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1. Historical remarks. In this paper we extend some well-known extremum 
properties of the regular polygons to the regular polyhedra. We start by 
mentioning some known results in this direction. 

First, let us briefly consider the problem which has received the greatest 
attention among all the extremum problems for polyhedra. It is the deter
mination of the polyhedron of greatest volume F of a class of polyhedra of 
equal surface areas F, i.e., the isepiphan problem. 

The simple fact that the regular tetrahedron is the best among the tetra-
hedra was already known to Lhuilier.1 But let us at once note that, among the 
8- and 20-cornered polyhedra, the cube and the regular dodecahedron are 
not the best ones, and similarly, the regular octahedron and icosahedron are 
not the best polyhedra among the 8- and 20-faced polyhedra. 

Steiner,2 who was certainly in possession of this fact, announced only the 
conjecture that any regular polyhedron is the best one among the topologically 
isomorphic polyhedra. In proving this conjecture he succeeded, apart from 
the tetrahedron, only for the octahedron. The case of the icosahedron is, 
up to the present day, unsettled. 

In 1935, M. Goldberg3 made an attempt to prove the inequality 

F*/V2Ï 54(/ - 2) tan W/(4 sin2o>/ - 1) ; « , = -J— — 
/ — 2 6 

concerning a convex /-faced polyhedron. This inequality (for which I sub
sequently gave a complete proof4) is exact f o r / = 4 , 6 and 12 and gives an exact 
asymptotical estimate for large values of / . Equality holds only for a regular 
tetrahedron, hexahedron, and dodecahedron. 

According to this the regular hexahedron and dodecahedron are proved to 
be the best not only among the polyhedra of their type but also among all 
convex polyhedra with 6 and 12 faces, respectively. 

Received September 24, 1948. The earlier publications of the author appeared under the 
name "Fejes". In order to explain this fact the author communicates the following a t the 
request of the editors: Kolozsvâr (Roumanian Cluj, the capital of Transsylvania, the native 
town of J . Bôlyai, and where L. Fejér, F . Riesz and A. Haar began their career as young 
professors) was ceded to Roumania by the Treaty of 1920. From 1940 to 1944 it belonged 
temporarily to Hungary. The author generally worked in Kolozsvâr during the time 1941-
1944. Returning to Budapest he took the name "Fejes T ô t h " (to be found in old family 
documents, and already used by some other members of his family), partly in order to avoid 
confusion with the name of Professor L. Fejér. 

*S. Lhuilier, De relatione mutua capacitatis et terminorum figurarum, etc. (Varsaviae, 1782). 
2J. Steiner, Gesammelte Werke I I , 117-308. 
3M. Goldberg, "The Isoperimetric Problem for Polyhedra," Tôhoku Math. J., vol. 40 (1935), 

226-236. 
4L. Fejes Tôth, "The Isepiphan Problem for w-hedra," Amer. J. Math., vol. 70 (1948), 174-180. 
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Also, the following inequality 

773/F2 £ 2^^{v - 2) (3 tan2 a>v - 1); o>v = —— — 
2 » — 2 6 

probably holds for any convex polyhedron with v vertices. It is exact for 
v = 4, 6 and 12 and gives an exact asymptotical estimate for large values of v. 
This would mean that the regular octahedron and icosahedron are—again far 
beyond Steiner's conjecture—the best polyhedra among all 6- and 12-cornered 
polyhedra. 

The state of affairs in the isepiphan problem is characteristic of a number of 
other problems.5 Therefore in order to give a general orientation in the pos
sibilities of transferring different extremum properties of the regular w-gon to 
space we can say: 

When / is given it is the trihedral-cornered regular polyhedra, and when v 
is given the triangular-faced, that generally play a prominent part in the 
solutions of the extremum problems. It is inherent in the problem that— 
contrary to the problems in the plane—we cannot expect to determine the 
extremal polyhedra for all values of / or v. We must rather be content with 
inequalities exact for 4, 6 and 12 and asymptotically exact for large values of 
/ o r » . 

Let us note that—taking into account the great number of researches 
dealing with various extremum properties of the regular polygons—it is sur
prising that, for instance, no extremum property of the regular icosahedron 
or dodecahedron occurs, as far as I know, in earlier literature. Still less do we 
find a systematic treatment of such extremum properties. Therefore, much 
remains to be done in the extremum problems for polyhedra to bring our 
knowledge, in this respect, to a level with that of the polygons. These attrac
tive questions offer ample scope for work. 

2. Aim and results. As we have seen, the researches made hitherto related 
to polyhedra of a given type or to polyhedra of a given number of faces or 
vertices. 

But the consideration of a type of polyhedra is too special to obtain general 
results. On the other hand, the class of polyhedra of a given number of faces 
or vertices is too large to obtain all the five regular polyhedra as solutions 
of the same extremum problem. Therefore, in the following, we are going to 
compare polyhedra having a given number of faces / and a given number of 
vertices v. In this way we shall obtain inequalities in which equality holds for 
all the five regular solids. 

In this paper we shall prove the following 

THEOREM. If V denotes the volume, r the radius of the insphere and R the 
radius of the circumsphere of a convex polyhedron having f faces, v vertices and 
e edges, then 

8See, for instance, the paper L. Fejes Tôth, "An Inequality Concerning Polyhedra," Bull. 
Amer. Math, Soc, vol. 54 (1948), 139-146, where further bibliographical data can be found. 
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(1) V> i s i n ^ / ' t a n ^ t a n ^ - l V 3 

3 e \ 2e 2e J 

(2) V $ * cos2 ^ cot ™ ( l - cot2 ^ cot2 ^ *». 
3 2e 2e \ 2e 2e) 

Equality holds in both inequalities only for the regular polyhedra. 

Letting p = 2e/f and q — 2e/v, we obtain by combining (1) and (2) the 
following 

COROLLARY. If r and R denote the radii of the in- and circumsphere of a con
vex polyhedron for which the average number of the sides of the faces and the 
average number of the edges of the vertices is p and q, respectively, then6 

(3) — £ t a n * t a n * . 
r p q 

Professor H. S. M. Coxeter wrote to me calling my attention to the equality 
R/r = tan ir/p tan ir/q which holds for any regular polyhedron having p-gonal 
faces, q a t each vertex. By this remark I was impelled to prove the nice in
equality (3) which was the point of departure of the present paper. 

3. Proofs. In order to prove (1) we may obviously suppose—without loss 
of generality—that the insphere of centre 0 has the radius r = 1. Denote 
the faces of the polyhedron II, and their area as well by Fi {i = 1, 2, . . . , / ) , 
the solid angle under which Fi appears from 0 by <n, and the number of the 
sides of the polygon Fi by pi. 

It is easy to see that for given values of pi and ai the area Fi takes its mini
mum if Fi is a regular pi-gon touching the insphere at its own centre. This 
minimum property is expressed—as a simple computation shows—by the in
equality 

Fë *(*<, Pi) ; $(<r, />) = - sin — (tan2 - cot2 ? U Z - f - l 
2 p \ p 2p 

Now we make use of the fact that the function of two variables f>(o-, p) is 
convex from below for 0 ^ a ^ 2-K, 3 ^ p. Hence by Jensen's inequality7 

3 V ^ XFiï L 3> (*», Pi)ïf* (4x//f 2e/f) ; q.e.d. 
t = i * = i 

The only difficulty of this very simple proof—which is properly Goldberg's 
proof mentioned above—is the unfortunate circumstance that the function 

6The inequality (3) is a generalization of the inequality R ^ 3r concerning tetrahedra— 
found in 1943 by a young Hungarian mathematician I. Adam at the suggestion of Professor 
L. Fejér—and of certain results of the author (see the paper referred to in footnote 5). 

7J. L. W. V. Jensen, "Sur les fonctions convexes et les inégalités entre les valeurs moyennes," 
Acta Math., vol. 30 (1906), 175-193. 
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$(<r, p) is too complicated to arrange clearly the computations necessary for 
the proof of convexity.8 On the other hand, it is easy to give a graphical 
representation of <i>(o-, p) from which the convexity can be seen empirically.9 

Let us now turn to the inequality (2), the proof of which is analogous to the 
foregoing. Decompose II into / pyramids of volumes Fi, F2, . . . F/, having 
the centre 0 of the circumsphere of radius R — 1 as a common vertex, with 
bases formed by the respective faces Fi, F2, . . . F/ of II. 

We have now the inequality 

Vi $ ¥(<*, Pi) ; ¥(a, p) = P- cos2 Ï tan *^H (l - cot2 * tan2 ** - *\ 
3 p 2p \ p 2p / 

which means that, for given values of pi and for given values of the area ai of 
the projection of Fi from 0 upon the circumsphere, the volume Vi takes its 
maximum if Fi is a regular pi-gon the vertices of which lie on the circumsphere. 

But now in addition to the difficulty indicated in the above proof a further 
one arises, namely: the function \P(o-, p), as a function of two variables, is 
not convex from above in the whole strip 0 ^ <r ^ 2ir, p ^ 3. But it will be 
sufficient to make use of the convexity, say, for 0 ^ a ^ ir> which can be sur
mised with great confidence from the above graphical representation of a 
few functions ^(o-, const.). The convexity is expressed by the fact that, for 
instance, the midpoint of any segment joining a point of the curve ^ = ^(cr, pi) 

with a point of ^ = >F(<r, p2) lies always below the curve ^ = ^ I o-, — -̂? ) . 

K)n this occasion I take the liberty to cite from the letter of M. Goldberg written to me 
in connection with my paper referred to in footnote 4: "Your rigorous proof . . . has removed 
a difficulty which I have tried to overcome without success." 

9See my paper: "Uber einige Extremaleigenschaften der regulâren Polyeder und des gleich-
seitigen Dreiecksgitters," Annali délia Scuola Norm. Sup. di Pisa (2) 13 (1948), 51-58. 
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First of all, we are going to prove the inequality (2) for / ^ 8. Let us note 
for this purpose that for any value of p ^ 3 we have the inequalities 

^ 0 , p) ^ Sfr(ir, p) for a ^ w, 
^(<7"l, P) ^ ^ ( o " 2 , />) f o r 0 ^ (fi ^ (72 ^ 7 r / 2 . 

Let us replace any value <r; > w by T. Let us denote the new values by 
0"'i, c'2, • • • » a1 f a n d their sum by ( /(^ 4ir). Owing to the above inequalities, 
we have for / ^ 8 

7 = E 7 ^ E *(*,•, £0 ^ E *(*'», *>,•) $M*'/f, P) ^ M**/f, P). 

This is just the inequality (2). 
The detailed discussion of the several types of polyhedra for which / < 8 

contains no interesting new ideas. Instead of such a discussion let us consider, 
for example, only the type of a 5-sided prism (/ = 7, v = 10), or more gener
ally the case / ^ 6, p ^ 4. Since, for a fixed value of p (p ^ 4), the function 
^(<T, £) is an increasing function of a up to a constant cp ^ 27r/3, the proof 
runs word for word as above. 

The cases of equality are evident, by the above proofs, in both inequalities 
(1) and (2). 

Now we are going to give two further rigorous proofs of (1). On the other 
hand, we must admit that an attempt at a similar proof of the inequality (2) 
did not succeed. 

Again let 0 be the centre of the insphere and put r — 1. Let us consider a 
face Fi of II and denote the foot of the perpendicular from 0 to the face-plane 
by A. Further, let BD be an edge of Fi and C the foot of the perpendicular 
from A on it. 

Suppose that C lies on the segment BD, just as A lies within Fi, and that 
this proves to be right for all faces and edges of II. The surface of II can in 
this case be decomposed into 4e right triangles one of which is ABC. 

Consider the right spherical triangle A'B'C arising by central projection 
of ABC from 0 upon the insphere. Denote the angle at A' by a, the angle 
at B' by 0 and the hypotenuse A'B' by c. Since AB ^ t a n c and cose = 
cot a cot 0, the area t of the triangle ABC is given by 

tZ I sin 2a tan2 c = \ sin 2 a (tan2 a tan2 0 - 1) = 9 (a, 0). 

Furthermore, since 

e a a 9 „ - Oj = ^ ^ [l - (sin2a + sin2/?)]2 £ 0, 
cos6/3 

the function 6(a, 0) in the domain determined by the inequalities 0 ^ a ^ 7r/2, 
0 ^ 0 < x/2, a + 0 ^ 7r/2, is convex from below10 and we have 

10For the transformation of the Jacobian Baa9/S/S — 9a02 into the above simple form I 
am obliged to Mr. J . Molnâr. 
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3 7 ^ £ * £ 4eO(2itf/4e, 2*v/4e). 

This is just the inequality (1) to be proved. 
In order to get rid of the above restriction concerning the feet of the per

pendiculars we can use the inequalities Pt- ^ $(<r», pi) of the first proof. In 
other words, we can replace any face by an admissible polygon of smaller 
area of which the number of sides and the area of the projection remain in
variant. 

The following alternative proof makes no use of the discussion of any 
special function.11 We shall obtain the inequality in question as a corollary 
of the following general 

THEOREM. Decompose the surface S of the unit sphere by a net N having v 
vertices and e edges into a finite number / ^ 4 of convex spherical polygons <n, 
(72, . . . , <Tf. Further let Pi , P2 , . . . , Pf be f.points of S and <p(p) a strictly in
creasing function defined for 0 ^ p < ir. Then 

(4) £ f<p(PiP)da>> \e j<p(AP)da> 
i — 1 a i A 

where dœ denotes the area element of S at the variable point P , and À a right 
spherical triangle ABC the acute angles of which are a — irf/2e at A and fi = 
irv/2e at B. Equality holds only if N is the central projection of the edges of a re
gular polyhedron circumscribed about S and Pi, P2 , . . . , P / the points of contact 
of the faces of this polyhedron. 

Preparatory to the proof we make two remarks, easy to prove, in which 
a spherical domain and its area are denoted by the same symbol. 

REMARK 1. Let 5 be a segment of a spherical cap c ( < 2-K) with the top 
point T. Then the function 

Q(s) = f<p(TP)da> 
s 

is convex from above for 0 ^ 5 ^ c/2. 
REMARK 2. For any convex domain d lying in a "hemicap" of c, 

j<p(TP)da>^ 0 0 ) . 
d 

Let us first note that the integral j<p(PiP)dœ obviously takes its mini-

mum for a variable Pi at an inner point of a^ Therefore we may suppose that 
Pi lies within <Ti (i = 1, 2, . . . , / ) . 

Let Ci be the spherical cap with the top point Pi and the radius AB, while 
Qu (?2, . . • QPi are the vertices of di and su ^2, • . . ,sn are the convex partial-
domains of d lying outside of <n, the first bordered by the great circles PiQu 
(?i(?2, P»(?2, the second by Pt(>2, Q2Q3, P%Qz, etc. Omitting the common in
tegrand <p(PiP)do) under the integral signs we have 

uCf. the proof in the paper referred to in footnote 4. 
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J - / - E / + J, 
where o-\- denotes the part of cr* not covered by ci. 

Consider the corresponding equalities for i — 1,2, . . . , / . The total 
number of the domains sv being 2e, we get by the above remarks and Jensen's 
inequality 

£ / = / / - I / + L / ^ / / - 1 fiw + £ ; 
» ' = l ^ c j/ = 1 5p » = l a ' j c v = 1 * = 1 a' i 

c V = i 2 e / » = u ' j 

where c denotes a spherical cap of radius AB and top point A, and 

/ = J *UP)d«. 
c c 

f 
Since, with the notation ]£ (r\- = 5 ' , we have 

we may write 

= / J - 2 e o ( £ - ^ ) + L } - 2efv{AP)dot 
c \ 2e / i=lv'i d 

denoting by d the partial domain of c which completes the segment of the 
cap c of area (fc — S)/2e to the segment of area (fc — S + S')/2e. Further
more, since by the monotonicity of v?(p) the sum of the last two terms in the 
above inequality is ^ 0, we have 

But (fc — S)/2e equals the area of the segment 5 of the cap c cut off by BC. 
This is obvious by 

A i a v a 1 

A = a + a — - = —c — w s. 

This completes the proof of (4). 
Equality holds only if S is entirely covered by the caps d without any part 

being covered three times, and the domains sv are all congruent segments of 
a spherical cap. This is just the case indicated above. 

The inequality (1) is an immediate consequence of (4) for the function 
<p(p) = sec3p, for which ^j<p(TP)do) equals the volume of the cone with a 

d 
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vertex at the centre of S cutting out from S the domain d and the base plane 
of which touches 5 at the point T. 

Let us still note that the consideration of the function 

( \ _ J s e c 3 P for 0 ^ p ^ AB 
^p) " (sec3 AB for AB ^ p ^ TT/2 

involves a sharpening of (1), according to which the volume V of II can be 
replaced by the volume of the part of II which lies in a sphere of radius 

r tan - tan - concentric with the insphere. 
P a 

4. The regular degenerate polyhedra.12 The five Platonic solids can be 
supplemented in a natural manner by three further ''polyhedra" inscribed in 
or circumscribed to the sphere of infinite radius, or more correctly: tessellations 
in the plane. If we denote by {p, q\ the regular polyhedron having p-gonal 
faces, q at each vertex, then the eight regular polyhedra can be arranged into 
the following scheme : 

{3,3} 
K3} 
{5,3} 
{6,3} 

Any of the three regular degenerate polyhedra, represented by the figures 
below, can be considered as the limiting form of a set of convex polyhedra. 

{3,6} {4,4} 

The introduction of this terminology will prove suitable in the investigation 
of the question when our inequalities give exact asymptotic estimates for large 
values of e. Let us consider, for instance, a set of polyhedra of increasing 
values of e for which 

lim el — — tan - tan - J = 0. 
V r P q/ 

12Cf. H. S. M. Coxeter, Regular Polytopes (New York, 1949), chap. IV. 

{3,4} {3,5} {3,6} 
{4,4} 

{6,3} 
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The * 'limiting poryhedra" of such sets are the regular ones. 
In a certain sense we can briefly say that equality holds in our inequalities 

for, and only for, the eight regular polyhedra. 

5. Further problems. Let us consider the inequalities analogous to (1) 
and (2) for the surface area F of the polyhedron II : 

e sin *? ( t a n 2 - tan2 r-- l)r* $ F$ esin M l - cot2 - cot2 - V -
p \ p q / p\ p q/ 

The inequality on the left is equivalent to (1). On the other hand, the in
equality on the right seems to involve some difficulties. We are going to 
prove this inequality only for polyhedra the faces and edges of which contain 
the foot of the centre of the circumsphere on their plane or line, respectively. 

The proof is a dual counterpart of the second proof of (1). Let us keep the 
notations of this proof surrendering the rôle of the insphere to the circum
sphere of radius R = 1. We have now AB ^ sin c and hence 

t^ I sin 2a sin2 c = % sin 2a (1 - cot2a cot2 p) 

- r ( . , « - - e ( ï - . , ? - * ) . 

Since Toa Tefi - I V - 2 CQt4 a [1 - (cos2 a + cos2 p) f £ 0, the function 
sin6 p 

T(a, 0), for 0 ^ a < TT/2, 0 ^ P < TT/2, a + p £ TT/2, is concave from below 
and we have 

F = L ^ 4e r(27r//4e, 2wv/4e); q.e.d. 

The proof of the general case miscarries for the following reason. Let us 
change the face Fi within the insphere so that the number pi of its sides and 
the area <n of its projection from 0 upon the circumsphere remain invariant. 
Then the area Fi has only a local maximum for the regular £;-gon inscribed 
in the circumsphere and takes its absolute maximum just in the case when A 
lies outside Fi, provided that <?i remains below a certain constant which de
pends only on pi. 

Let us now return to the isepiphan problem. According to a well-known re
sult of L. Lindelôf13 the /-hedron which minimizes, by a given value of / , the 
quotient F3 / V2 has the property of being circumscribed about a sphere. Hence 
for the best /-hedron Fz/V2 = 9F/V2. But this holds not only for the best 
/-hedra, but also, for instance, for the best dipyramids of given number of 
vertices and for the best polyhedra among many other classes of polyhedra 
as well. All these induce us to announce the following conjecture concerning 
any convex polyhedron: 

13L. Lindelôf, "Propriétés générales des polyèdres etc. ," St. Petersburg Bull. Acad. Sri., 
vol. 14 (1869), 258-269. 
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P/ V2 Ï 9e sin — ( t a n 2 - tan2 - - 1 Y 
p \ p q / 

The proof of this inequality would, in a certain sense, close the range of 
the isepiphan problems for polyhedra. 

Let us now agree upon the notations A (x ; k) and H(x ; k) for the arithmetic 
and harmonic means of certain numbers Xi with the weights ki. Let further II be a 
convex polyhedron, 0 an arbitrary inner point of it, pu pi, - - - ,Pf the numbers 
of the sides of the faces distant rly r2} . . . ,77 from 0, qu $2, . . • , qv the numbers 
of the edges running into the vertices distant 2?i, R2l . . . , Rv from 0 and put, 
as above, p = A(p; 1), q = A(q;l). With these notations the following in
equality probably holds: 

A(R; q)/H(r; p) ^ tan - tan - . 
P q 

This may be a generalization of certain previous results14 suggested by a 
triangle inequality of L. J. Mordell and P. Erdôs.15 Here A(R; q) cannot be 
replaced by A(R; 1) just as H(r; p) cannot be replaced by H(r\ 1). Similarly, 
the above inequality cannot be improved by putting H(R; q) instead of A (R; q) 
or A{r\ p) instead of H{r\ p). 

14L. Fejes Tôth, "Inequalities Concerning Polygons and Polyhedra," Duke Math. J., vol. 15 
(1948), 817-822. 

15L. J. Mordell, Problem 3740, proposed by Paul Erdôs, Amer. Math. Monthly, vol. 44 
(1937), 252. 
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