GROTHENDIECK'S PROPERTY IN $L^{p}(\mu, X)$ by SANTIAGO DÍAZ

(Received 16 May, 1994)

Abstract. We prove that, for non purely atomic measures, $L^{p}(\mu, X)$ is a Grothendieck space if and only if X is reflexive.

1. Introduction. Let (Ω, Σ, μ) be a finite measure space and X a Banach space. We denote by $L^{p}(\mu, X)$ $(1 \le p < \infty)$ the Banach space of all X-valued Lebesgue-Bochner p-integrable functions over Ω and by $L^{\infty}(\mu, X)$ the Banach space of all measurable and essentially bounded functions from Ω to X. The question of when a property passes from the Banach space X to X-valued function spaces has been extensively studied (see [15] for a survey on these topics). In this paper, we deal with Grothendieck's property. X is said to be a Grothendieck space, whenever weak*-convergence and weak-convergence of sequences coincide in the dual space X* [6], [13, Ch. 5]. Grothendieck's property for C(K, X) has been analyzed in [2] and [11]. It is also known [1] that $\ell_p(X)$, $(1 \le p \le \infty)$ is Grothendieck if and only if X is Grothendieck if and only if X is reflexive. The notations and terminology used and not defined in the paper can be found in [5] or [7].

2. Results. We begin by describing when a Banach space contains a quotient isomorphic to c_0 . Let us mention that this result has been obtained in [10, Theorem IV.3] for separable Banach spaces.

LEMMA. X has a quotient isomorphic to c_0 if and only if X* contains a weak*-null sequence equivalent to the unit basis of ℓ_1 .

Proof. First of all, note that there is a bijection between linear continuous maps T from X into c_0 and weak*-null sequences in X*. We have $T(x) = (\langle x_n^*, x \rangle)$ for all $x \in X$ and $T^*(\alpha) = \sum_{n=1}^{\infty} \alpha_n x_n^*$, for all $\alpha = (\alpha_n) \in \ell_1$.

 (\Rightarrow) Assume that $T: X \to c_0$ is a quotient map; then T^* is an isomorphism into, and hence (x_n^*) is equivalent to the unit basis of ℓ_1 .

 (\Leftarrow) Take $T(x) = (\langle x_n^*, x \rangle)$. Since (x_n^*) is equivalent to the unit basis of ℓ_1 , we have that T^* is an isomorphism into. Therefore, the range of T is dense and closed [4, p. 168–169], and we deduce that T is onto.

REMARK. There is a dichotomy for a linear continuous map T from a Banach space X into c_0 : either (a) there is an infinite subset $M \subset \mathbb{N}$ such that ST is onto, where S is the canonical projection from $c_0(\mathbb{N})$ onto $c_0(M)$ or (b) T* is weakly precompact, i.e., T* sends bounded subsets into weakly conditionally compact subsets. To see this, note that, by the previous Lemma, $T(x) = (\langle x_n^*, x \rangle)$ for some weak*-null sequence (x_n^*) and $T^*(\alpha) = \sum_n \alpha_n x_n^*$. Thus, if (a) does not hold, then, again by our Lemma, $\{x_n^*: n \in \mathbb{N}\}$ is a weakly conditionally compact subset of X* and therefore its closed absolutely convex hull A also is ([14, Addendum]). Finally, note that T* maps the closed unit ball of ℓ_1 into a subset of A. Condition (b) can be also replaced by the weaker condition (b') T is

Glasgow Math. J. 37 (1995) 379-382.

SANTIAGO DÍAZ

unconditionally convergent, because, if T is not unconditionally convergent, there is an operator $S:c_0 \rightarrow X$ such that ST is an isomorphism into [5, p.54]; thus T^*S^* is a quotient map. Hence, assuming (b), T^*S^* is weakly precompact map onto ℓ_1 and we obtain a contradiction.

Our first theorem can be considered as a dual version of Emmanuele's theorem [8] about complemented copies of c_0 in $L^p(\mu, X)$.

THEOREM 1. Let (Ω, Σ, μ) be a non purely atomic measure space, let $1 and assume that <math>X^*$ contains a copy of ℓ_1 . Then $L^p(\mu, X)$ contains a quotient isomorphic to c_0 .

Proof. We shall construct a weak*-null sequence in $L^{p}(\mu, X)^{*}$ equivalent to the unit basis of ℓ_{1} ; thus by the above lemma, we shall obtain a quotient isomorphic to c_{0} . There is no loss of generality in considering the case of [0, 1] with the Lebesgue measure.

Let (x_n^*) be a sequence in X^* equivalent to the standard basis of ℓ_1 ; i.e. there are positive constants α and β such that for all finite sequences a_1, a_2, \ldots, a_n of scalars we have

$$\alpha \sum_{i=1}^{n} |a_i| \leq \left\| \sum_{i=1}^{n} a_i x_i^* \right\|_{X^*} \leq \beta \sum_{i=1}^{n} |a_i|.$$

Consider the sequence (r_n) of Rademacher functions on [0, 1] and define a sequence of simple functions by $f_n := r_n x_n^* \in L^q(\mu, X^*) (n \in \mathbb{N})$, where 1/q + 1/p = 1. Since $|r_n(t)| = 1$ for all $t \in [0, 1]$ and $n \in \mathbb{N}$, we have

$$\alpha \sum_{i=1}^{n} |a_i| \leq \left\| \sum_{i=1}^{n} a_i r_i(t) x_i^* \right\|_{X^*} \leq \beta \sum_{i=1}^{n} |a_i|, \text{ for all } t \in [0, 1],$$

whenever a_1, a_2, \ldots, a_n are scalars. Hence, by integration,

$$\alpha \sum_{i=1}^{n} |a_i| \leq \left\| \sum_{i=1}^{n} a_i f_i \right\|_{L^q(\mu, X^*)} \leq \beta \sum_{i=1}^{n} |a_i|.$$

In other words, (f_n) is a $L^q(\mu, X^*)$ -sequence equivalent to the unit basis of ℓ_1 . Since $L^q(\mu, X^*)$ can be isometrically embedded in $L^p(\mu, X)^*$ [6, p. 97], it follows that (f_n) is a sequence in $(L^p(\mu, X))^*$ equivalent to the unit basis of ℓ_1 .

Let us show that it is also a $\sigma(L^p(\mu, X)^*, L^p(\mu, X))$ -null sequence. Take $f \in L^p(\mu, X)$. Since (x_n^*) is bounded and the measure is finite, we have

$$\lim_{n} |\langle f_{n}, f \rangle| = \lim_{n} \left| \int_{[0,1]} r_{n}(t) \langle x_{n}^{*}, f(t) \rangle \, d\mu(t) \right|$$

$$\leq \lim_{n} \|x_{n}^{*}\| \left\| \int_{[0,1]} r_{n}(t) f(t) \, d\mu(t) \right\|_{X} = 0.$$

If X contains a copy of ℓ_1 , then X* also contains a copy of ℓ_1 [5, p. 211] and, by Theorem 1, $L^p(\mu, X)$ contains a quotient isomorphic to c_0 (1 . However, note $that this quotient does not come, in general, from a complemented copy of <math>\ell_1$, since $L^p(\mu, X)$ contains a complemented copy of ℓ_1 if and only if X does [12].

THEOREM 2. If (Ω, Σ, μ) is not purely atomic and $1 , then <math>L^p(\mu, X)$ is a Grothendieck space if and only if X is reflexive.

380

Proof. On the one hand, if X is reflexive, then $L^{p}(\mu, X)$ is reflexive, and hence Grothendieck.

On the other hand, assume that $L^{p}(\mu, X)$ is a Grothendieck space. Since X is isomorphic to a complemented subspace of $L^{p}(\mu, X)$, X is Grothendieck. Duals of Grothendieck spaces are weakly sequential complete. Thus, via Rosenthal's theorem we obtain that either X* is reflexive or X* contains a copy of ℓ_1 . Therefore, if X is non-reflexive, by Theorem 1, $L^{p}(\mu, X)$ has a quotient isomorphic to c_0 and we get a contradiction. We note that this implication also holds for $p = +\infty$.

In the context of Banach lattices, Theorem 2 can be also rephrased in terms of quotients isomorphic to c_0 . The main fact is a proposition that partially answers a question posed by Diestel [6] (to give an internal characterization of Grothendieck spaces).

PROPOSITION. Let X be a Banach lattice. Then X is a Grothendieck space if and only if X contains no quotient isomorphic to c_0 .

Proof. (\Rightarrow) Note that Grothendieck's property is inherited by quotients. (\Leftarrow) Assume that X is not Grothendieck. Then, we can find a weak*-null sequence

 $(x_n^*) \subset X^*$ without any weakly null subsequence. Since X has no quotient isomorphic to c_0 , X cannot have a complemented copy of ℓ_1 and this implies that X* cannot have a copy of c_0 . By a known result on Banach lattices, we deduce that X* is weakly sequentially complete. Therefore, appealling to Rosenthal's theorem, we deduce that (x_n^*) has a subsequence equivalent to the unit basis of ℓ_1 . This contradicts the initial Lemma.

COROLLARY 1. Let X be a Banach lattice and 1 .

(1) If μ is purely atomic, then $L^p(\mu, X)$ contains a quotient isomorphic to c_0 if and only if X contains a quotient isomorphic to c_0 .

(2) If μ is not purely atomic, then $L^{p}(\mu, X)$ contains a quotient isomorphic to c_{0} if and only if X is not reflexive.

Proof. (1) Note that if (x_n^*) is a weak* null sequence in $\ell_q(X^*) \equiv (\ell_p(X))^*$ equivalent to the unit basis of ℓ_1 , then there must be $k \in \mathbb{N}$ such that $(x_n^*(k)) \subset X^*$ is equivalent to the unit basis of ℓ_1 . (2) follows form the proposition above and Theorem 2.

This corollary is not true for arbitrary Banach spaces. Namely, take a quasireflexive separable Banach space X of order $n \ge 1$. On the one hand, since every quotient of X is quasireflexive of order n [3], X has no quotient isomorphic to c_0 . On the other hand, assume that X is a Grothendieck space. Since X is separable, by Diestel [6], the identity in X is weakly compact; thus X is reflexive.

For $p = +\infty$, Theorem 2 is not true, in general, In this case, a concept from local Banach theory appears as a necessary condition for being Grothendieck.

COROLLARY 2. Let (Ω, Σ, μ) be a non purely atomic measure. If $L^{\infty}(\mu, X)$ is a Grothendieck space, then X is reflexive and X does not contain all ℓ_n^1 uniformly complemented.

Proof. As we pointed out in the proof of Theorem 2, X must be reflexive.

On the other hand, suppose that there are operators $J_n: \ell_1^n \to X$, $P_n: X \to \ell_1^n$, such that $P_n J_n$ is the identity in ℓ_1^n and $||J_n|| ||P_n|| \le \lambda$ for some $\lambda > 0$ and for all $n \in \mathbb{N}$. Then, $(\bigoplus_n \ell_1^n)_{\infty}$ is isomorphic to a complemented subspace of $\ell_{\infty}(X)$ which in turns is clearly

SANTIAGO DÍAZ

complemented in $L^{\infty}(\mu, X)$. Since $(\bigoplus_n \ell_1^n)_{\infty}$ contains a complemented copy of ℓ_1 [9], we obtain a contradiction.

Concerning the condition in Corollary 2, note that there are reflexive Banach spaces which contain all ℓ_1^n uniformly complemented. An example: $(\bigoplus_n \ell_1^n)_2$.

REFERENCES

1. F. Bombal, *Operators on vector sequence spaces*, London Mathematical Society Lecture Notes 140 (1989), 94-106.

2. P. Cembranos, C(K; E) contains a complemented copy of c_0 , Proc. Amer. Math. Soc. **91** (1984), 556–558.

3. P. Civin and B. Yood, Quasireflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911.

4. J. B. Conway, A Course in Functional Analysis (Springer-Verlag, 1990).

5. J. Diestel, Sequences and Series in Banach Spaces (Springer-Verlag, 1984).

6. J. Diestel, Grothendieck spaces and vector measures in Vector and Operator Valued Measures and Applications (Proc. Sympos., Snowbird Resort, Alta, Utah, 1972), (Academic Press, 1973), 97-108.

7. J. Diestel and J. J Uhl, Vector Measures, Math. Surveys, Amer. Math. Soc. 15 (1977).

8. G. Emmanuele, On complemented copies of c_0 in L_x^p , $1 \le p \le \infty$, Proc. Amer. Math. Soc. 104 (1988), 785-786.

9. W. B. Johnson, A complementary universal conjugate Banach space and its relation to the aproximation problem, *Israel J. Math.* 13 (1972), 301–310.

10. W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, *Studia Math.* 43 (1972), 77–92.

11. S. S. Khurana, Grothendieck spaces, Illinois J. Math., 22 (1978), 79-80.

12. J. Mendoza, Complemented copies of l_1 in $L^p(\mu; E)$, Math. Proc. Camb. Phil. Soc. 111 (1992), 531-534.

13. P. Meyer-Nieberg, Banach Lattices (Springer-Verlag, 1991).

14. H. P. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362-378.

15. E. Saab and P. Saab, On stability problems of some properties in Banach spaces in *Function Spaces*, Lecture Notes in Pure and Appl. Math. 136 (Marcel Dekker, New York, 1992), 367–403.

DEPARTAMENTO DE MATHEMATICA APLICADA II

UNIVERSIDAD DE SEVILLA

SEVILLA

Spain

E-mail: madrigal@cica.es