
Glasgow Math. J. 48 (2006) 37–40. C© 2006 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089505002843. Printed in the United Kingdom

SPHERE THEOREM FOR MANIFOLDS WITH POSITIVE
CURVATURE

BAZANFARÉ MAHAMAN
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Abstract. In this paper, we prove that, for any integer n ≥ 2, and any δ > 0
there exists an ε(n, δ) ≥ 0 such that if M is an n-dimensional complete manifold with
sectional curvature KM ≥ 1 and if M has conjugate radius ρ ≥ π

2 + δ and contains a
geodesic loop of length 2(π − ε(n, δ)) then M is diffeomorphic to the Euclidian unit
sphere �n.
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1. Introduction. One of the fundamental problems in Riemannian geometry is
to determine the relation between the topology and the geometry of a Riemannian
manifold. In this way the Toponogov’s theorem and the critical point theory play an
important role. Let M be a complete Riemannian manifold and fix a point p in M
and define dp(x) = d( p, x). A point q �= p is called a critical point of dp or simply of
the point p if, for any nonzero vector v ∈ TqM, there exists a minimal geodesic γ

joining q to p such that the angle �(v, γ ′(0)) ≤ π
2 . Suppose M is an n-dimensional

complete Riemannian manifold with sectional curvature KM ≥ 1. By Myers’ theorem
the diameter of M is bounded from above by π. In [4] Cheng showed that the maximal
value π is attained if and only if M is isometric to the standard sphere. It was proved
by Grove and Shiohama [5] that if KM ≥ 1 and the diameter of M diam(M) > π

2 then
M is homeomorphic to a sphere.

Hence the problem of removing homeomorphism to diffeomorphism or finding
conditions to guarantee the diffeomorphism is of particular interest. In [13] C. Xia
showed that if KM ≥ 1 and the conjugate radius ρ(M) of M is greater than π/2 and if
M contains a geodesic loop of length 2π , then M is isometric to �n.

DEFINITION 1.1. Let M be an n-dimensional Riemannian manifold and p be a point
in M. Let Conj( p) denote the set of first conjugate points to p on all geodesics issuing
from p. The conjugate radius ρ( p) of M at p in the sense of Xia [13] is defined as

ρ(p) = d( p, Conj( p)) if Conj( p) �= ∅
and

ρ( p) = +∞ if Conj( p) = ∅
Then the conjugate radius of M is given by

ρ(M) = inf
x∈M

ρ(x).
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Many interesting results have been proved by using the critical points theory and
Toponogov’s theorem [3], [5], [7], [8], [10], [11], [12], [13]. etc...

The purpose of this paper is to prove the following result.

THEOREM 1.2. For any n ≥ 2 and any δ > 0, there exists a positive constant
ε(n, δ) depending only on n and δ such that for any ε ≤ ε(n), if M is an n-dimensional
complete connected Riemannian manifold with sectional curvature KM ≥ 1 and conjugate
radius ρ(M) > π

2 + δ and if M contains a geodesic loop of length 2(π − ε) then
M is diffeomorphic to an n-dimensional unit sphere �n and the metric g of M is
ε′ = ε′(ε, n, δ, α) close in the Cα topology to the canonical metric of curvature 1 of
�n for any α ∈]0, 1[.

Proof. Let i(M) denote the injectivity radius of M. By definition we have

i(M) = inf
x∈M

d(x, C(x)),

where C(x) is the set of cut points of x. �
A classical result due to Klingenberg (see for instance corollary 4.14 of [9]) asserts

that if M is compact then i(M) = min{t0,
l0
2 }, where l0 is the minimum of the length of

non trivial closed geodesics of M and t0 is the minimum over unit vector u of TM of
the first conjugate value t0(u) along the geodesic γu(t) = exp(tu).

LEMMA 2.1. Let M be an n-dimensional complete, connected Riemannian manifold
with sectional curvature KM ≥ 1.With Xia’s convention on the conjugate radius we have
i(M) ≥ ρ(M).

The proof is a direct application of the Klingenberg’s result: by the definition
above of the conjugate radius we have t0 ≥ ρ(M) and, since KM ≥ 1, every geodesic γ

issued from a point p hits Conj( p) at a point q (by the Rauch comparison theorem).
Consequently, the length of every non trivial closed geodesic issued from p is bounded
below by 2d( p, q) ≥ 2ρ(M).

LEMMA 2.2. For any δ > 0, there exists a function τδ which satifies limε 	→0 τδ(ε) = 0
and such that if M is a complete manifold with KM ≥ 1, injectivity radius i(M) ≥ π

2 + δ

and which contains a geodesic loop of length 2(π − ε) then we have diam(M) ≥ π − τδ(ε).

Proof. Let γ be a loop with length 2π − 2ε. Let x = γ (0) = γ (2π − 2ε), y =
γ (π/2 + δ), m = γ (π − ε) and z = γ ( 3(π − ε)

2 − δ)
Let

γ1 = γ

/[
0,

π

2
+ δ

]
, γ2 = γ

/[
π

2
+ δ, π − ε

]
, γ3 = γ

/[
π − ε,

3(π − ε)
2

− δ

]
,

and

γ4 = γ

/[
3(π − ε)

2
− δ, 2π − 2ε

]
.

Then the geodesics γi are minimal. Let σ be a minimal geodesic joining m and x.

Set α = �(σ ′(0),−γ ′(π − ε)) and β = �(σ ′(0), γ ′(π − ε)).
We have α ≤ π/2 or β ≤ π/2. Suppose, without loss of generality, that α ≤ π/2.

Applying the Toponogov comparison theorem on length to the hinge formed by γ2
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and σ at γ (π − ε) we have

cos
(

π

2
+ δ

)
≥ cos L(σ ) cos

(
π

2
− ε − δ

)
+ cos α sin L(σ ) sin

(
π

2
− ε − δ

)

so that

cos L(σ ) ≤ − sin δ

sin(δ + ε)
⇒ L(σ ) ≥ π − τδ(ε)

and the conclusion follows. �
Note that Anderson [1] and Otsu [6] constructed, for n ≥ 4 n-dimensional closed

manifolds with Ric ≥ n − 1 and diameter arbitrarily close to π but whose homotopy
type is distinct from that of the sphere. Thus additional assumptions are needed.

In [2] G. Pacelli Bessa proved the following theorem from which we deduce
Theorem 1.2.

THEOREM 2.3. Given n ≥ 2 and i0 > 0 there exists an ε = ε(n, i0) such that if M
admits a metric g satisfying

Ric ≥ n − 1, i(M) ≥ i0, Diam(M) ≥ π − ε

then, for any α ∈]0, 1[, M is diffeomorphic to �n and the metric g of M is ε′ = ε′(ε, n, α)
close in the Cα topology to the canonical metric of curvature 1 of �n, where ε′tends to 0
with ε.

REMARK. The complex projectif space shows that theorem 1.2 is false under the
weaker hypothesis ρ ≥ π

2 .
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