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Echinoderms are a diverse and successful phylum of exclusively
marine invertebrates that have an extensive fossil record dating
back to Cambrian Stage 3 (Zamora and Rahman, 2014). There
are five extant classes of echinoderms (asteroids, crinoids,
echinoids, holothurians, and ophiuroids), but more than 20
extinct groups, all of which are restricted to the Paleozoic
(Sumrall and Wray, 2007). As a result, to fully appreciate the
modern diversity of echinoderms, it is necessary to study their
rich fossil record.

Throughout their existence, echinoderms have been an
important component of marine ecosystems. Because of their
relatively good fossil record, researchers have been able to recon-
struct echinoderm diversity through geological time (e.g., Smith
and Benson, 2013). Moreover, the echinoderm skeleton is rich in
characters for rigorous analyses of disparity, functional morphol-
ogy, and phylogeny, providing the means to tackle large-scale
evolutionary questions (e.g., Ausich and Peters, 2005; Gahn and
Baumiller, 2010; Kroh and Smith, 2010; Deline and Ausich,
2011). Echinoderms are known to modify their physiology, ecol-
ogy, and distribution in response to fluctuations in salinity, pH, or
temperature, so fossil forms may be useful indicators of past and
future environmental change (Aronson et al., 2009). Taken toge-
ther, these aspects make echinoderms an ideal group for addressing
fundamental questions about the history of life on Earth.

On June 15–16, 2015, around 50 echinodermologists
(Fig. 1) from 12 different countries attended the Progress in
Echinoderm Palaeobiology meeting in Zaragoza, Spain, which
was hosted by the Geological Survey of Spain and the
University of Zaragoza. This meeting was followed by a
five-day field trip (June 17–21, 2015) that included stops at the
most remarkable Paleozoic echinoderm localities in North Spain
(Iberian Chains and Cantabrian Mountains) (Zamora et al.,
2015). The conference celebrated the career of our colleague
and friend Dr. Andrew Smith (Fig. 2), a world-renowned
specialist in echinoderms, who retired in late 2012. Andrew
spent the majority of his career at the Natural History Museum,
London (1982–2012), where he carried out remarkable research
on a diverse range of topics, including echinoid taxonomy,
Phanerozoic marine diversity, and early fossil echinoderms
(Gale, 2015). As a result of the meeting and scientific discussion
that took place, we have prepared this special issue in which we
combine a series of papers dealing with recent and fascinating
advances in echinoderm paleobiology. The issue is divided into
six major themes: homology, disparity, trace fossils, functional
morphology, systematics, and phylogeny.

Universal elemental homology (UEH) has proven to be one
of the most powerful approaches for understanding homology
in early pentaradial echinoderms (Sumrall, 2008, 2010; Sumrall
and Waters, 2012; Kammer et al., 2013). This hypothesis
focuses on the elements associated with the oral region,
identifying possible homologies at the level of specific plates.
Two papers, Paul (2017) and Sumrall (2017), deal with the
homology of plates associated with the oral area in early
pentaradial echinoderms. The former contribution describes and
identifies homology in various ‘cystoid’ groups and represents a
seminal work for understanding homology among these fossil
taxa. The latter paper carefully reviews recent advances in UEH
and outlines how this can be applied to representatives of
modern echinoderm groups. Both papers provide invaluable
data for future research on the relationships of early pentaradial
echinoderms.

Characterization of the influence of taphonomy on
morphological diversity is crucial for studies that seek to use
disparity to address macroevolutionary questions. Deline and
Thomka (2017) examine the importance of preservation for
quantifying the morphology of Paleozoic echinoderms.
They find that estimates of blastozoan disparity are not greatly
influenced by the loss of taphonomically sensitive characters,
whereas the opposite pattern is seen in crinoids.

Since their early history, echinoderms have interacted with
and influenced the sediment in which they lived (Rahman et al.,
2009); they can also act as substrates for other organisms,
even recording the signal of potential predators. Grun et al.
(2017) provide a very detailed analysis of predator-prey inter-
actions in various assemblages of the echinoid Echinocyamus
stellatus (Capeder, 1906) from the Miocene of Malta.
Their study of drilling predation provides critical information
about the preferences of predators and serves as an excellent
comparison with data obtained from modern ecosystems.
Belaústegui et al. (2017) review the extensive record of traces
associated with extant and extinct echinoderms. This sheds light
on how echinoderm ecology has changed through the
Phanerozoic.

Reconstructing the function of structures in extinct animals
that lack a clear analogue among extant forms has been a major
barrier in paleobiological studies. However, the development
of methods for visualizing and analyzing fossils digitally and
in three dimensions has transformed the field of functional
morphology (Sutton et al., 2014). Waters et al. (2017) use
computational fluid dynamics to recreate the function of
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hydrospires in extinct blastoids. This has significance for
understanding the functional morphology of different blastoids
and might explain why some groups of echinoderms were more
successful than others in certain marine environments.

The description and interpretation of new groups or taxa
is fundamental to the field of echinoderm paleobiology, and a
series of papers in this special issue deal with taxonomy and
systematics. Nardin et al. (2017) present a new ‘old weird’
echinoderm from the Cambrian of the Czech Republic that
shows intermediate features between imbricate eocrinoids and
more derived blastozoans. Allaire et al. (2017) revise the
eocrinoid Rhopalocystis, informed by rigorous morphometric
and cladistic analyses, and suggest that the genus contains five
valid species. Cole et al. (2017) report a new diverse fauna of
Ordovician crinoids (dominated by camerates) from Spain that
fills an important gap in the history of this group in
Gondwana. Reich et al. (2017) report the first complete cyclo-
cystoid from the Ordovician of Gondwana, describing its mor-
phology in great detail with the aid of X-ray computed
tomography. Sheffield and Sumrall (2017) revise the Holocys-
tites fauna from the Silurian of North America, suggesting that
the plating of the oral area is more informative for taxonomic
purposes than thecal morphologies. Thompson et al. (2017)
describe an important echinoid assemblage from the Permian of
Texas that is characterized by the presence of the earliest crown-
group and latest stem-group echinoids. Ewin and Thuy (2017)
review ophiuroids from the classic Jurassic London Clay
deposits of England and describe new taxa.

Finally, there is a block of four papers dealing with
echinoderm phylogeny. Wright (2017) uses a cutting-edge Baye-
sian approach to reconstruct the phylogenetic relationships of
Paleozoic crinoids. Cole (2017) provides a new phylogenetic
analysis for the early Camerata (a major subdivision of crinoids),
thereby testing the monophyly of traditionally recognized
higher taxa, including Monobathrida and Diplobathrida. Wright
et al. (2017) present a phylogeny-based classification for
crinoids, defining a number of major taxa (including several new
clades) within the group. Bauer et al. (2017) describe the

Figure 1. Participants at the Progress in Echinoderm Palaeobiology meeting, in front of the Earth Sciences building (University of Zaragoza).

Figure 2. Andrew and Mary Smith during the meeting.
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hydrospires of several species of blastoids, using these data in a
phylogenetic analysis that incorporates both internal and external
morphological characters.

The collection of papers included in this special issue is
intended to demonstrate not only the current state-of-the-art
knowledge in echinoderm paleobiology, but also the potential of
utilizing the phylum to address major evolutionary questions.
We hope this will encourage future generations of researchers
to study echinoderms in new and exciting ways, building on the
great legacy of Andrew Smith’s work.
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