidence of chronic liver disease.

Orthostatic Hypotension and Syncope—Orthostatic hypotension and syncope have been reported with therapeutic doses of duloxetine. Syncope and orthostatic hypotension tend to occur within the first week of therapy but can occur at any time during duloxetine treatment, particularly after dose increases. The risk of blood pressure decreases may be greater in patients taking concomitant medications that induce orthostatic hypotension (such as antihypertensive or are potent CYP1A2 inhibitors [see Warnings and Precautions and Drug Interactions] and in patients taking duloxetine at doses above 60 mg daily. Consideration should be given to discontinuing duloxetine in patients who experience symptomatic orthostatic hypotension and/or syncope during duloxetine therapy.

Serotonin Syndrome—The development of a potentially life-threatening serotonin syndrome may occur with SNRIs and SSRIs, including Cymbalta treatment, particularly with concomitant use of serotonergic drugs (including triptans) and with drugs which impair metabolism of serotonin (including MAOIs). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea).

The concomitant use of Cymbalta with MAOIs intended to treat depression is contraindicated [see Contraindications].

If concomitant treatment of Cymbalta with a 5-hydroxytryptamine receptor agonist (triptan) is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases [see Drug Interactions].

The concomitant use of Cymbalta with serotonin precursors (such as tryptophan) is not recommended [see Drug Interactions].

Abnormal Bleeding—SSRIs and SNRIs, including duloxetine, may increase the risk of bleeding events. Concomitant use of aspirin, non-steroidal anti-inflammatory drugs, warfarin, and other anti-coagulants may add to this risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with

serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding events related to SSRIs and SNRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening hemorrhages

Patients should be cautioned about the risk of bleeding associated with the concomitant use

of duloxetine and NSAIDs, aspirin, or other drugs that affect coagulation.

Discontinuation of Treatment with Cymbalta—Discontinuation symptoms have been systematically evaluated in patients taking duloxetine. Discontinuation symptoms have been systematically evaluated in patients taking duloxetine. Discontinuation symptoms have been systematically evaluated in patients take the following account of the symptoms of the systematical takes the following account of the systematic systematics are systematically evaluated in patients and the systematics are systematically evaluated in patients and the systematical systematics are systematically evaluated in patients and the systematical systematics are systematically evaluated in patients and the systematics are systematically evaluated in patients and the systematics are systematically evaluated in patients and the systematically evaluated in patients are systematically evaluated in patients and the systematics are systematically evaluated and the systematics are systemat in placebo-controlled clinical trials, the following symptoms occurred at a rate greater than or equal to 1% and at a significantly higher rate in duloxetine-treated patients compared to those discontinuing from placebo: dizziness, nausea, headache, fatigue, paresthesia, vomiting, irritability, nightmares, insomnia, diarrhea, anxiety, hyperhidrosis and vertigo.

During marketing of other SSRIs and SNRIs (serotonin and norepinephrine reuptake inhibitors) there have been spontaneous reports of adverse events occurring upon discontinuation of these drugs, particularly when abrupt, including the following: dysphoric mood, irritability, agitation, dizziness, sensory disturbances (e.g., paresthesias such as electric shock sensations) anxiety, confusion, headache, lethargy, emotional lability, insomnia, hypomania, tinnitus, and seizures. Although these events are generally self-limiting, some have been reported to be severe.

Patients should be monitored for these symptoms when discontinuing treatment with Cymbalta. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate.

Activation of Mania/Hypomania—In placebo-controlled trials in patients with major depressive disorder, activation of mania or hypomania was reported in 0.1% (2/2489) of duloxetine-treated patients and 0.1% (1/1625) of placebo-treated patients. No activation of mania or hypomania was reported in DPNP, GAD, or fibromyalgia placebo-controlled trials. Activation of mania or hypomania has been reported in a small proportion of patients with mood disorders who were treated with other marketed drugs effective in the treatment of major depressive disorder. As with these other agents, Cymbalta should be used cautiously in patients with a history of mania.

Seizures—Duloxetine has not been systematically evaluated in patients with a seizure disorder and such patients were excluded from clinical studies. In placebo-controlled clinical trials, seizures/convulsions occurred in 0.03% (3/9445) of patients treated with duloxetine and 0.01% (1/6770) of patients treated with placebo. Cymbalta should be prescribed with care in

patients with a history of a seizure disorder.

Effect on Blood Pressure—In clinical trials across indications, relative to placebo, duloxetine treatment was associated with mean increases of up to 2.1 mm Hg in systolic blood pressure and up to 2.3 mm Hg in diastolic blood pressure. There was no significant difference in the frequency of sustained (3 consecutive visits) elevated blood pressure. In a clinical pharmacology study designed to evaluate the effects of duloxetine on various parameters, including blood pressure at supratherapeutic doses with an accelerated dose titration, there was evidence of increases in supine blood pressure at doses up to 200 mg twice daily. At the highest 200 mg twice daily dose, the increase in mean pulse rate was 5.0 to 6.8 beats and increases in mean blood pressure were 4.7 to 6.8 mm Hg (systolic) and 4.5 to 7 mm Hg (diastolic) up to 12 hours

Blood pressure should be measured prior to initiating treatment and periodically measured

throughout treatment [see Adverse Reactions, Vital Sign Changes]

Clinically Important Drug Interactions—Both CYP1A2 and CYP2D6 are responsible for duloxetine metabolism

<u>Potential for Other Drugs to Affect Cymbalta—CYP1A2 Inhibitors—Co-administration of Cymbalta with potent CYP1A2 inhibitors should be avoided [see Drug Interactions].</u>

CYP2D6 Inhibitors—Because CYP2D6 is involved in duloxetine metabolism, concomitant use of duloxetine with potent inhibitors of CYP2D6 would be expected to, and does, result in

higher concentrations (on average of 60%) of duloxetine [see Drug Interactions]

Potential for Cymbalta to Affect Other Drugs—Drugs Metabolized by CYP2D6—Co-administration of Cymbalta with drugs that are extensively metabolized by CYP2D6 and that have a narrow therapeutic index, including certain antidepressants (tricyclic antidepressants [TCAs], such as nortriptyline, amitriptyline, and imipramine), phenothiazines and Type 1C antiarrhythmics (e.g., propafenone, flecainide), should be approached with caution. Plasma TCA concentrations may need to be monitored and the dose of the TCA may need to be reduced if a TCA is co-administered with Cymbalta. Because of the risk of serious ventricular arrhythmias and sudden death potentially associated with elevated plasma levels of thioridazine, Cymbalta and thioridazine should not be co-administered [see Drug Interactions].

Other Clinically Important Drug Interactions—Alcohol—Use of Cymbalta concomitantly with heavy alcohol intake may be associated with severe liver injury. For this reason, Cymbalta should ordinarily not be prescribed for patients with substantial alcohol use [see Warnings and

Precautions and Drug Interactions 1.

CNS Acting Drugs-Given the primary CNS effects of Cymbalta, it should be used with caution when it is taken in combination with or substituted for other centrally acting drugs, including those with a similar mechanism of action [see Warnings and Precautions and Drug Interactions]

Hyponatremia—Hyponatremia may occur as a result of treatment with SSRIs and SNRIs, including Cymbalta. In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Cases with serum sodium lower than 110 mmol/L have been reported and appeared to be reversible when Cymbalta was discontinued Elderly patients may be at greater risk of developing hyponatremia with SSRIs and SNRIs. Also, patients taking diuretics or who are otherwise volume depleted may be at greater risk [see Use in Specific Populations]. Discontinuation of Cymbalta should be considered in patients with mptomatic hyponatremia and appropriate medical intervention should be instituted.

Use in Patients with Concomitant Illness-Clinical experience with Cymbalta in patients with concomitant systemic illnesses is limited. There is no information on the effect that alterations in gastric motility may have on the stability of Cymbalta's enteric coating. In extremely acidic conditions, Cymbalta, unprotected by the enteric coating, may undergo hydrolysis to form naphthol. Caution is advised in using Cymbalta in patients with conditions that may slow

gastric emptying (e.g., some diabetics). Cymbalta has not been systematically evaluated in patients with a recent history of myocardial infarction or unstable coronary artery disease. Patients with these diagnoses were generally

excluded from clinical studies during the product's premarketing testing.

Hepatic Insufficiency-Cymbalta should ordinarily not be used in patients with hepatic insufficiency [see Warnings and Precautions and Use in Specific Populations].

<u>Severe Renal Impairment</u>—Cymbalta should ordinarily not be used in patients with end-stage renal disease or severe renal impairment (creatinine clearance <30 mL/min). Increased plasma concentration of duloxetine, and especially of its metabolites, occur in patients with end-stage renal disease (requiring dialysis) [see Use in Specific Populations].

Controlled Narrow-Angle Glaucoma-In clinical trials, Cymbalta was associated with an increased risk of mydriasis; therefore, it should be used cautiously in patients with controlled

narrow-angle glaucoma [see Contraindications].

Glycemic Control in Patients with Diabetes—As observed in DPNP trials, Cymbalta treatment worsens glycemic control in some patients with diabetes. In three clinical trials of Cymbalta for the management of neuropathic pain associated with diabetic peripheral neuropathy, the mean duration of diabetes was approximately 12 years, the mean baseline fasting blood glucose was 176 mg/dL, and the mean baseline hemoglobin A_{1c} (Hb A_{1c}) was 7.8%. In the 12-week acute treatment phase of these studies, Cymbalta was associated with a small increase in mean fasting blood glucose as compared to placebo. In the extension phase of these studies, which lasted up to 52 weeks, mean fasting blood glucose increased by 12 mg/dL in the Cymbalta group and decreased by 11.5 mg/dL in the routine care group. HbA1c increased by 0.5% in the Cymbalta and by 0.2% in the routine care groups.

Urinary Hesitation and Retention—Cymbalta is in a class of drugs known to affect urethral resistance. If symptoms of urinary hesitation develop during treatment with Cymbalta, consideration should be given to the possibility that they might be drug-related. In post marketing experience, cases of urinary retention have been observed. In some instances of urinary retention associated with duloxetine use, hospitalization and/or catheterization has been needed.

Laboratory Tests—No specific laboratory tests are recommended.

ADVERSE REACTIONS: Clinical Trial Data Sources—The data described below reflect exposure to duloxetine in placebo-controlled trials for MDD (N=2327), GAD (N=668), DPNP (N=568) and FM (N=876). The population studied was 17 to 89 years of age; 64.8%, 64.7%, 38.7%, and 94.6% female; and 85.5%, 84.6%, 77.6%, and 88% Caucasian for MDD, GAD, DPNP, and FM, respectively. Most patients received doses of a total of 60 to 120 mg per day.

The stated frequencies of adverse reactions represent the proportion of individuals who experienced, at least once, a treatment-emergent adverse reaction of the type listed. A reaction was considered treatment-emergent if it occurred for the first time or worsened while receiving therapy following baseline evaluation. Reactions reported during the studies were not necessarily caused by the therapy, and the frequencies do not reflect investigator impression (assessment) of causality. Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice

Adverse Reactions Reported as Reasons for Discontinuation of Treatment in Placebo-Controlled Trials—Major Depressive Disorder—Approximately 9% (209/2327) of the patients who received duloxetine in placebo-controlled trials for MDD discontinued treatment due to an adverse reaction, compared with 4.7% (68/1460) of the patients receiving placebo. Nausea (duloxetine 1.3%, placebo 0.5%) was the only common adverse reaction reported as a reason for discontinuation and considered to be drug-related (i.e., discontinuation occurring in at least 1% of the duloxetine-treated patients and at a rate of at least twice that of placebo)

Generalized Anxiety Disorder—Approximately 15.3% (102/668) of the patients who received duloxetine in placebo-controlled trials for GAD discontinued treatment due to an adverse reaction, compared with 4.0% (20/495) for placebo. Common adverse reactions reported as a reason for discontinuation and considered to be drug-related (as defined above) included nausea (duloxetine 3.7%, placebo 0.2%), vomiting (duloxetine 1.3%, placebo 0.0%), and dizziness (duloxetine 1.0%, placebo 0.2%).

<u>Diabetic Peripheral Neuropathic Pain—Approximately 14.3% (81/568) of the patients who received duloxetine in placebo-controlled trials for DPNP discontinued treatment due to an</u> adverse reaction, compared with 7.2% (16/223) for placebo. Common adverse reactions reported as a reason for discontinuation and considered to be drug-related (as defined above) were nausea (duloxetine 3.5%, placebo 0.4%), dizziness (duloxetine 1.6%, placebo 0.4%),

somnolence (duloxetine 1.6%, placebo 0.0%), and fatigue (duloxetine 1.1%, placebo 0.0%). Fibromyalgia—Approximately 19.5% (171/876) of the patients who received duloxetine in 3 to 6 month placebo-controlled trials for FM discontinued treatment due to an adverse reaction, compared with 11.8% (63/535) for placebo. Common adverse reactions reported as a reason for discontinuation and considered to be drug-related (as defined above) included nausea (duloxetine 1.9%, placebo 0.7%), somnolence (duloxetine 1.5%, placebo 0.0%), and fatigue (duloxetine 1.3%, placebo 0.2%)

Adverse Reactions Occurring at an Incidence of 5% or More and at least Twice Placebo Among Duloxetine-Treated Patients in Placebo-Controlled Trials—Pooled Trials for all Approved Indications—The most commonly observed adverse reactions in Cymbalta-treated patients (incidence of at least 5% and at least twice the incidence in placebo patients) were nausea, dry mouth, constipation, somnolence, hyperhidrosis, and decreased appetite.

In addition to the adverse reactions listed above, DPNP trials also included dizziness and

Adverse Reactions Occurring at an Incidence of 5% or More Among Duloxetine-Treated Patients in Placeho-Controlled Trials—The incidence of treatment-emergent adverse reactions in placebo-controlled trials (N=4843 Cymbalta; N=3048 placebo) for approved indications that occurred in 5% or more of patients treated with duloxetine and with an incidence greater than placebo were: nausea, headache, dry mouth, fatigue (includes asthenia), insomnia* (includes middle insomnia, early morning awakening, and initial insomnia), dizziness, somnolence (includes hypersomnia and sedation), constipation*, diarrhea, decreased appetite* (includes anorexia), and hyperhidrosis. *Events for which there was a significant dose-dependent relationship in fixed-dose studies, excluding three MDD studies which did not have a placebo lead-in period or dose titration.

Adverse Reactions Occurring at an Incidence of 2% or More Among Duloxetine-Treated Patients in Placebo-Controlled Trials—Pooled MDD and GAD Trials—Table 3 in full PI gives the incidence of treatment-emergent adverse reactions in MDD and GAD placebo-controlled trials (N=2995 Cymbalta; N=1955 placebo) for approved indications that occurred in 2% or more of patients treated with duloxetine and with an incidence greater than placebo were: <u>Cardiac Disorders</u>—palpitations; <u>Eve Disorders</u>—vision blurred; <u>Gastrointestinal Disorders</u>—nausea, dry mouth, diarrhea, constipation*, abdominal pain (includes abdominal pain upper, abdominal pain lower, abdominal tenderness, abdominal discomfort, and gastrointestinal pain) upper, abdominal pain lower, abdominal tenderness, abdominal discomfort, and gastrointestinal pain), vomiting; <u>General Disorders and Administration Site Conditions</u>—fatigue (includes asthenia); <u>Investigations</u>—weight decreased*; <u>Metabolism and Nutrition Disorders</u>—decreased appetite (includes anorexia); <u>Nervous System Disorders</u>—dizziness, somnolence (includes hypersomnia and sedation), tremor; <u>Psychiatric Disorders</u>—insomnia (includes middle insomnia, early morning awakening, and initial insomnia), agitation (includes feeling jittery, nervousness; restlessness, tension, and psychomotor agitation), anxiety, decreased libido (includes loss of libido), orgasm abnormal (includes anorgasmia), abnormal dreams (includes nightmare); <u>Reproductive System and Breast Disorders</u>—erectile dysfunction, ejaculation delayed, ejaculation disorder (includes ejaculation failure and ejaculation dysfunction); <u>Respiratory. Thoracic, and Mediastinal Disorders</u>—yawning; <u>Skin and Subcutaneous Tissue Disorders</u>—hyperhidrosis; <u>Vascular Disorders</u>—hot flush. *Events for which there was a significant dose-dependent relationship in fixed-dose studies, excluding three MDD studies which did not have a placebo lead-in period or dose titration.

Diabetic Peripheral Neuropathic Pain—Treatment-emergent adverse events that occurred in 2% or more of patients treated with Cymbalta in the premarketing acute phase of DPNP placebo-controlled trials (N=115 Cymbalta 20 mg once daily; N=226 Cymbalta 60 mg once daily; N=225 Cymbalta 60 mg twice daily; N=223 placebo) with an incidence greater than placebo were: Gastrointestinal Disorders—nausea, constipation, diarrhea, dry mouth, vomiting, dyspepsia, loose stools; General Disorders and Administration Site Conditions—fatigue, asthenia, pyrexia; Infections and Infestations—nasopharyngitis; Metabolism and Nutrition Disorders—decreased appetite, anorexia; Musculoskeletal and Connective Tissue Disorders—muscle cramp, myalgia; Nervous System Disorders—somnolence, headache, dizziness, tremor; Psychiatric Disorders—insomnia; Renal and Urinary Disorders—pollakiuria; Reproductive System and Breast Disorders—erectile dysfunction; Respiratory. Thoracic and Mediastinal Disorders—cough, pharyngolaryngeal pain; Skin and Subcuttaneous Tissue Disorders—of patients.

Fibromyalgia—Treatment-emergent adverse events that occurred in 2% or more of patients treated with Cymbalta in the premarketing acute phase of FM placebo-controlled trials (N=876 Cymbalta; N=535 placebo) and with an incidence greater than placebo were: Cardiac Disorderspalpitations; Eye Disorders-vision blurred; Gastrointestinal Disorders-nausea, dry mouth, constipation, diarrhea, dyspepsia; General Disorders and Administration Site Conditionsfatigue (includes asthenia); Immune System Disorders—seasonal allergy; Infections and Infestations—upper respiratory tract infection, urinary tract infection, influenza, gastroenteritis viral; Investigations—weight increased; Metabolism and Nutrition Disorders—decreased appetite (includes anorexia); Musculoskeletal and Connective Tissue Disorders—musculoskeletal pain, muscle spasm; Nervous System Disorders—headache, dizziness, somnolence (includes hypersomnia and sedation), tremor, paraesthesia, migraine, dysgeusia; Psychiatric Disordersinsomnia (includes middle insomnia, early morning awakening, and initial insomnia), agitation (includes feeling jittery, nervousness, restlessness, tension, and psychomotor agitation), sleep disorder, abnormal dreams (includes nightmare), orgasm abnormal (includes anorgasmia), libido decreased (includes loss of libido); Reproductive System and Breast Disorders—ejaculation disorder (includes ejaculation failure and ejaculation dysfunction), penis disorder; Respiratory Thoracic, and Mediastinal Disorders—cough, pharyngolaryngeal pain; Skin and Subcutaneous Tissue Disorders—hyperhidrosis, rash, pruritus; Vascular Disorders—hot flush.

Effects on Male and Female Sexual Function—Changes in sexual desire, sexual performance and sexual satisfaction often occur as manifestations of psychiatric disorders or diabetes, but they may also be a consequence of pharmacologic treatment. Because adverse sexual reactions are presumed to be voluntarily underreported, the Arizona Sexual Experience Scale (ASEX), a validated measure designed to identify sexual side effects, was used prospectively in 4 MDD placebo-controlled trials. In these trials, patients treated with Cymbalta experienced significantly more sexual dysfunction, as measured by the total score on the ASEX, than did patients treated with placebo. Gender analysis showed that this difference occurred only in males. Males treated with Cymbalta experienced more difficulty with ability to reach orgasm (ASEX Item 4) than males treated with placebo. Females did not experience more sexual dysfunction on Cymbalta than on placebo as measured by ASEX total score. Physicians should routinely inquire about possible sexual side effects. See Table 6 in full PI for specific ASEX results.

Vital Sign Changes—In clinical trials across indications, relative to placebo, duloxetine treatment was associated with mean increases of up to 2.1 mm Hg in systolic blood pressure and up to 2.3 mm Hg in diastolic blood pressure. There was no significant difference in the frequency of sustained (3 consecutive visits) elevated blood pressure [see Warnings and Precautions]. Duloxetine treatment, for up to 26-weeks in placebo-controlled trials typically caused a small increase in heart rate compared to placebo of up to 3-4 beats per minute.

Weight Changes—In placebo-controlled clinical trials, MDD and GAD patients treated with Cymbalta for up to 10 weeks experienced a mean weight loss of approximately 0.5 kg, compared with a mean weight gain of approximately 0.2 kg in placebo-treated patients. In DPN placebo-controlled clinical trials, patients treated with Cymbalta for up to 13-weeks experienced a mean weight loss of approximately 1.1 kg, compared with a mean weight gain of approximately 0.2 kg in placebo-treated patients. In fibromyalgia studies, patients treated with Cymbalta for up to 26 weeks experienced a mean weight loss of approximately 0.3 kg in placebo-treated patients. In one long-term fibromyalgia 60-week uncontrolled study, duloxetine patients had a mean weight increase of 0.7 kg.

Laboratory Changes—Cymbalta treatment in placebo-controlled clinical trials, was associated with small mean increases from baseline to endpoint in ALT, AST, CPK, and alkaline phosphatase; infrequent, modest, transient, abnormal values were observed for these analytes in Cymbalta-treated patients when compared with placebo-treated patients [see Warnings and Precautions].

Electrocardiogram Changes—Electrocardiograms were obtained from duloxetine-treated patients and placebo-treated patients in clinical trials lasting up to 13-weeks. No clinically significant differences were observed for QTc, QT, PR, and QRS intervals between duloxetine-treated and placebo-treated patients. There were no differences in clinically meaningful QTcF elevations between duloxetine and placebo. In a positive-controlled study in healthy volunteers using duloxetine up to 200 mg twice daily, no prolongation of the corrected QT interval was observed.

Other Adverse Reactions Observed During the Premarketing and Postmarketing Clinical Trial Evaluation of Duloxetine—Following is a list of treatment-emergent adverse reactions reported by patients treated with duloxetine in clinical trials. In clinical trials of all indications, 27,229 patients were treated with duloxetine. Of these, 29% (7,886) took duloxetine for at least 6 months, and 13.3% (3,614) for at least one year. The following listing is not intended to include reactions (1) already listed in previous tables or elsewhere in labeling, (2) for which a drug cause was remote, (3) which were so general as to be uninformative, (4) which were not considered to have significant clinical implications, or (5) which occurred at a rate equal to or less than placebo.

Reactions are categorized by body system according to the following definitions: frequent adverse reactions are those occurring in at least 1/100 patients; infrequent adverse reactions are those occurring in 1/100 to 1/1000 patients; rare reactions are those occurring in fewer than 1/1000 patients. Cardiac Disorders-Frequent: palpitations; Infrequent: myocardial infarction and tachycardia; Ear and Labyrinth Disorders-Frequent: vertigo; Infrequent: ear pain and tinnitus; Endocrine Disorders—Infrequent: hypothyroidism; Eye Disorders—Frequent: vision blurred; Infrequent: diplopia and visual disturbance; Gastrointestinal Disorders— Frequent: flatulence; Infrequent: eructation, gastritis, halitosis, and stomatitis; Rare: gastric ulcer, hematochezia, and melena; General Disorders and Administration Site Conditions-Frequent: chills/rigors; Infrequent: feeling abnormal, feeling hot and/or cold, malaise, and thirst; Rare: gait disturbance; Infections and Infestations—Infrequent: gastroenteritis and laryngitis; Investigations—Frequent: weight increased; Infrequent: blood cholesterol increased; Metabolism and Nutrition Disorders-Infrequent: dehydration and hyperlipidemia; Rare: dyslipidemia; Musculoskeletal and Connective Tissue Disorders—Frequent: musculoskeletal pain; Infrequent: muscle tightness and muscle twitching; Nervous System Disorders-Frequent: dysgeusia, lethargy, and parasthesia/hypoesthesia; Infrequent: disturbance in attention, dyskinesia, myoclonus, and poor quality sleep; Rare: dysarthria; Psychiatric Disorders— Frequent: abnormal dreams and sleep disorder; Infrequent: apathy, bruxism, disorientation/ confusional state, irritability, mood swings, and suicide attempt; Rare: completed suicide; Renal and Urinary Disorders—Infrequent: dysuria, micturition urgency, nocturia, polyuria, and urine odor abnormal.; Reproductive System and Breast Disorders—Frequent: anorgasmia/orgasm abnormal; Infrequent: menopausal symptoms, and sexual dysfunction; Respiratory, Thoracic and Mediastinal Disorders-Frequent: yawning; Infrequent: throat tightness; Skin and Subcutaneous Tissue Disorders—Infrequent: cold sweat, dermatitis contact, erythema, increased tendency to bruise, night sweats, and photosensitivity reaction; Rare: ecchymosis; Vascular Disorders—Frequent: hot flush; Infrequent: flushing, orthostatic hypotension, and peripheral coldness.

Postmarketing Spontaneous Reports—The following adverse reactions have been identified during postapproval use of Cymbalta. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Adverse reactions reported since market introduction that were temporally related to duloxetine therapy and not mentioned elsewhere in labeling include: anaphylactic reaction, aggression and anger (particularly early in treatment or after treatment discontinuation), angioneurotic edema, erythema multiforme, extrapyramidal disorder, glaucoma, hallucinations, hyperglycemia, hypersensitivity, hypertensive crisis, muscle spasm, rash, supraventricular arrhythmia, tinnitus (upon treatment discontinuation), trismus, and urticaria.

Serious skin reactions including Stevens-Johnson Syndrome that have required drug discontinuation and/or hospitalization have been reported with duloxetine.

DRUG INTERACTIONS: Both CYP1A2 and CYP2D6 are responsible for duloxetine metabolism. Inhibitors of CYP1A2—When duloxetine 60 mg was co-administered with fluvoxamine 100 mg, a potent CYP1A2 inhibitor, to male subjects (n=14) duloxetine AUC was increased approximately 6-fold, the C_{max} was increased about 2.5-fold, and duloxetine t1/2 was increased approximately 3-fold. Other drugs that inhibit CYP1A2 metabolism include cimetidine and quinolone antimicrobials such as ciprofloxacin and enoxacin [see Warnings and Precautions].

Inhibitors of CYP2D6—Concomitant use of duloxetine (40 mg once daily) with paroxetine (20 mg once daily) increased the concentration of duloxetine AUC by about 60%, and greater degrees of inhibition are expected with higher doses of paroxetine. Similar effects would be expected with other potent CYP2D6 inhibitors (e.g., fluoxetine, quinidine) [see Warnings and Paracultine].

Dual Inhibition of CYP1A2 and CYP2D6—Concomitant administration of duloxetine 40 mg twice daily with fluvoxamine 100 mg, a potent CYP1A2 inhibitor, to CYP2D6 poor metabolizer subjects (n=14) resulted in a 6-fold increase in duloxetine AUC and Cmax.

Drugs that Interfere with Hemostasis (e.g., NSAIDs, Aspirin, and Warfarin)—Serotonin

Drugs that Interfere with Hemostasis (e.g., NSAIDs, Aspirin, and Warfarin)—Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs or SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when duloxetine is initiated or discontinued [see Warnings and Precautions].

Lorazepam—Under steady-state conditions for duloxetine (60 mg Q 12 hours) and lorazepam (2 mg Q 12 hours), the pharmacokinetics of duloxetine were not affected by co-administration.

Temazepam—Under steady-state conditions for duloxetine (20 mg qhs) and temazepam (30 mg qhs), the pharmacokinetics of duloxetine were not affected by co-administration.

Drugs that Affect Gastric Acidity—Cymbalta has an enteric coating that resists dissolution until reaching a segment of the gastrointestinal tract where the pH exceeds 5.5. In extremely acidic conditions, Cymbalta, unprotected by the enteric coating, may undergo hydrolysis to form naphthol. Caution is advised in using Cymbalta in patients with conditions that may slow gastric emptying (e.g., some diabetics). Drugs that raise the gastrointestinal pH may lead to an earlier release of duloxetine. However, co-administration of Cymbalta with aluminum- and magnesium-containing antacids (51 mEq) or Cymbalta with tamotidine, had no significant effect on the rate or extent of duloxetine absorption after administration of a 40-mg oral dose. It is unknown whether the concomitant administration of proton pump inhibitors affects duloxetine absorption [see Warnings and Precautions].

Drugs Metabolized by CYP1A2—In vitro drug interaction studies demonstrate that duloxetine does not induce CYP1A2 activity. Therefore, an increase in the metabolism of CYP1A2 substrates (e.g., theophylline, caffeine) resulting from induction is not anticipated, although clinical studies of induction have not been performed. Duloxetine is an inhibitor of the CYP1A2 isoform in *in vitro* studies, and in two clinical studies the average (90% confidence interval) increase in theophylline AUC was 7% (1%-15%) and 20% (13%-27%) when co-administered with duloxetine (60 mg twice daily).

Drugs Metabolized by CYP2D6—Duloxetine is a moderate inhibitor of CYP2D6. When duloxetine was administered (at a dose of 60 mg twice daily) in conjunction with a single-50-mg dose of desipramine, a CYP2D6 substrate, the AUC of desipramine increased 3-fold *[see*

Warnings and Precautions].

Drugs Metabolized by CYP2C9—Duloxetine does not inhibit the *in vitro* enzyme activity of CYP2C9. Inhibition of the metabolism of CYP2C9 substrates is therefore not anticipated, although clinical studies have not been performed.

Drugs Metabolized by CYP3A—Results of *in vitro* studies demonstrate that duloxetine does not inhibit or induce CYP3A activity. Therefore, an increase or decrease in the metabolism of CYP3A substrates (e.g., oral contraceptives and other steroidal agents) resulting from induction or inhibition is not anticipated, although clinical studies have not been performed.

Drugs Metabolized by CYP2C19—Results of *in vitro* studies demonstrate that duloxetine does not inhibit CYP2C19 activity at therapeutic concentrations. Inhibition of the metabolism of CYP2C19 substrates is therefore not anticipated, although clinical studies have not been performed.

Monoamine Oxidase Inhibitors—Switching Patients to or from a Monoamine Oxidase Inhibitor—At least 14 days should elapse between discontinuation of an MAOI and initiation of therapy with Cymbalta. In addition, at least 5 days should be allowed after stopping Cymbalta before starting an MAOI [see Contraindications and Warnings and Precautions].

Serotonergic Drugs—Based on the mechanism of action of SNRIs and SSRIs, including Cymbalta, and the potential for serotonin syndrome, caution is advised when Cymbalta is co-administered with other drugs that may affect the serotonergic neurotransmitter systems, such as triptans, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, tramadol, or St. John's Wort. The concomitant use of Cymbalta with other SSRIs, SNRIs or tryptophan is not recommended [see Warnings and Precautions].

Triptans—There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of Cymbalta with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases *[see Warnings and Precautions]*.

Alcohol—When Cymbalta and ethanol were administered several hours apart so that peak concentrations of each would coincide, Cymbalta did not increase the impairment of mental and motor skills caused by alcohol.

In the Cymbalta clinical trials database, three Cymbalta-treated patients had liver injury as manifested by ALT and total bilirubin elevations, with evidence of obstruction. Substantial intercurrent ethanol use was present in each of these cases, and this may have contributed to the abnormalities seen [see Warnings and Precautions].

CNS Drugs—[see Warnings and Precautions].

Drugs Highly Bound to Plasma Protein—Because duloxetine is highly bound to plasma protein, administration of Cymbalta to a patient taking another drug that is highly protein bound may cause increased free concentrations of the other drug, potentially resulting in adverse reactions.

USE IN SPECIFIC POPULATIONS: Pregnancy—Teratogenic Effects, Pregnancy Category C—In animal reproduction studies, duloxetine has been shown to have adverse effects on embryo/fetal and postnatal development.

When duloxetine was administered orally to pregnant rats and rabbits during the period of organogenesis, there was no evidence of teratogenicity at doses up to 45 mg/kg/day (7 times the maximum recommended human dose [MRHD, 60 mg/day] and 4 times the human dose of 120 mg/day on a mg/m² basis, in rat; 15 times the MRHD and 7 times the human dose of 120 mg/day on a mg/m² basis in rabbit). However, fetal weights were decreased at this dose, with a no-effect dose of 10 mg/kg/day (2 times the MRHD and ≈1 times the human dose of 120 mg/day on a mg/m² basis in rat; 3 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis in rabbits).

When duloxetine was administered orally to pregnant rats throughout gestation and lactation, the survival of pups to 1 day postpartum and pup body weights at birth and during the lactation period were decreased at a dose of 30 mg/kg/day (5 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis); the no-effect dose was 10 mg/kg/day. Furthermore, behaviors consistent with increased reactivity, such as increased startle response to noise and decreased habituation of locomotor activity, were observed in pups following maternal exposure to 30 mg/kg/day. Post-weaning growth and reproductive performance of the progeny were not affected adversely by maternal duloxetine treatment.

There are no adequate and well-controlled studies in pregnant women; therefore, duloxetine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nonteratogenic Effects—Neonates exposed to SSRIs or serotonin and norepinephrine reuptake inhibitors (SNRIs), late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with either a direct toxic effect of SSRIs and SNRIs or, possibly, a drug discontinuation syndrome. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome *Isee Warnings and Precautions1*.

When treating pregnant women with Cymbalta during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. The physician may

consider tapering Cymbalta in the third trimester.

Labor and Delivery—The effect of duloxetine on labor and delivery in humans is unknown. Duloxetine should be used during labor and delivery only if the potential benefit justifies the potential risk to the fetus.

Nursing Mothers—Duloxetine is excreted into the milk of lactating women. The estimated daily infant dose on a mg/kg basis is approximately 0.14% of the maternal dose. Because the safety of duloxetine in infants is not known, nursing while on Cymbalta is not recommended. However, if the physician determines that the benefit of duloxetine therapy for the mother outweighs any potential risk to the infant, no dosage adjustment is required as lactation did not influence duloxetine pharmacokinetics.

Pediatric Use—Safety and effectiveness in the pediatric population have not been established [see Boxed Warning and Warnings and Precautions]. Anyone considering the use of Cymbalta in a child or adolescent must balance the potential risks with the clinical need.

Geriatric Use—Of the 2,418 patients in premarketing clinical studies of Cymbalta for MDD, 5.9% (143) were 65 years of age or over. Of the 1,074 patients in the DPNP premarketing studies, 33% (357) were 65 years of age or over. Of the 1,761 patients in FM premarketing studies, 7.9% (140) were 65 years of age or over. Premarketing clinical studies of GAD did not include sufficient numbers of subjects age 65 or over to determine whether they respond differently from younger subjects. In the MDD and DPNP studies, no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. SSRIs and SNRIs, including Cymbalta have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event [see Warnings and Precautions].

Gender—The half-life of duloxetine is similar in men and women. Dosage adjustment based on gender is not necessary.

Smoking Status—Duloxetine bioavailability (AUC) appears to be reduced by about one-third in smokers. Dosage modifications are not recommended for smokers.

Race—No specific pharmacokinetic study was conducted to investigate the effects of race. Hepatic Insufficiency—[see Warnings and Precautions].

Severe Renal Impairment—[see Warnings and Precautions].

DRUG ABUSE AND DEPENDENCE: Abuse—In animal studies, duloxetine did not demonstrate barbiturate-like (depressant) abuse potential. While Cymbalta has not been systematically studied in humans for its potential for abuse, there was no indication of drug-seeking behavior in the clinical trials. However, it is not possible to predict on the basis of premarketing experience the extent to which a CNS active drug will be misused, diverted, and/or abused once marketed. Consequently, physicians should carefully evaluate patients for a history of drug abuse and follow such patients closely, observing them for signs of misuse or abuse of Cymbalta (e.g., development of tolerance, incrementation of dose, drug-seeking behavior).

Dependence—In drug dependence studies, duloxetine did not demonstrate dependence producing potential in rats.

OVERDOSAGE: Signs and Symptoms—In postmarketing experience, fatal outcomes have been reported for acute overdoses, primarily with mixed overdoses, but also with duloxetine only, at doses as low as 1000 mg. Signs and symptoms of overdose (duloxetine alone or with mixed drugs) included somnolence, coma, serotonin syndrome, seizures, syncope, tachycardia, hypotension, hypertension, and vomiting.

Management of Overdose—There is no specific antidote to Cymbalta, but if serotonin syndrome ensues, specific treatment (such as with cyproheptadine and/or temperature control) may be considered. In case of acute overdose, treatment should consist of those general measures employed in the management of overdose with any drug.

NONCLINICAL TOXICOLOGY: Carcinogenesis, Mutagenesis, and Impairment of Fertility— Carcinogenesis—Duloxetine was administered in the diet to mice and rats for 2 years.

In female mice receiving duloxetine at 140 mg/kg/day (11 times the maximum recommended human dose [MRHD, 60 mg/day] and 6 times the human dose of 120 mg/day on a mg/m² basis), there was an increased incidence of hepatocellular adenomas and carcinomas. The no-effect dose was 50 mg/kg/day (4 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis). Tumor incidence was not increased in male mice receiving duloxetine at doses up to 100 mg/kg/day (8 times the MRHD and 4 times the human dose of 120 mg/day on a mg/m² basis)

In rats, dietary doses of duloxetine up to 27 mg/kg/day in females (4 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis) and up to 36 mg/kg/day in males (6 times the MRHD and 3 times the human dose of 120 mg/day on a mg/m² basis) did not increase the incidence of tumors.

Mutagenesis—Duloxetine was not mutagenic in the *in vitro* bacterial reverse mutation assay (Ames test) and was not clastogenic in an *in vivo* chromosomal aberration test in mouse bone marrow cells. Additionally, duloxetine was not genotoxic in an *in vitro* mammalian forward gene mutation assay in mouse lymphoma cells or in an *in vitro* unscheduled DNA synthesis (UDS) assay in primary rat hepatocytes, and did not induce sister chromatid exchange in Chinese hamster bone marrow *in vivo*.

Impairment of Fertility—Duloxetine administered orally to either male or female rats prior to and throughout mating at doses up to 45 mg/kg/day (7 times the maximum recommended human dose of 60 mg/day and 4 times the human dose of 120 mg/day on a mg/m² basis) did not alter mating or fertility.

PATIENT COUNSELING INFORMATION: See FDA-approved Medication Guide and Patient Counseling Information section of full PI.

Literature revised June, 13, 2008

PV 5908 AMP

PRINTED IN USA

Eli Lilly and Company Indianapolis, IN 46285, USA

www.Cymbalta.com

Copyright © 2008, Eli Lilly and Company. All rights reserved.

NO PASSWORD. NO FEE. NO HASSLE. JUST PEER-REVIEWED CLINICAL INFORMATION

www.cnsspectrums.com

*Click on the PsychCast™ button at www.cnsspectrums.com

CNS-Based Podcast Programming from the Publishers of Primary Psychiatry, CNS Spectrums, and Psychiatry Weekly

CNS Spectrums' Web portal is now better than ever — a one-stop source providing the following integrated services based on input from you... our readers:

- Most-Read Articles automatically tabulated
- Quick Links to Clinical Review Articles, Columns, News, & Educational Reviews
- New Dowloadable Article PDFs
- New Full-Text Article Links Through **PubMed**
- New Dynamic Pop-Up Article Images
- Keyword or Disease State-Based **Article Search**

- eSubmissions & eReprints
- Integrated Customer-Service Tools
- elearning via Enduring Materials & Monthly CME Section
- And a host of additional services and features... including simple hyperlink access to MBL's other CNS sources: www.primarypsychiatry.com and www.psychiatryweekly.com

To learn more, please visit www.cnsspectrums.com or www.mblcommunications.com

CNS SPECTRUMS' Psychiatry Weekly. A

A Global Commitment to Advancing CNS Science, Clinical Practice, and Evidence-Based Medicine

EDITORS -

Eric Hollander, MD Mount Sinai School of Medicine New York, NY

INTERNATIONAL EDITOR

Joseph Zohar, MD Chaim Sheba Medical Center Tel-Hashomer, Israel

ASSOCIATE INTERNATIONAL EDITORS

Donatella Marazziti, MD University of Pisa Pisa, Italy

MID-ATLANTIC
Dan J. Stein, MD, PhD
University of Cape Town Cape Town, South Africa

ASIA Shigeto Yamawaki, MD, PhD Hiroshima University School of Medicine Hiroshima, Japan

CONTRIBUTING WRITERS
Robert H. Belmaker, MD
Wayne C. Drevets, MD Joseph Ferrara, MD T.S. Jaisoorya, MD, MRCPsych Kevin Nasky, DO

FIELD EDITOR

Michael Trimble, MD, FRCP, FRPsych

COLUMNISTS Uriel Halbriech, MD Stefano Pallanti, MD, PhD Thomas E. Schlaepfer, MD Stephen M. Stahl, MD, PhD Dan J. Stein, MD, PhD

MEDICAL REVIEWER

David L. Ginsberg, MD

CME COURSE DIRECTOREric Hollander, MD

SUPPLEMENT EDITOR

Joseph Zohar, MD

EDITORIAL ADVISORY BOARD

NEUROLOGISTS

Mitchell F. Brin, MD University of California, Irvine Irvine, CÁ

Jeffrey L. Cummings, MD University of California, Los Angeles Los Angeles, CA

Jerome Engel, Jr., MD, PhD University of California, Los Angeles Los Angeles, CA

Mark S. George, MD Medical University of South Carolina Charleston, SC

Richard B. Lipton, MD Albert Einstein College of Medicine Bronx, NY

C. Warren Olanow, MD, FRCPC Mount Sinai School of Medicine New York, NY

Steven George Pavlakis, MD Maimonides Medical Center Brooklyn, NY

Stephen D. Silberstein, MD, FACP Thomas Jefferson University Philadelphia, PA

Michael Trimble, MD, FRCP, FRPsych National Hospital for Neurology and Neurosurgery London, United Kingdom

PSYCHIATRISTS

Dennis S. Charney, MD Mount Sinai School of Medicine New York, NY

Dwight L. Evans, MD University of Pennsylvania Philadelphia, PA

Siegfried Kasper, MD University of Vienna Vienna, Austria

Martin B. Keller, MD Brown Medical School Providence, RI

Lorrin M. Koran, MD Stanford University School of Medicine Stanford, CA

Yves Lecrubier, MD Hôpital de la Salpêtrière Paris France

Herbert Y. Meltzer, MD Vanderbilt University Medical Center Nashville, TN

Stuart A. Montgomery, MD St. Mary's Hospital Medical School London, United Kingdom

Charles B. Nemeroff, MD, PhD Emory University School of Medicine Atlanta, GA

Humberto Nicolini, MD, PhD National Mexican Institute of Psychiatry Mexico City, Mexico

Stefano Pallanti, MD, PhD University of Florence Florence, Italy Katharine Phillips, MD Brown Medical School

Providence, RI

Harold A. Pincus, MD Columbia University New York, NY Scott L. Rauch, MD

Massachusetts General Hospital Charlestown, MA

Alan F. Schatzberg, MD Stanford University School of Medicine Stanford, CA

Thomas E. Schlaepfer, MD University of Bonn Bonn, Germany

Stephen M. Stahl, MD, PhD University of California, San Diego La Jolla, ĆA

Norman Sussman, MD New York University Medical School New York, NY

Michael E. Thase, MD University of Pennsylvania School of Medicine Philadelphia, PA

Madhukar H. Trivedi, MD University of Texas Southwestern Medical

Karen Dineen Wagner, MD, PhD The University of Texas Medical Branch Galveston, TX

Herman G.M. Westenberg, MD University Hospital Utrecht Utrecht, The Netherlands Stuart C. Yudofsky, MD Baylor College of Medicine

PUBLICATION STAFF

CEO & PUBLISHER

Darren L. Brodeur

VP, MANAGING EDITOR

Christopher Naccar

VP, SENIOR EDITOR

Deborah Hughes

VP, HUMAN RESOURCES

Kimberly A. Brodeur

SENIOR GLOBAL ACCOUNT DIRECTOR

Richard Ehrlich

SENIOR EDITORS

Peter Cook—Psychiatry Weekly José Ralat—CNS Spectrums

SENIOR ASSOCIATE EDITOR

Dena Croog-Primary Psychiatry

ASSOCIATE EDITORS

Lonnie Stoltzfoos-Psychiatry Weekly Rebecca Zerzan

ASSISTANT EDITOR

SENIOR ACQUISITIONS EDITOR

Lisa Arrington

ACQUISITIONS EDITOR Virginia Jackson

EDITORIAL INTERNS

Jaime Cunningham

Michelisa Lanche

CME DEVELOPMENT MANAGER

ASSISTANT-ENDURING MATERIALS Sonny Santana

ART DIRECTOR Derek Oscarson

GRAPHIC DESIGNER Michael J. Vodilko

CHIEF FINANCIAL OFFICER

Houston, TX

STAFF ACCOUNTANT

ACCOUNTING INTERN

Stephanie Spano

SALES & EVENT COORDINATOR Kimberly Schneider

RECEPTIONIST

Kimberly Forbes

INFORMATION TECHNOLOGY Clint Bagwell Consulting

WEB INTERN

Adam Schwartz

CORPORATION COUNSEL

Lawrence Ross, Esq. Bressler, Amery, and Ross

Publishers of PRIMARY PSYCHIATRY

CNS SPECTRUMS

Psychiatry Weekly. ADS

CNS SPECTRUMS

The International Journal of Neuropsychiatric Medicine

EDITOR'S LETTER

643 Parkinson's Disease, Tourette
Syndrome, and the Changing
Nature of Depression: The Dog
Days of Summer

Eric Hollander, MD, *The Mount Sinai* School of Medicine

CASE REPORT

699 Psychosis Associated with Anti-N-methyl-D-aspartate Antibodies

> Kevin M. Nasky, DO, Douglas R. Knittel, MD, and Gail H. Manos, MD, *Naval Medical* Center Portsmouth

REVIEW ARTICLES

682 The Future of Depression Psychopharmacology

Robert H. Belmaker, MD, *Beer-Sheva Mental Health Center*

690 Impulse-Control Disorders in Parkinson's Disease

Joseph M. Ferrara, MD, Baylor College of Medicine; and Mark Stacy, MD, Duke University Medical Center

ORIGINAL RESEARCH

705 Obsessive-Compulsive
Disorder With and Without Tic
Disorder: A Comparative Study
From India

T.S. Jaisoorya, MD, MRCPsych, Y.C. Janardhan Reddy, DPM, MD, S. Srinath, DPM, MD, and K. Thennarasu, PhD, National Institute of Mental Health and Neurosciences

CNS Spectrums (ISSN 1092-8529) is published monthly by MBL Communications, Inc., 333 Hudson Street, 7th Floor, New York, NY 10013. Application to mail Periodicals postage rates is pending at New York, NY, and additional mailing offices. POSTMASTER: send address changes to CNS Spectrums c/o MMS, Inc., 185 Hansen Court, Suite 110, Wood Dale, IL 60191-1150.

One-year subscription rates: domestic \$120; foreign \$195; in-training \$85. For subscriptions: Tel: 212-328-0800; Fax: 212-328-0600; Web: www.cns spectrums.com. Single issues: \$15 – E-mail ks@mblcommunications.com

Opinions and views expressed by authors are their own and do not necessarily reflect the views of the publisher, MBL Communications, Inc., CNS Spectrums, LLC, or the editorial advisory board.

Advertisements in CNS Spectrums are accepted on the basis of adherence to ethical medical standards, but acceptance does not imply endorsement by CNS Spectrums or the publisher.

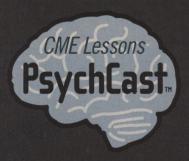
CNS Spectrums is a registered trademark of CNS Spectrums, LLC, New York, NY. Permission to reproduce articles in whole or part must be obtained in writing from the publisher.

Copyright $^{\circ}$ 2008 by MBL Communications, Inc. All rights reserved. Printed in the United States.

DID SHE TELL YOU ABOUT HER POOR METABOLISM?

AmpliChip CYP450 Test

The first FDA-cleared test that reliably detects variations in the CYP2D6 and CYP2C19 genes with greater than 99% accuracy for detection and genotype call rate.¹


With the AmpliChip CYP450 Test results, you may achieve improved patient outcomes by using your patients' metabolic profiles as a guide to medication and dosing.

For more information, visit www.amplichip.us.

1. AmpliChip CYP450 Test Package Insert as of 03/20/2007

AMPLICHIP is a trademark of Roche. ©2007 Roche Diagnostics. All rights reserved. 472-39211-0108

AMPLI@HIP

Expert Panel CME Podcast:

ADVANCES IN THE DIAGNOSIS, PATHOGENESIS, AND MANAGEMENT OF FIBROMYALGIA SYNDROME

Available Free at http://cmepsychcast.mblcommunications.com

"Fibromyalgia Syndrome: Presentation, Diagnosis," Differential Diagnosis, and Vulnerability"

I. Jon Russell, MD, PhD, and Karen G. Raphael, PhD

"Psychophysical and Neurochemical Abnormalities of Pain Processing in Fibromyalgia"

Roland Staud, MD, and Michael Spaeth, MD

"Social Influences on the Concept of Fibromyalgia" Harold Merskey, DM, FRCP, FRCPC, FRCPsych

"The Significance, Assessment, and Management of Nonrestorative Sleep in Fibromyalgia Syndrome"

Harvey Moldofsky, MD, Dip Psych, FRCPC, FAPA

"Fibromyalgia Syndrome: Approach to Management"

I. Jon Russell, MD, PhD

Funding for these podcasts has been provided by educational grants from Eli Lilly and Company and Pfizer Inc.

CME4

PRIMARY PSYCHIATRY CNS SPECTRUMS Psychiatry Weekly. ADS

CNS SPECTRUMS The International Journal of Neuropsychiatric Medicine

COMMUNIQUE

645 Obsessive-Compulsive
Disorder After Streptococcal
Infection in a Frontal LobeResected Patient

TRENDS IN PSYCHOPHARMACOLOGY

647 Tailoring Treatment of
Depression for Women Across
the Reproductive Lifecycle:
The Importance of Pregnancy,
Vasomotor Symptoms, and
Other Estrogen-Related Events
in Psychopharmacology

Dana D. Wise, PhD, *Arbor Scientia*; Angela Felker, MA, *Neuroscience Education Institute*; and Stephen M. Stahl, MD, PhD, *University of California–San Diego*

BRAIN REGIONS OF INTEREST

663 The Subgenual Anterior
Cingulate Cortex in Mood
Disorders

Wayne C. Drevets, MD, and Jonathan Savitz, PhD, National Institute of Mental Health

Introduction by Michael Trimble, MD, FRCP, FRPsych, *Institute of Neurology, Queen Square*

CONTINUING MEDICAL EDUCATION

712 Read the three CME-designated articles and complete the CME posttest to receive a maximum of 3 AMA PRA Category 1 CreditsTM. Also available online: www.cnsspectrums.com.

Founded in 1996, CNS Spectrums is indexed in the Index Medicus database and is available on MEDLINE under the citation CNS Spectr. CNS Spectrums is also the largest peer-reviewed, indexed neuropsychiatric journal in the United States.

For editorial inquiries, please fax us at 212-328-0600 or e-mail José Ralat at irr@mblcommunications.com. For bulk reprint purchases, please contact Christopher Naccari at cdn@mblcommunications.com.

This month's issue of CNS Spectrums, as well as a host of educational resources, enduring materials, and archived issues, is available at www.cnsspectrums.com.

We can't wait

Because I don't want to lose my son to the voices again.

The voices in his head are back. I can't bear to see him like this.

He was doing so well on his own. This will ruin everything. It could send him back to the hospital.

We're fighting to get things back under control. But we need help now.

For resources to help you help your patients with schizophrenia, visit www.ToolsForTheFight.com

Increased Mortality in Elderly Patients with Dementia-Related Psychosis

Elderly patients with dementia-related psychosis treated with atypical antipsychotic drugs are at an increased risk of death compared to placebo. Analyses of seventeen placebo-controlled trials (modal duration of 10 weeks) in these patients revealed a risk of death in the drug-treated patients of between 1.6 to 1.7 times that seen in placebo-treated patients. Over the course of a typical 10-week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group. Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (eg, heart failure, sudden death) or infectious (eg, pneumonia) in nature. ZYPREXA is not approved for the treatment of elderly patients with dementia-related psychosis.

Cerebrovascular adverse events (CVAE), including stroke, in elderly patients with dementia—Cerebrovascular adverse events (eg, stroke, transient ischemic attack), including fatalities, were reported in patients in trials of ZYPREXA in elderly patients with dementia-related psychosis. In placebo-controlled trials, there was a significantly higher incidence of CVAE in patients treated with ZYPREXA compared to patients treated with placebo. ZYPREXA is not approved for the treatment of patients with dementia-related psychosis.

Hyperglycemia—Hyperglycemia, in some cases associated with ketoacidosis, coma, or death, has been reported in patients treated with atypical antipsychotics including olanzapine. While relative risk estimates are inconsistent, the association between atypical antipsychotics and increases in glucose levels appears to fall on a continuum and olanzapine appears to have a greater association than some other atypical antipsychotics. Physicians should consider the risks and benefits when prescribing olanzapine to patients with an established diagnosis of diabetes mellitus, or having borderline increased blood glucose level. Patients taking olanzapine should be monitored regularly for worsening of glucose control. Persons with risk factors for diabetes who are starting on atypical antipsychotics should undergo baseline and periodic fasting blood glucose testing. Patients who develop symptoms of hyperglycemia during treatment should undergo fasting blood glucose testing.

Hyperlipidemia—Undesirable alterations in lipids have been observed with olanzapine use. Clinical monitoring, including baseline and follow-up lipid evaluations in patients using olanzapine, is advised. Significant, and sometimes very high, elevations in triglyceride levels have been observed with olanzapine use. Modest mean increases in total cholesterol have also been seen with olanzapine use.

Weight gain—Potential consequences of weight gain should be considered prior to starting olanzapine. Patients receiving olanzapine should receive regular monitoring of weight.

Neuroleptic malignant syndrome (NMS)—As with all antipsychotic medications, a rare and potentially fatal condition known as NMS has been reported with olanzapine. If signs and symptoms appear, immediate discontinuation is recommended. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis and cardiac dysrhythmia). Additional signs may include elevated creatinine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

Tardive dyskinesia (TD)—As with all antipsychotic medications, prescribing should be consistent with the need to minimize the risk of TD. The risk of developing TD and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic increase. The syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn.

Other potentially serious adverse events include orthostatic hypotension, seizures, hyperprolactinemia, transaminase_elevations, and dysphagia.

The safety and efficacy of ZYPREXA have not been established in patients under the age of 18 years.

Medication dispensing and prescribing errors have occurred between ZYPREXA® (olanzapine) and Zyrtec® (cetirizine HCl). These errors could result in unnecessary adverse events or potential relapse in patients suffering from schizophrenia or bipolar disorder. To reduce the potential for dispensing errors, please write ZYPREXA clearly.

The most common treatment-emergent adverse event associated with ZYPREXA (vs placebo) in 6-week acute-phase schizophrenia trials was somnolence (26% vs 15%). Other common events were dizziness (11% vs 4%), weight gain (6% vs 1%), personality disorder (COSTART term for nonaggressive objectionable behavior; 8% vs 4%), constipation (9% vs 3%), akathisia (5% vs 1%), and postural hypotension (5% vs 2%).

The most common treatment-emergent adverse event associated with ZYPREXA (vs placebo) in 3- and 4-week bipolar mania trials was somnolence (35% vs 13%). Other common events were dry mouth (22% vs 7%), dizziness (18% vs 6%), asthenia (15% vs 6%), constipation (11% vs 5%), dyspepsia (11% vs 5%), increased appetite (6% vs 3%), and tremor (6% vs 3%).

For complete safety profile, see the full Prescribing Information.

ZYPREXA is a registered trademark of Eli Lilly and Company. Zyrtec is a registered trademark of UCB, SA.

OL49244 1207 @2007, ELI LILLY AND COMPANY. ALL RIGHTS RESERVED.

ZYPREXA® (Olanzapine Tablets)

ZYPREXA® ZYDIS® (Olanzapine Orally Disintegrating Tablets)

ZYPREXA® IntraMuscular (Olanzapine for Injection)

Brief Summary: Please consult package insert for complete prescribing information.

MARNING
Increased Mortality in Elderly Patients with Dementia-Related Psychosis—Elderly patients with dementia-related psychosis treated with atypical antipsychotic drugs are at an increased risk of death compared to placebo. Analyses of seventeen placebo-controlled trials (modal duration of 10 weeks) in these patients revealed a risk of death in the drug-treated patients of between 1.6 to 1.7 times that seen in placebo-treated patients. Over the course of a typical 10-week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group. Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature. ZYPREXA is not approved for the treatment of patients with dementia-related psychosis.

INDICATIONS AND USAGE: ZYPREXA and ZYPREXA Zydis are indicated for short- and long-term treatment of schizophrenia, for acute manic and mixed episodes of bipolar I disorder, and for maintenance treatment in bipolar disorder. The use of ZYPREXA for extended periods should be periodically re-evaluated as to the long-term usefulness of the drug for the individual patient. ZYPREXA IntraMuscular is indicated for treatment of agitation associated with schizophrenia and bipolar I mania.

CONTRAINDICATIONS: Known hypersensitivity to olanzapine.

sociated with schizophrenia and bipolar i mania.

CONTRAINDICATIONS: Known hypersensitivity to olanzapine.

WARNINGS: Increased Mortality in Elderly Patients with Dementia-Related Psychosis—Elderly patients with dementia-related psychosis (see BOX WARNING).

In placebo-controlled clinical trials of elderly patients with dementia-related psychosis (see BOX WARNING).

In placebo-controlled clinical trials of elderly patients with dementia-related psychosis, the incidence of death in olanzapine-treated patients (3.5%) was significantly greater than placebo-treated patients (1.5%).

Cerebrovascular Adverse Events. Including Stroke, in Elderly Patients with Dementia—Cerebrovascular adverse events (e.g., stroke, transient ischemic attack), including fatalities, were reported in patients in trials of olanzapine in elderly patients with dementia-related psychosis. In placebo-controlled trials, there was a significantly higher incidence of cerebrovascular adverse events in patients treated with olanzapine compared to patients treated with placebo. Olanzapine is not approved for the treatment of patients with dementia-related psychosis. In Placebo-controlled trials, there was a significantly higher incidence of cerebrovascular adverse events in patients treated with placebo. Olanzapine is not approved for the treatment of patients with dementia-related psychosis. Hyperglyocania—Hyperglyoc

to predict which patients are more likely to develop the syndrome. It signs and symptoms of 10 appear, consider drug discontinuation.

PRECAUTIONS: Hemodynamic Effects—Olanzapine may induce orthostatic hypotension associated with dizziness; tachycardia; and in some patients, syncope. Hypotension, bradycardia with/without hypotension, bachycardia, and syncope were also reported during the clinical trais. Three normal volunteers in plase 1-3 trials and 0.3%, 2/722 with intramuscular olanzapine for injection. Incidence of syncope was 0.6%, 15/2500 with oral olanzapine in phase 2-3 trials and 0.3%, 2/722 with intramuscular olanzapine colanzapine for injection in clinical trials. Three normal volunteers in phase 1 studies with intramuscular olanzapine experienced hypotension, bradycardia, and sinus pauses of up to 6 seconds that spontaneously resolved (in 2 cases the events occurred on intramuscular olanzapine, and in 1 case, on oral olanzapine). The risk for this sequence of events may be greater in nonsychiatric patients compared to psychiatric patients who are possibly more adapted to certain effects of psychotropic drugs. Patients should remain recumbent if drowsy or dizzy after injection with intramuscular olanzapine for injection until examination has indicated they are not experiencing postural hypotension, bradycardia, and/or hypoventilation. Olanzapine should be used with particular caution in patients with known cardiovascular disease, and conditions which would predispose patients to hypotension (dehydration, hypovolemia, and treatment with antihypertensive medications) where the occurrence of syncope, or hypotension and/or bradycardia might but them at increased medical risk. Caution is necessary in patients receiving treatment with other drugs having effects that can induce hypotension, bradycardia, respiratory or Choromitant administration of intramuscular olanzapine and parenteral benzodlazepine has not been studied and is not recommended. If such combination treatment is considered, careful evaluatio

lower the seizure threshold.

Hyperprojectinemia—Like other drugs that antagonize dopamine D₂ receptors, olanzapine elevates prolactin levels; a modest elevation persists during chronic administration. Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin dependent in vitro. However, neither clinical and repidemiologic studies have shown an association between chronic administration of this class of drugs and tumorigenesis in humans; the available evidence is inconclusive.

epidemiologić studies have shown an association between chronic administration of this class of drugs and tumorigenesis in humans; the available evidence is inconclusive.

Transaminase Elevations—In placebo-controlled studies, clinically significant ALT (SGPT) elevations (23 times the upper limit of normal) were observed in 2% (6/243) of patients exposed to olanzapine compared on or (0/115) placebo patients. None of these patients experienced jaundice. Among about 2400 patients with baseline SGPT s90 IU/L, 2% (50/2381) had asymptomatic SGPT elevations to >200 IU/L. Most were transient changes that tended to normalize while olanzapine treatment was continued. Among 2500 patients in oral olanzapine treatment repared to the patitis have been received. Very rare cases of cholestatic or mixed liver injury have also been reported in the postmarketing period. Exercise caution in patients who have signs and symptoms of hepatic impairment, preexisting conditions associated with limited hepatic functional reserve; or concomitant treatment with potentially hepatotoxic drugs (see Laboratory Tests, below).

Potential for Cognitive and Motor Impairment—Somnolence was a commonly reported, dose-related adverse event in premarketing trials (olanzapine 25% vs placebo 15%). Somnolence led to discontinuation in 0.4% (9/2500) of patients in the oral premarketing database.

Body Temperature Regulation—Use appropriate care when prescribing olanzapine for patients who will be experiencing conditions that may contribute to an elevation in core body temperature.

Dysphagia—Esophageal dysmotility and aspiration have been associated with antipsychotic drug use. Aspiration pneumonia is a common cause of morbidity and mortality in patients with advanced Alcheimer's disease.

Olanzapine and other antipsychotic drugs should be used cautiously in patients with advanced Alcheimer's disease.

Olanzapine and other antipsychotic drugs should be used cautiously in patients with advanced Alcheimer's disease.

Olanzapine and other antipsychotic drugs

ZYPREXA® (Olanzapine Tablets)
ZYPREXA® ZYDIS® (Olanzapine Orally Disintegrating Tablets)
ZYPREXA® IntraMuscular (Olanzapine for Injection)

PV 6240 AMF

Use in Patients with Concomitant Illnesses—Olanzapine should be used with caution in patients with clinically significant prostatic hypertrophy, narrow angle glaucoma, or a history of paralytic ileus.

In 5 placebo-controlled studies in elderly patients with dementia-related psychosis (n=1184), these treatment-emergent adverse events were reported with olanzapine at an incidence of 22% and significantly greater than with placebo: falls, somnolence, peripheral edema, abnormal gait, urinary incontinence, lethargy, increased weight, asthenia, pyrexia, pneumonia, dry mouth, visual hallucinations. Discontinuation due to adverse events was significantly greater with olanzapine and tan increased risk of death compared to placebo. Olanzapine is not approved for treatment of patients with dementia-related psychosis treated with olanzapine are at an increased risk of death compared to placebo. Olanzapine is not approved for treatment of patients with dementia-related psychosis. If the prescriber elects to treat this patient population, vigilance should be exercised (see BOX WARNING and WARNINGS).

Because of the risk of orthostatic hypotension with olanzapine, use caution in cardiac patients (see Hemodynamic Effects).

Information for Patients—Patients should be advised of the potential risk of hyperglycemia-related adverse events and monitored regularly for worsening of glucose control. Patients should be counseled that olanzapine is associated with weight gain and should have their weight monitored regularly. See the package insert for additional information to discuss with patients taking olanzapine.

Laboratory Tests—Periodic assessment of transaminases is recommended in patients with significant hepatic disease.

additional information to discuss with patients taking olanzapine.

Laboratory Tests—Periodic assessment of transaminases is recommended in patients with significant hepatic disease.

Drug Interactions—Use caution when olanzapine is taken in combination with other centrally acting drugs and alcohol. Olanzapine may enhance the effects of certain antihypertensive agents. Olanzapine may antagonize the effects of levodopa and dopamine agonists. Agents that induce CYP1A2 or glucuronyl transferase enzyme (e.g., omeprazole, rifampin) may cause an increase in olanzapine clearance. Inhibitors of CYP1A2 could potentially inhibit olanzapine clearance. Although olanzapine is metabolized by multiple enzyme systems, induction or inhibition of a single enzyme may appreciably alter olanzapine clearance. A dosage adjustment may need to be considered with specific drugs.

Activated charcoal (1 g) reduced the Cmax and AUC of oral olanzapine by about 60%. Single doses of cimetidine (800 mg) or aluminum—and magnesium-containing antacids did not affect the oral bloavailability of olanzapine. Carbamazepine may cause an even greater increase in olanzapine clearance. Neither ethanol (45 mg/70 kg single dose) nor warfarin (20 mg single dose) had an effect on olanzapine pharmacokinetics. Fluoxetine at 60 mg (single or multiple doses) causes a small increase in cleman pharmacokinetics. Fluoxetine at 60 mg (single or multiple doses) causes a small increase in Cerma of olanzapine clearance; however, the impact of this factor is small in comparison to the overall variability between individuals, and dose modification is not routinely renormended. Fluoxamine decreases the clearance of olanzapine (lower doses of olanzapine sid not affect the pharmacokinetics of inapramine/desipnamine or warfarin. Multiple doses of olanzapine did not affect the pharmacokinetics of impramine/desipnamine or warfarin. Multiple doses of olanzapine did not affect the pharmacokinetics of impramine/desipnamine or warfarin. Multiple doses of olanzapine did not influenc

the pharmacokinetics of theophylline or its metabolites. Co-administration of intramuscular lorazepam and intramuscular olanzapine of rinjection added to the somnolence observed with either drug alone (see Hernodynamic Effects).

Carcinogenesis, Mutagenesis, Impairment of Fertility—The incidence of liver hemangiomas and hemangiosarcomas in female mice was significantly increased in one carcinogenicity study at 2 times the maximum human daily oral dose (MHDDD) but not in another study at 2-5 times the MHDDD (mg/m² basis). In this study there was a high incidence of early mortalities in males in the 30/20 mg/kg/d group. The incidence of mammary gland adenomas and adenocarcinomas was significantly increased in female mice and rats given olanzapine at 0-5 and 2 times the MHDDD respectively (mg/m² basis). In other studies, serum prolactin measurements of olanzapine showed elevations up to 4-fold in rats at the same doses used in the carcinogenicity studies. The relevance for human risk of the finding of prolactin mediated endocrine tumors in roderits is unknown. No evidence of mutagenic potential for olanzapine has been found.

In rats, fertility (females) and mating performance (males and females) were affected at doses 1.5-11 times the MHDDD (mg/m² basis). Diestrous was prolonged and estrous delayed at 0.6 times the MHDDD (mg/m² basis); therefore, olanzapine may produce a delay in ovulation.

Prepnancy Category C.—There are no adequate and well-controlled studies in pregnant women. Olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the fetus.

Labor and Delivery, Nursing Mothers—Parturition in rats was not affected by olanzapine; its effect on labor and delivery in humans is unknown. In a study in lactating, healthy women, olanzapine is screted in breast field.

Use in Pediatric and Geriatric Patients—The safety and efficacy of olanzapine have not been established in patients under the age of 18 years. In premarketing clinical trials in patients with schizophrenia,

ADVERSE REACTIONS: The following findings are based on a clinical trial database consisting of 8661 patients with approximately 4165 patient-years of exposure to oral olanzapine and 722 patients with exposure to intramuscular olanzapine for injection, including patients with schizophrenia, bipolar mania, or Alzheimer's disease (oral olanzapine trials) and patients with agitation associated with schizophrenia, bipolar I disorder (nanic or mixed episodes), or dementia (intramuscular olanzapine for injection trials). See the package insert for details on these trials. Certain portions of the discussion below relating to dose-dependent adverse events, vital sign changes weight gain, laboratory changes, and ECG changes are derived from studies in patients with schizophrenia and have not been duplicated for bipolar mania or agitation; however, this information is also generally applicable to bipolar mania and aditation

weight gain, laboratory changes, and ECG changes are derived from studies in patients with schizophrenia and have not been duplicated for bipolar mania or agitation, however, this information is also generally applicable to bipolar mania and agitation.

Associated with Discontinuation—Overall there was no difference in discontinuations due to adverse events in placebo-controlled oral olanzapine trials (olanzapine vs placebo: schizophrenia, 5% vs 6%; bipolar mania ortherapy, 11%; folanzapine plus lithium or valproate] vs 2% lithium or valproate] vs 2% lithium or valproate alone]); or in placebo-controlled intramuscular olanzapine plus lithium or valproate vs 2% included intramuscular olanzapine for injection, 0.4%; placebo U%; see PRECAUTIONS).

Commonly Observed Adverse Events—In 6-week, placebo-controlled, premarketing schizophrenia trials, the most common treatment-emergent adverse events associated with oral olanzapine (incidence ≥5% and olanzapine incidence at least twice that for placebo) were: postural hypotension, constipation, weight gain, dizziness, personality disorder (COSTART term for nonaggressive objectionable behavior), and akathisia. In 3- and 4-week placebo-controlled bipair mania monotherapy trials, the most common treatment-emergent adverse events associated with oral olanzapine were: asthenia, dry mouth, constipation, dyspepsia, increased appetite, somnolence, dizziness, and termor. In short-term bipolar mania combination therapy itsis, the most common treatment-emergent adverse events observed with olanzapine plus lithium or valproate were dry mouth, weight gain, increased appetite, dizziness, back pain, constipation, speech disorder, increased adpetite, dizziness, back pain, constipation, speech disorder, increased adpetite, dizziness, back pain, constipation, dispech disorder, increased adpetite, dizziness, back pain, constipation, dispech disorder, increased adpetite, oral placebo-controlled trials of intramuscular olanzapine for injection for agitation associated with schizophrenia or

dysmenorrhea, vaginitis.

Adverse Events with an Incidence ≥1% in Intramuscular Trials—The tollowing treatment-emergent adverse events were reported at an incidence of ≥1% with intramuscular olanzapine for injection (2.5-10 mg/injection) and at incidence greater than placebo in short-term, placebo-controlled trials in agitated patients with schizophrenia or bipolar mania: Body as a Whole—asthenia; Cardiovascular—hypotension, postural hypotension, postural hypotension, postural hypotension, postural hypotension, postural hypotension, postural syndension; Netroes System—somnolence, dizones, tremor.

Dose Dependency of Adverse Events in Short-Term, Placebo-Controlled Trials—Extapyramidal Symptoms—In an acute-phase controlled clinical trial in schizophrenia, there was no significant difference in ratings scales incidence between any dose of oral olanzapine (5±2.5, 10±2.5, or 15±2.5 mg/d) and placebo for parkinsonism (Simpson-Angus Scale total score >3) or akathisia (Barnes Akathisia global score ≥2). In the same trial, only akathisia events (spontaneously reported COSTART terms akathisia and hyperkinesia) showed a statistically significantly greater adverse events incidence with the 2 higher doses of olanzapine than with placebo. The incidence of patients reporting any extrapyramidal event was significantly greater than placebo only with the highest dose of oral olanzapine (15±2.5 mg/d). In controlled clinical trials of intramuscular olanzapine for injection, there were no statistically significant differences from placebo in occurrence of any treatment-emergent extrapyramidal symptoms, assessed by either rating scales incidence or spontaneously reported adverse events. Dystonia, Class Effect—Dystonia symptoms (prolonged abnormal contractions of muscle groups) may occur in susceptible individuals during the first few days of treatment. While these symptoms can occur at low doses, the frequency and severity are greater with high potency and at higher doses of first-generation antipsychotics; however, dystonic events have been reported infre

same clinical that involving 3 fixed oral dosage ranges (\$2.2.5, 102.2.5, or 15.2.2.5 mg/d) compared with placebo. The following treatment-emergent events showed a statistically significant treat stemplar by mouth, nausea, sommoline, treatory in patients with schizophrenia, schizophreniform (is not 8 veek, randomized, coulde-blind study in patients with schizophrenia, schizophreniform (isonder, or schizoaffective disorder comparing fixed doses of 10, 20, and 40 mg/d, statistically significant differences were seen between doses for the following: baseline to entophorn weight gain of 9.5 4.0 mg/d, incidence of treatment-emergent profactin elevations >24.2 ng/mi. (female) or >10.7 mg/ml. (male), 10 vs. 40 mg/d and 20 vs. 40 mg/d; fatigue, 10 vs. 40 mg/d and 20 vs. 40 mg/d; and dizenses 22 vs. 40 mg/d.

**Idial Sign Changes—Oral olanzapine was associated with orthostatic hypotension and tachycardia in clinical trials (see PRECAUTIONS).

**Interval of the schizophren of the schizophren or secondary of the schizophren or schizophr

enlarged*, vaginal hemorrhage*, **Pare: albuminuria, breast enlargement, mastitis, oliguria. (*Adjusted for gender.)

The following treatment-emergent events were reported with intramuscular olanzapine for injection at one or more doses ≥2.5 mg/injection in clinical trials (722 patients). This list may not include events previously listed elsewhere in labeling, those events for which a drug cause was remote, those terms which were so general as to be uninformative, and those events reported only once or twice which did not have a substantial probability of being actutely life-threatening. *Body as a Whole—Frequent: injection site pain; *infrequent: abdominal pain, *fever. *Cardiovascular—Infrequent: AV block, heart block, syncope. *Digastive—Infrequent: darrhea, nausea. *Hemic and Lymphatic—Infrequent: AV block, heart block, syncope. *Digastive—Infrequent: catine phosphokinase increased, dehydration, hyperkalenia. *Musculaskeletal—Infrequent: twitching, *Nervous System—Infrequent: abnormal gait, akathisia, articulation impairment, confusion, emotional lability. *Skin and Appendages—Infrequent: sweating.* *Postintroduction Reports—Reported since market introduction and temporally (not necessarily causally) related to olanzapine therapy: allergic reaction (e.g., anaphylactoid reaction, angioedema, pruritus or uriticaria, diabetic coma, jaundice, neutropenia, pancreatitis, praipsim, rhadormyolysis. *Bandom cholesterol levels of ≥240 mg/dL and random triglyceride levels of ≥1000 mg/dL have been reported.
RRIIS ARUSE AND DEPENDENCE: Olanzapine is not a controlled substance.

DRUG ABUSE AND DEPENDENCE: Olanzapine is not a controlled substance.

ZYPREXA is a registered trademark of Eli Lilly and Company. ZYDIS is a registered trademark of Catalent Pharma Solutions.

Literature revised March 10, 2008 PV 6240 AMP

PRINTED IN USA

Lilly and Company Indianapolis, IN 46285, USA

www.ZYPREXA.com

Copyright © 1997, 2008, Eli Lilly and Company. All rights reserved.