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Abstract

The cardioprotective effects of HDL have been largely attributed to their role in the reverse cholesterol transport pathway, whose efficiency

is affected by many proteins involved in the formation and remodelling of HDL. The aim of the present study was to determine the effects,

and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The

mRNA concentration of target genes was assessed by real-time PCR. Protein concentrations were determined by Western blot or immuno-

assays. PPAR and liver X receptor (LXR) activities were assessed in transfection experiments. Compared with the SFA palmitic acid (PA), the

PUFA arachidonic acid (AA), EPA and DHA significantly decreased apoA-I, ATP-binding cassette A1 (ABCA1), lecithin-cholesterol acyltrans-

ferase (LCAT) and phospholipid transfer protein mRNA levels. EPA and DHA significantly lowered the protein concentration of apoA-I and

LCAT in the media, as well as the cellular ABCA1 protein content. In addition, DHA repressed the apoA-I promoter activity. AA lowered

only the protein concentration of LCAT in the media. The activity of PPAR was increased by DHA, while the activity of LXR was lowered by

both DHA and AA, relative to PA. The regulation of these transcription factors by PUFA may explain some of the PUFA effects on gene

expression. The observed n-3 PUFA-mediated changes in gene expression are predicted to reduce the rate of HDL particle formation

and maturation.
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CHD remains one of the leading causes of morbidity and mor-

tality in the USA(1). The inverse relationship between plasma

levels of HDL-cholesterol (HDL-C) and the risk of CHD is

well established(2). Besides its antioxidant, anti-inflammatory

and antithrombotic effects, the cardioprotective effects of

HDL have been largely attributed to its role in the reverse

cholesterol transport (RCT) pathway, in which excess choles-

terol in peripheral tissues is returned to the liver for utilisation

or elimination(3). The efficiency of HDL in promoting RCT is

related to the concentration, composition, shape and size of

the HDL particles, which result from the continuous remodel-

ling of HDL in the circulation by the action of numerous

proteins(4).

The initial step in HDL formation involves the synthesis and

secretion of apoA-I by liver cells and, to a lesser extent, by

intestinal cells(5). Then, the cell membrane transporter ATP-

binding cassette A1 (ABCA1) mediates the transfer of cellular

phospholipids and free cholesterol to lipid-poor apoA-I, lead-

ing to the formation of nascent HDL(6). The interaction of

hepatic ABCA1 with apoA-I is crucial for HDL maturation, as

indicated by the dramatic reduction in plasma HDL levels in

liver-specific ABCA1 knockout mice(7). The free cholesterol

in HDL is then esterified by lecithin-cholesterol acyltransferase

(LCAT)(8) to cholesteryl ester (CE). CE migrates into the core of

the HDL particles, resulting in the formation of larger and

spherical HDL particles. The different components of HDL

are frequently exchanged with or transferred to other lipopro-

teins within the plasma compartment by the action of transfer

proteins such as phospholipid transfer protein (PLTP) and CE

transfer protein (CETP)(9). The exchange of CE for TAG,
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mediated by CETP, results in HDL particles enriched with TAG.

TAG and phospholipids in HDL are hydrolysed by hepatic

lipase (HL)(10), leading to the formation of HDL particles that

are preferred ligands for the scavenger receptor class B type

I (SR-BI)(11), which mediates the selective uptake of CE from

HDL into hepatocytes(12). These genes are all important

players in HDL metabolism and are all expressed by human

hepatocytes.

Both genetic and environmental factors regulate HDL

metabolism and the RCT pathway. Among these factors, diet-

ary fat composition affects both HDL-C concentrations and

CHD risk. Dietary intervention studies have shown that an

increased intake of PUFA, especially of the n-3 type, with or

without reduced dietary SFA intake, is associated with a

reduced risk of CHD(13,14). In an attempt to define how indi-

vidual unsaturated fatty acids regulate HDL metabolism, we

determined the effect of the MUFA oleic acid (OA), the n-3

PUFA a-linolenic acid (ALA), EPA and DHA, and the n-6

PUFA linoleic acid (LA) and arachidonic acid (AA), relative

to the SFA palmitic acid (PA), on apoA-I, ABCA1, SR-BI,

LCAT, PLTP, CETP and HL gene expression in HepG2 cells.

Experimental methods

Cell culture and fatty acid treatments

HepG2 cells (ATCC HB-8065; ATCC) were maintained in

Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) sup-

plemented with 10 % heat-inactivated fetal bovine serum (FBS;

Hyclone), 1 % GlutaMax, 100mM-non-essential amino acids,

100 U penicillin/ml and 100mg streptomycin/ml (Invitrogen)

in an atmosphere of 5 % CO2 at 378C. Lipoprotein-deficient

(LD) FBS was obtained by ultracentrifugation of FBS at a

density of 1·215 g/ml. PA (16 : 0), OA (18 : 1), LA (18 : 2, n-6),

AA (20 : 4, n-6), ALA (18 : 3, n-3), EPA (20 : 5, n-3; Nu-Chek)

and DHA (22 : 6, n-3; Sigma-Aldrich), in the form of Na salts,

were dissolved in water and combined with fatty acid-free

bovine serum albumin (Sigma-Aldrich) at a 2:1 molar ratio.

Cells were cultured in DMEM containing 10 % LD-FBS for

24 h before the fatty acid treatment and then incubated for

24 h with fatty acid-free bovine serum albumin (control

cells) or with the bovine serum albumin–fatty acid complexes

at the concentration indicated, in DMEM containing 10 %

LD-FBS. Cell viability was monitored by trypan blue exclusion

and was $ 90 % after 24 h incubation with all fatty acids tested

at concentrations up to 200mM. Increased cell death was

observed with long-chain PUFA (twenty or more carbons)

treatments at concentrations . 200mM.

Quantitative real-time PCR

Total cellular RNA was extracted using TRIzol reagent and

reverse transcribed with random hexamers using the Super-

Script III First Strand Synthesis Kit (Invitrogen) following

the manufacturer’s protocol. The mRNA level of the genes of

interest was determined using specific primers (Table 1),

designed by Primer Express Software version 2.0, and the

power SYBR Green Master Mix (Applied Biosystems) in the

Applied Biosystems 7300 Real-Time PCR system (version 1.4

SDS software). The relative quantification (DDCT) method

was used to determine the expression of the target genes,

using the glyceraldehyde-3-phosphate dehydrogenase gene

as the internal control. Target gene mRNA levels were

expressed relative to the PA treatment.

Western blots

Cells were lysed in RIPA buffer containing protease inhibitors.

In brief, 30mg of cell lysates were separated by electro-

phoresis in 7·5 % polyacrylamide gels, and transferred onto

nitrocellulose membranes. Membranes were incubated for

2 h in blocking solution (1 £ Tris-buffered saline (TBS), 3 %

non-fat dry milk, 0·1 % Tween 20) and then incubated over-

night at 48C with anti-ABCA1, anti-SR-BI (Novus Biologicals)

or anti-glyceraldehyde-3-phosphate dehydrogenase (Santa

Cruz Biotechnology) antibodies in blocking solution. Mem-

branes were then washed three times with washing solution

(1 £ TBS, 0·1 % Tween 20), incubated with the horseradish

peroxidase-conjugated secondary antibody at room tempera-

ture for 1 h, and washed again for three times. Signals were

visualised by enhanced chemiluminescence (Amersham Bios-

ciences) on X-ray films and quantified using a GS-710 cali-

brated imaging densitometer with Quantity One software

(Bio-Rad Laboratories).

ELISA

HepG2 culture media were collected after 24 h of incubation

with fatty acids, and the concentration of apoA-I was

measured with an ELISA assay developed in our laboratory,

Table 1. Oligonucleotide primers for quantitative real-time PCR

Gene Forward primer (50 –30) Reverse primer (50 –30) Amplicon (bp) Accession no./reference

ABCA1 AGCCACAAGGCAGGTCATG TCCGGACAAGGTCCATTTCTT 143 NM_005502
apoA-I GCCTTGGGAAAACAGCTAAACC TCCTGGGTCACAGGGCC 101 NM_000039
CETP CGCATGCTGTACTTCTGGTTCT GCCATCCTGGAAAGCTACCTT 69 Norata et al.(62)

GAPDH CCTGTTCGACAGTCAGCCG CGACCAAATCCGTTGACTCC 101 NM_002046
HL CACTACACCATCGCCGTCC TTGAACAGATTCCTCCAGCCA 84 NM_000236
LCAT ACCGCTTTATTGATGGCTTCA TCACCTGAGGCCAAGACCAG 82 NM_000229
PLTP ACCATGCGGGATTCCTCAC GCAGGCCGGTTCTTCTCAA 82 NM_006227
SR-BI GGCACACTCCTTGTTCCTGG GTCCAATGCCTGCGACAGAT 107 NM_005505

ABCA1, ATP-binding cassette A1; CETP, cholesteryl ester transfer protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HL, hepatic lipase; LCAT,
lecithin-cholesterol acyltransferase; PLTP, phospholipid transfer protein; SR-BI, scavenger receptor class B type I.
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as described previously(15). For LCAT measurement, con-

ditioned media were concentrated twenty-five times with

Centricon centrifugal filter devices (Millipore) and LCAT was

quantified by an ELISA kit (ALPCO) according to the manufac-

turer’s protocol. Both apoA-I and LCAT protein levels were

normalised to total cellular protein concentrations.

Transient transfections

Transient transfection experiments were carried out in twelve-

well dishes with 0·4mg of the test plasmid and 0·03mg of the

Renilla luciferase plasmid (Promega) using the FuGENE 6

Transfection Reagent (Roche) in DMEM containing 10 %

LD-FBS for 24 h, or in serum-free DMEM for 6 h followed

by 18 h incubation in DMEM containing 10 % LD-FBS. The

luciferase reporter construct (pGL2 basic vector; Promega)

containing the 2256 to þ396 region of the human apoA-I

promoter has been described previously(15). The plasmid

3xPPRE-tk-pGL3, containing three copies of a PPAR

response element (PPRE)(16), and the plasmid tk-LXREx3-luc,

containing three copies of an liver X receptor (LXR) response

element (LXRE)(17), were generous gifts from Dr Kilgore

and Dr Mangelsdorf, respectively. Transfected cells were

then incubated with 0·1 % ethanol (vehicle, control), 1mM-

GW7647 (PPARa activator) or 1mM-T0901317 (LXR activator;

Cayman Chemicals) dissolved in 0·1 % ethanol, or 200mM-

PA, -DHA and -AA, in DMEM containing 10 % LD-FBS for

24 h. Cells were collected and stored at 2708C until luciferase

activities were measured with the Dual-Luciferase Reporter

Assay System (Promega).

Statistical analysis

Experiments were performed in duplicate and values of three

independent experiments are presented as means and stan-

dard deviations. Statistical analysis was performed with the

SAS 9.1 statistical package (SAS Institute Inc.). Significant

differences among the treatments were assessed by one-way

ANOVA followed by Dunnett’s adjustment, two-tailed Stu-

dent’s t test or linear regression (test for trend) as indicated.

P,0·05 was considered to be statistically significant.

Results

The expression of the apoA-I, ABCA1, SR-BI, LCAT, PLTP,

CETP and HL genes was analysed in HepG2 cells by real-

time PCR. A dose–response curve with 0, 50, 100 and

200mM of each fatty acid was developed for each target

gene. A statistically significant dose-dependent down-

regulation of apoA-I, LCAT and PLTP mRNA expression

was observed with the DHA and AA treatments (P for

trend,0·05; data not shown). A similar dose-dependent

repressive effect of EPA on LCAT mRNA expression was also

found (P for trend,0·05; data not shown). Compared with

PA, the long-chain PUFA AA, EPA and DHA significantly

decreased the mRNA level of apoA-I, ABCA1, LCAT and

PLTP at the 200 mM concentration (Fig. 1). ALA, at the

200mM concentration, also decreased apoA-I mRNA level,

but did not affect the expression of the other genes (Fig. 1).

OA and LA did not affect the expression of any of the genes

studied (Fig. 1). None of the fatty acids studied affected the

mRNA levels of SR-BI, CETP or HL (Fig. 1).

The effects of the different fatty acids on the apoA-I, ABCA1,

SR-BI and LCAT protein levels were assessed at the 200mM

concentration. After adjustment for multiple comparisons,

the EPA treatment was associated with a significant reduction

in apoA-I secretion (22 %; Fig. 2(a)). DHA also reduced apoA-I

protein level by 15 %, which was significant (P , 0·05) when

directly compared with PA. Consistent with the RNA data,

the amount of LCAT protein secreted by HepG2 cells

decreased upon the AA, EPA and DHA treatments, relative to

the PA treatment (Fig. 2(b)). ABCA1 and SR-BI protein levels

were quantified by Western blot, as shown in Fig. 2(c).

At approximately 250 kDa, two ABCA1 bands were detected,

representing the glycosylated and non-glycosylated forms.

EPA and DHA significantly decreased total ABCA1 protein,

relative to PA. Exposure of HepG2 cells to any of the unsatu-

rated fatty acids did not significantly alter the amount of SR-BI

protein, compared with PA (Fig. 2(c)).

Relative to PA, the DHA treatment of cells transfected with

a reporter construct containing the full promoter region of

the human apoA-I gene showed a 30 % reduction in apoA-I

promoter activity at 24 h (Fig. 3). A similar repression in

apoA-I promoter activity was observed in one experiment

comparing AA with PA (data not shown). GW7647, a PPARa

activator, significantly induced PPAR activity (Fig. 4(a)). DHA

also significantly increased PPAR activity by 30 %, relative to

PA. T0901317, an LXR activator, significantly increased the

expression of the LXRE construct (Fig. 4(b)). However, LXR

activity was significantly lowered by DHA or AA compared

with PA.

Discussion

Fatty acids are able to regulate gene expression by influencing

the activity or abundance of several transcription factors(18).

Unsaturated fatty acids have been shown in some, but not

all, human and animal studies to alter the concentration or

activity of proteins involved in HDL metabolism(19–29).

A more complete understanding of how different fatty acids

influence HDL needs to be determined. Plasma concentrations

of NEFA in normal healthy subjects have been reported to vary

between 300 and 600mM
(30,31), of which approximately 35 % is

OA, 17 % are n-6 PUFA and 1·2–2·5 % are n-3 PUFA(32,33), with

fish oil supplementation resulting in significant increases in

plasma free EPA and DHA concentrations(34,35). In the present

study, PA was used as the reference fatty acid because it is the

dominant SFA in the typical US diet(36) and also in human

blood(37).

In two apoA-I protein kinetic studies conducted in insulin-

resistant subjects, it has been reported that a high dose of

n-3 PUFA (a mixture of EPA and DHA, 3·36 g/d for 6 weeks

or 1·8 g/d for 8 weeks) decreased the production of HDL

apoA-I(25,29). However, a significant reduction in apoA-I clear-

ance was also observed in these studies, so that no effects on

plasma apoA-I concentrations were noted(25,29). The present

Fatty acids and gene expression 1353

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114511006854  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114511006854


1·4
(a) (d)

(b) (e)

(c)

(g)

(f)

1·2

1·0

0·8

0·6

0·4

0·2

0·0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e)

***
***

** *

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0·0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e)

***

***

***

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0·0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e) *

**
*

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0·0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e)

**
**

*

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0·0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e)

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0·0
Control

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e)

OA LA AA ALA EPA DHA

1·4

1·2

1·0

0·8

0·6

0·4

0·2

0·0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(f

o
ld

 c
h

an
g

e)

PA

Control OA LA AA ALA EPA DHAPA Control OA LA AA ALA EPA DHAPA

Control OA LA AA ALA EPA DHAPA Control OA LA AA ALA EPA DHAPA

Control OA LA AA ALA EPA DHAPA Control OA LA AA ALA EPA DHAPA

Fig. 1. Effects of fatty acids on gene expression. HepG2 cells were treated with 200mM of the indicated fatty acids or fatty acid-free bovine serum albumin (con-

trol) for 24 h, and mRNA levels of the (a) apoA-I, (b) ATP-binding cassette A1, (c) scavenger receptor class B type I, (d) lecithin-cholesterol acyltransferase, (e)

phospholipid transfer protein, (f) cholesteryl ester transfer protein and (g) hepatic lipase genes were measured. Data are normalised to glyceraldehyde-3-phos-

phate dehydrogenase mRNA levels and are expressed as fold change compared with values of the cells treated with 200mM-palmitic acid (PA). Values are

means from three independent experiments with each treatment in duplicate, with standard deviations represented by vertical bars. Mean values were significantly

different from those of the PA treatment: *P,0·05, **P,0·01, ***P,0·001; one-way ANOVA followed by Dunnett’s adjustment. OA, oleic acid; LA, linoleic acid;

AA, arachidonic acid; ALA, a-linolenic acid.
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findings of decreased apoA-I expression with EPA and DHA

treatments in HepG2 cells are consistent with the findings of

reduced production of apoA-I with n-3 PUFA supplementa-

tions in these human kinetic studies. AA decreased apoA-I

mRNA level but did not significantly decrease apoA-I protein

secretion. It is possible that apoA-I production is regulated

differently by n-6 and n-3 PUFA at the post-transcriptional

level. This hypothesis requires further studies. LA did not sig-

nificantly affect apoA-I mRNA or protein levels, which agrees

with a study comparing the effect of soyabean oil (high LA

content) with butter and showing no differences in HDL-C

or apoA-I concentrations, clearance or production in hyperch-

olesterolaemic women(38). In hepatic cells, the transcriptional

activity of the apoA-I promoter is regulated by several tran-

scription factors capable of binding to the apoA-I hepatic

enhancer. A PPRE has been mapped to 2214 to 2192

region of the apoA-I promoter(39). Activation of PPARa has

been shown to increase hepatic human apoA-I mRNA

levels as well as plasma human apoA-I concentrations in

human apoA-I transgenic mice(40). Here, we have shown

that 200mM-DHA, compared with PA, promotes PPAR activity

in HepG2 cells. While this would be expected to up-regulate

apoA-I gene expression, DHA suppressed both apoA-I promo-

ter activity and apoA-I mRNA levels. We have recently shown

that the DHA-associated suppression of the apoA-I promoter

is mediated by the transcription factor HNF-3b(41).

The effects of unsaturated fatty acids on ABCA1 expression

have been studied predominantly in macrophages, with some

studies also conducted in enterocytes and hepatocytes. In

Caco-2/TC-7 human colon colorectal adenocarcinoma cells,

exposure to 100 or 300mM-AA and -EPA for 24 h decreased

ABCA1 mRNA levels(42). EPA treatment at 10 or 100mM for

18 h has also been shown to decrease ABCA1 mRNA levels

in HepG2 cells(43). The suppressive effects of EPA became

more evident when ABCA1 expression was induced with the

LXR activator 22(R)-hydroxycholesterol or 9-cis-retinoic

acid(43). The role of LXR in up-regulating ABCA1 gene

expression is well established(44,45). In macrophages, the sup-

pressive effect of EPA on ABCA1 gene expression was shown

to depend on the presence of an LXRE in the promoter(46).
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Fig. 2. Effects of fatty acids on protein levels. HepG2 cells were treated with 200mM of the indicated fatty acids or fatty acid-free bovine serum albumin (control)

for 24 h. (a) ApoA-I secreted in the culture media was determined by ELISA and normalised to total cellular protein. (b) Lecithin-cholesterol acyltransferase

secreted in the culture media was determined by ELISA and normalised to total cellular protein. (c) Upper panel: Western blot of ATP-binding cassette A1

(ABCA1, 250 kDa) and scavenger receptor class B type I (SR-BI, 75 kDa). Lower panel: ABCA1 (upper graph) and SR-BI (lower graph) levels were normalised to

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Results are expressed as fold change relative to values of the cells treated with 200mM-palmitic acid (PA).

Values are mean from three independent experiments conducted with duplicate treatments, with standard deviations represented by vertical bars. Mean values

were significantly different from those of the PA treatment: *P , 0·05, **P , 0·01; one-way ANOVA followed by Dunnett’s adjustment. † Mean value was signifi-

cantly different compared with the PA treatment (P , 0·05; two-tailed Student’s t test). OA, oleic acid; LA, linoleic acid; AA, arachidonic acid; ALA, a-linolenic acid.
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Ou et al.(47) have reported that unsaturated fatty acids

antagonise oxysterol-induced LXR activity. Post-translational

regulation of macrophage ABCA1 by unsaturated fatty acids,

including OA, LA and AA, in the presence of a cyclic AMP ana-

logue, has also been observed and involves the activation of

protein kinase C d through a phospholipase D2 pathway, lead-

ing to destabilisation of ABCA1 protein(48–50). However, in the

latter study, the suppressive effect of unsaturated fatty acids on

ABCA1 mRNA levels was absent. Similarly, a recent report has

shown that treatment of HepG2 cells with 125mM-OA or -LA

for 16 h, relative to the non-treatment control, increased the

degradation rate of ABCA1 protein without affecting its

mRNA level(51). In the present study, 200mM-AA, -EPA and

-DHA, compared with PA, significantly suppressed ABCA1

mRNA levels while OA, LA and ALA did not. Since our trans-

fection experiments indicated a DHA- and AA-dependent

decrease in LXR activity, we speculate that the altered

expression of hepatic ABCA1 mRNA by these fatty acids may

be mediated by reduced LXR activity. EPA and DHA also low-

ered cellular ABCA1 protein content, compared with PA, and

this lowering effect was similar to that observed for ABCA1

mRNA levels. Despite its lowering effect on ABCA1 mRNA

level, AA did not significantly affect cellular ABCA1 protein

level, suggesting the possibility of a differential mechanism

between n-6 and n-3 PUFA on hepatic ABCA1 post-

translational regulation. This need to be further investigated.

In addition, it is not clear why there is discrepancy in results

among studies. One possibility is that we did not induce

ABCA1 expression by a cAMP analogue or LXR activators in

our experiments. Alternatively, different experimental con-

ditions may have led to different findings.

In human subjects, n-3 PUFA have been shown to reduce

plasma LCAT activity in mildly hypercholesterolaemic

men(20). In the present study, the long-chain PUFA AA, EPA

and DHA significantly decreased both the mRNA and protein

levels of LCAT, relative to PA. In agreement with the present

findings, a previous study has reported a decrease in LCAT

secretion by primary rat hepatocytes treated with 1 mM-

DHA(52). In the same study, however, an increased LCAT

secretion was seen with 1 mM-OA and -LA treatments, which

we did not see with 200mM concentrations. Our understand-

ing of how LCAT is regulated at the transcriptional level is

still very limited and the mechanism of PUFA regulation of

LCAT expression is not clear.

It has previously been shown that LXR ligands induce the

expression of PLTP both in HepG2 cells and in mouse liver

cells in vivo. A high-affinity LXRE has been identified in the

PLTP promoter(53). In addition, the promoter activity of the

PLTP gene has been shown to be significantly reduced by

fenofibrate, which indicates the potential involvement of
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pGL3 or (b) the tk-LXREx3-luc reporter construct and the Renilla luciferase
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vation of PPAR or LXR was measured by relative luciferase activities and
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ations represented by vertical bars. * Mean values were significantly different
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t test). † Mean values were significantly different compared with the PA treat-
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PPAR response element; LXRE, LXR response element.
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PPARa in the transcriptional regulation of PLTP(54). Taking

into consideration that DHA enhances PPAR activity, and

both DHA and AA reduce LXR activity in HepG2 cells, the

observation of significantly reduced PLTP mRNA expression

in cells treated with long-chain PUFA may be explained, at

least in part, by the activation of PPAR and the suppression

of LXR.

We did not observe a significant effect of unsaturated fatty

acids compared with SFA on mRNA or protein levels of hepa-

tic SR-BI. The in vivo observations are not conclusive: studies

have indicated that PUFA increase the hepatic expression of

SR-BI and the selective hepatic uptake of CE from HDL in

mice and hamsters(24,26,55), but not in rats(28).

In the present study, there were no significant differences in

the mRNA expression of CETP or HL in cells treated with unsa-

turated fatty acids relative to PA at the concentrations tested. A

previous report showed a 50 % reduction in CETP mRNA

levels with 500mM-AA, -EPA or -DHA, compared with the

SFA stearic acid in HepG2 cells(56).

In summary, the present study shows that, compared with

the SFA PA, the long-chain n-3 PUFA EPA and DHA decrease

hepatic apoA-I, ABCA1 and LCAT mRNA and protein

expression, as well as PLTP mRNA expression. While the AA

treatment was as effective as the EPA and DHA treatments in

lowering apoA-I and ABCA1 mRNA levels, it did not result

in significant changes in the levels of these proteins. The AA

treatment only affected LCAT protein secretion. Based on the

roles of these proteins in HDL metabolism, our experiments

suggest that EPA and DHA may affect both the rate of

formation and maturation of HDL. Decreased secretion of

lipid-poor apoA-I and reduced hepatic ABCA1 expression

slow down the formation of nascent HDL particles and the

lipidation of apoA-I(57). The formation of larger spherical

HDL particles would also be reduced because of lower

LCAT levels. Our observations also suggest that the impact

of long-chain n-6 PUFA on HDL metabolism may be lower

than that of n-3 PUFA. This is supported by clinical studies

in which supplementation with high doses of fish oil, which

is associated with a change in the AA:EPA þ DHA ratio from

approximately 5:1 to 2:1, caused a significant reduction in

apoA-I production(25,29). The present study could not address

the effect of PUFA on HDL clearance. Human kinetic studies

have clearly shown a reduction in HDL apoA-I clearance,

compensating for the reduction in apoA-I production, follow-

ing fish oil. There are a number of other factors by which

PUFA could influence HDL-C concentrations and HDL func-

tion besides their effects on gene expression. It has been

shown that n-3 PUFA lower plasma TAG in vivo (58), which

in turn reduce CETP activity and increase the cholesterol con-

tent in HDL. In addition, a study conducted in mice has shown

that RCT was enhanced in animals fed an n-3 PUFA diet com-

pared with those fed an n-6 PUFA or saturated fat diet, despite

having lower plasma HDL-C concentrations, suggesting a

potential effect of n-3 PUFA on HDL function(59). In human

subjects, while the effect of PUFA consumption on HDL-C

concentration is modest(60,61), PUFA may protect against

CHD through several HDL- and non-HDL-dependent

mechanisms.

In conclusion, long-chain n-3 PUFA have a greater effect on

proteins involved in HDL metabolism and RCT than long-

chain n-6 PUFA. Since the anti-atherogenic property of HDL

is not simply determined by plasma HDL-C concentrations

but depends also on the properties of HDL, the effects of

these fatty acids on HDL functionality need to be investigated.
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