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Abstract. We prove that, for non purely atomic measures, Lp(fi,X) is a Grothen-
dieck space if and only if X is reflexive.

1. Introduction. Let (Q, 2, (JL) be a finite measure space and X a Banach space. We
denote by Lp{ix,X) ( l < p < ° ° ) the Banach space of all A'-valued Lebesgue-Bochner
p-integrable functions over Q. and by L°°(IA,X) the Banach space of all measurable and
essentially bounded functions from Q to X. The question of when a property passes from
the Banach space X to ^-valued function spaces has been extensively studied (see [15] for
a survey on these topics). In this paper, we deal with Grothendieck's property. X is said to
be a Grothendieck space, whenever weak*-convergence and weak-convergence of
sequences coincide in the dual space X* [6], [13, Ch. 5]. Grothendieck's property for
C(K,X) has been analyzed in [2] and [11]. It is also known [1] that £P(X), (1 <p < oo) is
Grothendieck if and only if X is Grothendieck. We prove that, for non purely atomic
measures and K p < ° ° , Lp(fx.,X) is Grothendieck if and only if X is reflexive. The
notations and terminology used and not defined in the paper can be found in [5] or [7].

2. Results. We begin by describing when a Banach space contains a quotient
isomorphic to c0. Let us mention that this result has been obtained in [10, Theorem IV.3]
for separable Banach spaces.

LEMMA. X has a quotient isomorphic to c0 if and only if X* contains a weak*-null
sequence equivalent to the unit basis of €v

Proof. First of all, note that there is a bijection between linear continuous maps T
from X into c0 and weak*-null sequences in X*. We have T(x) = ((x*,x)) for all x e X
and T*(a) = 2 anx*, for all a = (an) e €t.

Assume that T:X-+c0 is a quotient map; then T* is an isomorphism into, and
hence (**) is equivalent to the unit basis of €,.
(^) Take T(x) = ((x*,x)). Since (x*) is equivalent to the unit basis of £\, we have that
T* is an isomorphism into. Therefore, the range of T is dense and closed [4, p. 168-169],
and we deduce that T is onto. •

REMARK. There is a dichotomy for a linear continuous map T from a Banach space X
into c0: either (a) there is an infinite subset M c N such that ST is onto, where S is the
canonical projection from co(N) onto cQ(M) or (b) T* is weakly precompact, i.e., T*
sends bounded subsets into weakly conditionally compact subsets. To see this, note that,
by the previous Lemma, T(x) = ({x*, x)) for some weak*-null sequence (x*) and
T*(a) = 2 «„**• Thus, if (a) does not hold, then, again by our Lemma, {x*:n e Py} is a

n

weakly conditionally compact subset of X* and therefore its closed absolutely convex hull
A also is ([14, Addendum]). Finally, note that T* maps the closed unit ball of €, into a
subset of A. Condition (b) can be also replaced by the weaker condition (b') T is
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unconditionally convergent, because, if T is not unconditionally convergent, there is an
operator S:co-+X such that ST is an isomorphism into [5, p.54]; thus T*S* is a quotient
map. Hence, assuming (b), T*S* is weakly precompact map onto €\ and we obtain a
contradiction.

Our first theorem can be considered as a dual version of Emmanuele's theorem [8]
about complemented copies of c0 in Lp(fi,X).

THEOREM 1. Let (Q, 2, /A) be a non purely atomic measure space, let Kp ^ °° and
assume that X* contains a copy of (v Then Lp(fi,X) contains a quotient isomorphic to cQ.

Proof. We shall construct a weak*-null sequence in LP(/J.,X)* equivalent to the
unit basis of ^; thus by the above lemma, we shall obtain a quotient isomorphic to c0.
There is no loss of generality in considering the case of [0,1] with the Lebesgue measure.

Let (**) be a sequence in X* equivalent to the standard basis of ^; i.e. there are
positive constants a and )3 such that for all finite sequences aua2,... ,an of scalars we
have

1=1

Consider the sequence (rn) of Rademacher functions on [0,1] and define a sequence of
simple functions by fn:=rnx%e Lq{ix,X*)(n e N), where IIq + lip = 1. Since |rn(f)| = 1
for all t E [0,1] and n e N, we have

55 0 2 , lfl.l> f ° r all f e [0.1]»

whenever aua2,. • • ,an are scalars. Hence, by integration,
n n n

1 = 1 1 = 1 Li(!x.X') 1=1

In other words, (/„) is a Lq(fi, A^*)-sequence equivalent to the unit basis of £x. Since
Lq(fjL,X*) can be isometrically embedded in Lp(n,X)* [6,p. 97], it follows that (fn) is a
sequence in (Lp(n,X))* equivalent to the unit basis of ^,.

Let us show that it is also a a(Lp(ix,X)*,Lp(ix,X))-nu\\ sequence. Take fe
Lp(n,X). Since (x*) is bounded and the measure is finite, we have

lim \(fn,f)\ = lim I [ rn(t)(x*,f(t)) dfi(t)
" " I •'[0,1]

ra(t)f(t)dfi(t)\\ =0.
[0,1] nx

D

If X contains a copy of <?,, then X* also contains a copy of ^ [5, p. 211] and, by
Theorem 1, Lp(fi,X) contains a quotient isomorphic to c0 (1 <p<=°). However, note
that this quotient does not come, in general, from a complemented copy of fu since
Lp(fi,X) contains a complemented copy of ^ if and only if X does [12].

THEOREM 2. / / (Q, 2, /A) « «or purely atomic and K p < ° ° ;

Crothendieck space if and only if X is reflexive.
Lp(/x,X) is a
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Proof. On the one hand, if X is reflexive, then LP{^,X) is reflexive, and hence
Grothendieck.

On the other hand, assume that Lp(n,X) is a Grothendieck space. Since X is
isomorphic to a complemented subspace of Lp{ix,X), X is Grothendieck. Duals of
Grothendieck spaces are weakly sequential complete. Thus, via Rosenthal's theorem we
obtain that either X* is reflexive or X* contains a copy of €\. Therefore, if X is
non-reflexive, by Theorem 1, LP(/JL,X) has a quotient isomorphic to c0 and we get a
contradiction. We note that this implication also holds for p = +°°. •

In the context of Banach lattices, Theorem 2 can be also rephrased in terms of
quotients isomorphic to c0. The main fact is a proposition that partially answers a question
posed by Diestel [6] (to give an internal characterization of Grothendieck spaces).

PROPOSITION. Let X be a Banach lattice. Then X is a Grothendieck space if and only if
X contains no quotient isomorphic to c0.

Proof. (=£>) Note that Grothendieck's property is inherited by quotients.
( ^ ) Assume that X is not Grothendieck. Then, we can find a weak*-null sequence
(x*) c X* without any weakly null subsequence. Since X has no quotient isomorphic to
c0, X cannot have a complemented copy of (x and this implies that X* cannot have a copy
of c0. By a known result on Banach lattices, we deduce that X* is weakly sequentially
complete. Therefore, appealling to Rosenthal's theorem, we deduce that (x*) has a
subsequence equivalent to the unit basis of £\. This contradicts the initial Lemma. •

COROLLARY 1. Let X be a Banach lattice and Kp < °°.
(1) If /x is purely atomic, then Lp{^i,X) contains a quotient isomorphic to c0 if and

only if X contains a quotient isomorphic to c0.
(2) If ii. is not purely atomic, then Lp(fji,X) contains a quotient isomorphic to c0 if

and only if X is not reflexive.

Proof. (1) Note that if (**) is a weak* null sequence in Cq{X*) = (l'p(X))* equivalent
to the unit basis of fu then there must be A: e N such that (x*(k)) cX* is equivalent to
the unit basis of tv (2) follows form the proposition above and Theorem 2. •

This corollary is not true for arbitrary Banach spaces. Namely, take a quasireflexive
separable Banach space A"of order n > 1. On the one hand, since every quotient of X is
quasireflexive of order n [3], X has no quotient isomorphic to c(). On the other hand,
assume that A" is a Grothendieck space. Since X is separable, by Diestel [6], the identity in
X is weakly compact; thus X is reflexive.

For p = +oo, Theorem 2 is not true, in general, In this case, a concept from local
Banach theory appears as a necessary condition for being Grothendieck.

COROLLARY 2. Let (Q., Z,/x) be a non purely atomic measure. If Lx(n,,X) is a
Grothendieck space, then X is reflexive and X does not contain all £), uniformly
complemented.

Proof. As we pointed out in the proof of Theorem 2, X must be reflexive.
On the other hand, suppose that there are operators J,,:f"-*X, Pn:X^*€", such

that PJn is the identity in t" and ||7J| ||P,,|| < A for some A >0 and for all n e M . Then,
(©„<?!% is isomorphic to a complemented subspace of fx(X) which in turns is clearly
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complemented in L00(/x,A'). Since (©„/?)=» contains a complemented copy of ^ [9], we
obtain a contradiction. D

Concerning the condition in Corollary 2, note that there are reflexive Banach spaces
which contain all £" uniformly complemented. An example: (®nf")2-
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