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A NOTE ON MARKOV BRANCHING PROCESSES

FRED M. HOPPE,* The University of Michigan, Ann Arbor

Abstract

We present a simple proof of Zolotarev's representation for the
Laplace transform of the normalized limit of a Markov branching
process and relate it to the Harris representation.

GALTON-WATSON: BACKWARD KOLMOGOROV EQUATION; LAPLACE

TRANSFORM

Let Z'(r) denote a supercritical Markov branching process with infinitesimal generat
ing function u(x) = a(f(x) - x) where f(x) = I tx i is the offspring p.g.f. with mean m
and where a -1 is the mean particle lifetime.

Zolotarev (1957) showed the existence of a normalizing function y(t) making y(t)Z(t)
converge in distribution to a proper limit W whose Laplace transform cP (s) =
E[exp (-sw) IZ(O) = 1] satisfies

rx m-1
(1) q, -l(X) = exp J,~ f(r) _ r dr

for a specified constant t:..
Here is a very quick proof of (1) relying on the Poincare functional equation (familiar

in the Galton-Watson setting) for the embedded discrete skeleton. Integrate the
backward Kolmogorov equation aFlat = u(F(x, t)) to obtain

(2) t = [<4") u~~)

where F(x, r) = E[xZ(t) IZ(O) = 1] and t:. is an arbitrary constant. For each t the process
{Z(nt), n ~ O} is Galton-Watson so, using the constants of Seneta (1968), we find that

<f>(exp (At)s) = F(<f>(s), r)

where A = a(m -1) is the Malthusian parameter. Setting s = 1 and defining d = cP(1) we
get F(t:., t) = <f>(exp At) which, when substituted into (2) with x = <f>(exp At), results in

rx dr rx m-1
q, -l(X) =exp At =exp AJ

4
u(r) =exp J

4
f(r)- r dr,

completing the proof.
Next, we separate the integral in (1) into a sum

f x ( m -1 1) IX 1---+-- dr- --dr.
a f(r)-r 1-r a 1-r
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If (and only if) the familiar logarithmic moment condition L (i log On < 00 holds, the first
integral is known to remain bounded as x~ 1 (essentially Theorem 4.3 of Seneta
(1969)) whence it is permissible to split the integration into one part running from ~ to
1 and a second part from 1 to x, which results in

JX( m - 1 1) J~(m-1 1) 1-x---+-- dr- ---+-- dr+log--
1 f(r)-r 1-r 1 f(r)-r 1-r 1-~

and culminates in

</> -l(X) = (1- x) exp JX ( m )-1 +_1_) drj(1-~)exp J~ (fm( )-1 +_1_) dr.
1 f(r - r 1- r 1 r - r 1- r

Under the classical norming W=limexp(-At)Z(t) and E[W]=1, and hence
lim (x ~ 1)</>-1(x)/(1- x) = 1. This shows that the denominator in the previous line
equals 1 and therefore

cP-\x) = (1- x) expr~~;_lr+1~ r) dr,

a representation first derived by Harris (1951) assuming the finiteness of the second
moment L i2n. There is a proof by Karlin and McGregor (1968) also only requiring
L (i log On < 00 which is based on a different approach.

I would like to thank E. Seneta for the Zolotarev reference.
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