A NOTE ON MARKOV BRANCHING PROCESSES

FRED M. HOPPE,* The University of Michigan, Ann Arbor

Abstract

We present a simple proof of Zolotarev's representation for the Laplace transform of the normalized limit of a Markov branching process and relate it to the Harris representation.

GALTON-WATSON: BACKWARD KOLMOGOROV EQUATION; LAPLACE TRANSFORM

Let Z(t) denote a supercritical Markov branching process with infinitesimal generating function u(x) = a(f(x) - x) where $f(x) = \sum f_i x^i$ is the offspring p.g.f. with mean m and where a^{-1} is the mean particle lifetime.

Zolotarev (1957) showed the existence of a normalizing function $\gamma(t)$ making $\gamma(t)Z(t)$ converge in distribution to a proper limit W whose Laplace transform $\phi(s) = E[\exp(-sW) | Z(0) = 1]$ satisfies

(1)
$$\phi^{-1}(x) = \exp \int_{\Delta}^{x} \frac{m-1}{f(r)-r} dr$$

for a specified constant Δ .

Here is a very quick proof of (1) relying on the Poincaré functional equation (familiar in the Galton-Watson setting) for the embedded discrete skeleton. Integrate the backward Kolmogorov equation $\partial F/\partial t = u(F(x, t))$ to obtain

(2)
$$t = \int_{\Delta}^{F(\Delta,t)} \frac{dr}{u(r)}$$

where $F(x, t) = E[x^{Z(t)} | Z(0) = 1]$ and Δ is an arbitrary constant. For each t the process $\{Z(nt), n \ge 0\}$ is Galton–Watson so, using the constants of Seneta (1968), we find that

$$\phi(\exp{(\lambda t)s}) = F(\phi(s), t)$$

where $\lambda = a(m-1)$ is the Malthusian parameter. Setting s = 1 and defining $\Delta = \phi(1)$ we get $F(\Delta, t) = \phi(\exp \lambda t)$ which, when substituted into (2) with $x = \phi(\exp \lambda t)$, results in

$$\phi^{-1}(x) = \exp \lambda t = \exp \lambda \int_{\Delta}^{x} \frac{dr}{u(r)} = \exp \int_{\Delta}^{x} \frac{m-1}{f(r)-r} dr,$$

completing the proof.

Next, we separate the integral in (1) into a sum

$$\int_{\Delta}^{\infty} \left(\frac{m-1}{f(r)-r} + \frac{1}{1-r}\right) dr - \int_{\Delta}^{\infty} \frac{1}{1-r} dr.$$

* Postal address: Department of Statistics, The University of Michigan, Ann Arbor, MI 48109, USA.

Received 2 January 1985.

If (and only if) the familiar logarithmic moment condition $\sum (i \log i) f_i < \infty$ holds, the first integral is known to remain bounded as $x \to 1$ (essentially Theorem 4.3 of Seneta (1969)) whence it is permissible to split the integration into one part running from Δ to 1 and a second part from 1 to x, which results in

$$\int_{1}^{x} \left(\frac{m-1}{f(r)-r} + \frac{1}{1-r} \right) dr - \int_{1}^{\Delta} \left(\frac{m-1}{f(r)-r} + \frac{1}{1-r} \right) dr + \log \frac{1-x}{1-\Delta}$$

and culminates in

$$\phi^{-1}(x) = (1-x) \exp \int_{1}^{x} \left(\frac{m-1}{f(r)-r} + \frac{1}{1-r}\right) dr / (1-\Delta) \exp \int_{1}^{\Delta} \left(\frac{m-1}{f(r)-r} + \frac{1}{1-r}\right) dr.$$

Under the classical norming $W = \lim \exp(-\lambda t)Z(t)$ and E[W] = 1, and hence $\lim (x \to 1)\phi^{-1}(x)/(1-x) = 1$. This shows that the denominator in the previous line equals 1 and therefore

$$\phi^{-1}(x) = (1-x) \exp \int_1^x \left(\frac{m-1}{f(r)-r} + \frac{1}{1-r}\right) dr,$$

a representation first derived by Harris (1951) assuming the finiteness of the second moment $\sum i^2 f_i$. There is a proof by Karlin and McGregor (1968) also only requiring $\sum (i \log i) f_i < \infty$ which is based on a different approach.

I would like to thank E. Seneta for the Zolotarev reference.

References

HARRIS, T. E. (1951) Some mathematical models for branching processes. Proc. 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp 305-328.

KARLIN, S. AND MCGREGOR, J. (1968) Embeddability of discrete time simple branching processes into continuous time branching processes. *Trans. Amer. Math. Soc.* **132**, 115–136.

SENETA, E. (1968) On recent theorems concerning the supercritical Galton-Watson process. Ann. Math. Statist. 39, 2098-2102.

SENETA, E. (1969) Functional equations and the Galton-Watson process. Adv. Appl. Prob. 1, 1-42.

ZOLOTAREV, V. M. (1957) More exact statements of several theorems in the theory of branching processes. Theory Prob. Appl. 2, 245-253.