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Abstract

Low vaccine-effectiveness has been recognised as a key factor undermining efforts to improve
strategies and uptake of seasonal influenza vaccination. Aiming to prevent disease transmis-
sion, vaccination may influence the perceived risk-of-infection and, therefore, alter the indi-
vidual-level behavioural responses, such as the avoidance of contact with infectious cases. We
asked how the avoidance behaviour of vaccinated individuals changes disease dynamics, and
specifically the epidemic size, in the context of imperfect vaccination. For this purpose,
we developed an agent-based simulation model, and parameterised it with published
estimates and relevant databases for population demographics and agent characteristics.
Encapsulating an age-stratified structure, we evaluated the per-contact risk-of-infection and
estimated the epidemic size. Our results show that vaccination could lead to a larger epidemic
size if the level of avoidance behaviour in vaccinated individuals reduces below that of suscep-
tible individuals. Furthermore, the risk-of-infection in vaccinated individuals, which follows
the pattern of age-dependent frailty index of the population, increases for older age groups,
and may reach, or even exceed, the risk-of-infection in susceptible individuals. Our findings
indicate that low engagement in avoidance behaviour can potentially offset the benefits of vac-
cination even for vaccines with high effectiveness. While highlighting the protective effects of
vaccination, seasonal influenza immunisation programmes should enhance strategies to pro-
mote avoidance behaviour despite being vaccinated.

Background

Vaccination against seasonal influenza remains a primary public health measure to prevent
infection and its outcomes such as hospitalisation and death [1, 2]. The impact of this meas-
ure, however, depends on several factors including vaccine coverage and more importantly
vaccine effectiveness [3]. The effectiveness of vaccines produced by the conventional egg-based
method is subject to virus mutation that can occur both during the production process [4], and
during natural infection [5]. The occurrence of these mutations during seasonal epidemics
enhances the antigenic distance between dominant influenza viruses and the vaccine strains
[4], further reducing vaccine effectiveness over the course of an epidemic [6], especially in
high-risk individuals and those with a high frailty index [7]. Frailty is defined as state of
increased vulnerability and reduced functioning, and is often considered as a predictive meas-
ure of health outcomes.

Although higher vaccine coverage can, to a limited extent, compensate for low vaccine
effectiveness, the risk-of-infection also depends on other individual-level characteristics such
as behavioural responses [8]. For example, contact avoidance can have a significant impact
on reducing disease transmission [9–11]. However, the perceived risk-of-infection is an
important factor in practicing such behavioural responses [12], and intervention measures
that reduce the risk-of-infection (e.g. vaccination) may also reduce the level of avoidance
behaviour among target groups. In simple terms, since vaccination aims to protect individuals,
the perceived lower risk-of-infection in vaccinated individuals may influence their level of
engagement in avoidance behaviour compared to susceptible individuals [13]. In rare cases
of fully protective vaccines, such behavioural changes in vaccinated individuals can be disre-
garded in disease spread. However, influenza vaccination often has low effectiveness [3, 9,
14–16], especially in the geriatric population and individuals with high frailty [5]. If vaccin-
ation offers less incentive to forgo beneficial but potentially infectious contacts, then the
epidemic size may increase despite lower susceptibility conferred by the vaccine-induced
protection. We sought to investigate and quantify the risk-of-infection in the context of vac-
cination and avoidance behaviour. This quantification can help vaccination campaigns to
improve communication on the effect of influenza vaccine and the role of other measures
including avoidance behaviour to impede disease transmission.
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To achieve the objective of this study, we developed an agent-
based simulation model for the spread of influenza, and parame-
terised it with available data and estimates from previous studies.
We analysed the outcomes in the context of mixing patterns of
individuals in order to measure the variation in the risk-of-
infection in different age groups.

Methods

The model framework

We developed a stochastic age-structured agent-based model of
influenza transmission dynamics, which includes epidemiological
statuses of susceptible (S), latent (L), symptomatic infection (I),
asymptomatic infection (A) and recovered (R). Recovery from
infection was assumed to confer immunity against re-infection
in the same epidemic season.

Population study and contact patterns

Demographics of the population were sampled from census data
collected by Statistics Canada (Fig. S1, Supplementary Material)
[17]. Due to short timelines of a single influenza epidemic season,
we ignored demographics of birth and natural death. We consid-
ered 15 age groups for the population and used the average of
contact matrices in POLYMOD study for European countries as
a proxy for matrix of contact patterns in urban structures [18].
The daily number of contacts for each individual was sampled
from an age-specific negative-binomial distribution (Table S1,
Supplementary Material) and randomly assigned to individuals
in different age groups (Fig. S2, Supplementary Material).

Disease dynamics

Disease transmission occurred through contacts between suscep-
tible and symptomatically or asymptomatically infectious indivi-
duals, and was implemented as rejection sampling-based
(Bernoulli) trials where the chance of success is defined by a
transmission probability distribution [19, 20]. The baseline trans-
mission probability was obtained by calibrating the model to a
specific reproduction number (R0 = 1.4) within the estimates for
influenza outbreaks [21].

Following exposure to infection and disease transmission, the
newly infected individuals enter the latent stage during which
the disease cannot be transmitted. Once the latent period has
elapsed, the disease may manifest as symptomatic or asymptom-
atic infection. Durations of latent and infectious periods were
sampled for each individual from the associated distributions
described in the Parameterisation section.

Vaccine effectiveness

Vaccination was implemented randomly to achieve the vaccine
coverage reported for seasonal influenza in different age groups
[22]. For a given vaccine efficacy Ve (defined as infection preven-
tion in randomised control trials involving healthy individuals
[5]), the protection level of a vaccinated individual against infec-
tion was determined by E = Ve(1 − f), where f represents the
frailty index. We considered E as the individual-level vaccine
effectiveness. We sampled the frailty index for each individual
by performing a segmented linear regression as a function of
age (Fig. S4, Supplementary Information), fitted to the 2014

Canadian Community Health Survey data of chronic diseases
[23]. The vaccine effectiveness was included as a reduction factor
for disease transmission. This effectiveness also reduced the prob-
ability of developing symptomatic infection by a factor of 1− E in
vaccinated individuals if infection occurred. The transmission
probability per contact was then obtained by

Ptransmission = ba contact : S ↔ I or S ↔ A
ba(1− E) contact :V ↔ I orV ↔ A

{

where α represents the level of infectiousness, with α = 1
for symptomatic infection (I), and α < 1 for asymptomatic infec-
tion (A).

Behavioural responses

We modelled behavioural responses of individuals using a param-
eter ps (pv), representing the fraction of contacts that are avoided
by susceptible (vaccinated) individuals with symptomatically
infectious individuals. The effect of changes in contact patterns
during the epidemic has been investigated in previous studies
[24, 25]. We assumed that vaccinated individuals have a lower
contact avoidance compared to susceptible individuals, and
therefore considered pv⩽ ps. This assumption corresponds to a
higher number of contacts post-vaccination. Although quantify-
ing human behaviour is challenging, a previous study reports
that in the 2 days immediately following influenza vaccination,
individuals socially encountered almost twice as many contacts
as they did in the 2 days prior to vaccination [13].

Per-contact risk-of-infection

To estimate the risk-of-infection in each age group throughout
the epidemic, we used a maximum-likelihood approach. Since
infection per contact was implemented as a Bernoulli trial, we
defined a likelihood function for the risk in susceptible indivi-
duals by (assuming the independence of events):

L(rs) = rns (1− rs)
∑

i
ai+

∑
j
bj

( )
−n
,

where n is the number of infections generated by contacts
between susceptible and infectious individuals;

∑
i ai is the total

number of contacts that led to infection as the outcome and∑
j bj is the total number of contacts between susceptible and

infectious individuals without infection as the outcome. For
each scenario, we used the maximum likelihood estimator:

r̂s = n∑
i ai +

∑
j bj

,

in independent realisations to determine the risk in different age
groups. Since vaccine-induced protection reduced the probability
of infection, we considered a parameter c as the reduction factor
for the per-contact risk-of-infection (rv) in vaccinated individuals
and defined the likelihood function by:

L(rv) = (crs)m(1− crs)
∑

i
ui+

∑
j
wj

( )
−m

,

where m is the number of infections generated by contacts
between vaccinated and infectious individuals;

∑
i ui is the total
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number of contacts that led to infection as the outcome and
∑

j wj

is the total number of contacts between vaccinated and infectious
individuals without infection as the outcome. Given r̂s, we used
the likelihood estimator:

ĉ = 1
r̂s

( )
m∑

i ui +
∑

j wj
,

to determine the per-contact risk-of-infection among vaccinated
individuals in different age groups.

Parameterisation

We parameterised the simulation model with a total population
size N = 10 000 individuals, with a transmission probability that
was calibrated to the reproduction number R0 = 1.4 in the absence
of any control measures [21]. A recent systematic review estimates
the median R0 = 1.28 for seasonal epidemics, with a range of 1.11–
2.2 [21]. The reproduction number, which was calculated by
introducing an individual in the latent state of disease in inde-
pendent realisations and averaging the number of new symptom-
atic cases generated, reflects the epidemic growth at the early
stages and changes during the course of the epidemic (Figs S8
and S9, Supplementary Material). Latent period was drawn
from a uniform distribution with the mean of 1.5 days within
the estimated ranges [26, 27]. The infectious periods for both
symptomatic and asymptomatic infections were sampled from a
truncated lognormal distribution with scale parameter μ = 1 day
and shape parameter σ2 = 0.4356 (Fig. S3, Supplementary
Material), having a mean of 3.38 days [27, 28]. The probability
of developing asymptomatic infection was sampled for each indi-
vidual from a uniform distribution in the range 0.3–0.7 [27]. We
assumed that the infectiousness of asymptomatic infection is
reduced by 50% compared to symptomatic infection [27].
Vaccine efficacy (Ve) was varied between 0.2 and 0.8, from
which the vaccine effectiveness (E) for each vaccinated individual
was calculated based on the sampled frailty index (Fig. S5,
Supplementary Material). Vaccine coverage was accounted for
in different age groups (Table S2, Supplementary Material),
based on the 2016–2017 report of the National Influenza
Immunization Coverage Survey in Canada [22]. Parameter values
and their respective ranges are reported in Table 1.

Model implementation and simulations

We implemented the model in Julia language and performed
Monte-Carlo simulations to analyse the outcomes as the average
of sample realisations in different scenarios of disease spread.
Individuals were vaccinated before the start of the epidemic,
based on the given vaccine coverage in different age groups.
During the simulations, the daily sampled contacts of a suscep-
tible (vaccinated) individual were discarded with the probability
ps ( pv), corresponding to the contact avoidance factor, if the con-
tact was identified as a symptomatic infection. We ran simulations
with varying vaccine efficacy and contact avoidance in their
respective ranges, and compared the outcomes with the baseline
scenario in which the epidemic unfolds without vaccination. All
simulations were seeded with a randomly selected individual in
the latent state of the disease, and averaged over 2000 independent
realisations. We analysed the outputs to determine (ii) the relative

epidemic size (compared to the scenario without vaccination);
and (ii) per-contact risk-of-infection in different age groups.

Results

Contact avoidance

For each simulated curve of epidemic, we collected data for
the incidence of infection and the type of contacts in terms of dis-
ease states and age of individuals. We considered two scenarios of
ps = 0.4 and ps = 0.8 as the parameters of contact avoidance by
susceptible individuals. Figure 1(a, b) illustrates the average of
symptomatic incidence for several values of avoidance pv. For a
low vaccine efficacy (Ve = 0.2), the incidence of symptomatic
infection grows faster with higher peak than the scenario without
vaccination when vaccinated individuals practice no avoidance
( pv = 0). When the efficacy of vaccine is sufficiently high, or
the avoidance of vaccinated individuals approaches that of sus-
ceptible individuals, the rate of disease spread reduces below
that of the scenario without vaccination, with lower magnitude
of disease incidence at the peak (Fig. S6, Supplementary
Material).

Epidemic size

We calculated the epidemic size as a function of vaccine efficacy
and contact avoidance. Figure 2(a,b) shows the ratio of epidemic
size with vaccination to that obtained in the scenario without vac-
cination. The results indicate that there is a sizable domain of vac-
cine efficacy and contact avoidance by vaccinated individuals that
leads to higher epidemic sizes (i.e. the region below the black
curve of unity) compared to the no-vaccine scenario. We observed
a larger domain for increased ratio of epidemic sizes with ps = 0.8
(Fig. 2b) than with ps = 0.4 (Fig. 2a). This is because higher levels
of contact avoidance by susceptible individuals reduces the
returns of vaccination, and therefore the impact of avoidance by
vaccinated individuals becomes more pronounced in reducing
the epidemic size.

We further analysed the simulation outcomes for the relative
infection ratio in different age groups in specific scenarios.
Figures 3 shows the ratio of total infections in vaccination scen-
arios to that in the absence of vaccination. When ps = 0.4,
Fig. 3a illustrates the possibility of a ratio greater than one for a
low-efficacy vaccine (Ve = 0.2) if the avoidance level of pv is less
than ps (red curve). We observed this possibility for sufficiently
small pv even with a high-efficacy vaccine (Fig. 3b, green curve).
More importantly, when the ratio is greater than one, it increases
for older age groups, suggesting that a larger number of infections
may occur if vaccination causes contact avoidance to drop signifi-
cantly among vaccinated individuals. When susceptible indivi-
duals practice a high level of avoidance ps = 0.8, our results
suggest that maintaining high avoidance among vaccinated indi-
viduals with a low-efficacy vaccine (Fig. 3b, blue curve) outper-
forms the scenario of a high-efficacy vaccine without avoidance
(Fig. 3b, green curve).

Since avoidance is considered (and is in general practical) for
contacts between susceptible and symptomatically infectious indi-
viduals, we also evaluated the contribution of both symptomatic
and asymptomatic infections to the epidemic size. Not surpris-
ingly, as the vaccine efficacy increases, the contribution of symp-
tomatic infection to the cumulative incidence decreases,
suggesting that a higher fraction of epidemic size is caused
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through contacts with asymptomatic infection (Fig. S7,
Supplementary Material). However, we also observed the same
pattern when vaccinated individuals increased their contact avoid-
ance, with a steady decline in the fraction of total infections
caused by symptomatic cases (Fig. S7, Supplementary Material).
These findings show that the cumulative incidence attributed to
contacts with asymptomatic infection increases as both vaccine
efficacy and contact avoidance increase, while the epidemic size
decreases.

Risk-of-infection

We evaluated the per-contact risk-of-infection in different age
groups throughout the epidemic using simulation data for

maximum likelihood estimators. For a low vaccine efficacy (Ve

= 0.2), the risk-of-infection was highest in all age groups in the
absence of contact avoidance by vaccinated individuals (Figs 4
(a,b)). Importantly, when susceptible individuals practice a high
level of contact avoidance, the per-contact risk-of-infection may
be higher in vaccinated individuals with low levels of contact
avoidance (Fig. 4b). Naturally, the lowest risk-of-infection was
associated with the highest vaccine efficacy (Ve = 0.8) when vacci-
nated individuals practice the same level of contact avoidance as
susceptible individuals (Figs 4(c,d)). We also observed that the
risk-of-infection in vaccinated individuals increased for older
age groups, especially in scenarios with low levels of contact
avoidance (Fig. 4; red curves), which follows the pattern of the
frailty index.

Table 1. Parameters and their associated ranges used for simulating model scenarios

Parameter description Baseline value Range

Transmissibility 0.079 (calibrated) Transmissibility was estimated by calibrating the
model to the basic reproduction number R0 = 1.4

Infection parameters

Latent period 1.5 days (mean) 1–2 days (uniform)

Infectious period 3.38 days (mean) Log-normal distribution, scale = 1; shape = 0.4356

Probability of developing asymptomatic
infection

0.5 0.3–0.7

Relative transmissibility of asymptomatic
infection (compared to symptomatic infection)

0.5 Assumed

Vaccine parameters

Efficacy Varied in different scenarios 0.2–0.8
Corresponding to infection prevention in randomised
control trials involving healthy individuals

Effectiveness Varies, calculated based on the frailty
index sampled for each individual

Between 0 and the assumed vaccine efficacy

Avoidance behaviour

Susceptible individuals Varied in different scenarios 0.4–0.8

Vaccinated individuals Varied in different scenarios Between 0 and the assumed parameter of avoidance
behaviour for susceptible individuals

(a) (b)

Fig. 1. Incidence of symptomatic infection with (a) ps = 0.4 and (b) ps = 0.8 for different values of the vaccine efficacy and contact avoidance for vaccinated
individuals.
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Discussion

Based on a comprehensive agent-based simulation model, we
found that a low vaccine efficacy can result in a higher number
of infections (compared to the no-vaccine scenario) if vaccinated
individuals reduced their level of engagement in behavioural
avoidance below that of the susceptible individuals. Although
vaccine-induced immunity decreases the risk-of-infection at the
individual level, the larger epidemic size can still occur for a suf-
ficiently low level of behavioural avoidance (within a feasible and
non-negligible range of contact avoidance) even when the vaccine
efficacy is high, with increasing number of infections in older age
groups.

As we have shown, reduced levels of avoidance behaviour
could potentially offset the benefits of vaccination in lowering
the risk of contracting infection. Paradoxically, since influenza
infection (if occurs) following vaccination is more likely to be sub-
clinical [29, 30], behavioural avoidance becomes impractical and
therefore a higher fraction of cumulative incidence may be caused
by contacts with asymptomatic cases (Fig. S7, Supplementary

Material). This has also been studied for the population-effects
of suppressing clinical symptoms during influenza infection
[31], which may lead to interaction among individuals with
potential for disease transmission. In the context of imperfect
vaccines, our modelling observations suggest that vaccination
campaigns should pay particular attention to improving be-
havioural avoidance while highlighting the protective effects of
vaccine-induced immunity.

Another important implication of our study relates to the tar-
get groups for vaccination. Most vaccination programmes for sea-
sonal influenza prioritise specific groups in the population based
on age (elderly people), health status and potential for severe dis-
ease outcomes (e.g. immunocompromised individuals and those
with co-morbid illness), and exposure to infection (e.g. healthcare
workers). A significant portion of target groups is subject to a
high frailty index, which impairs the ability to resist influenza
infection and respond to vaccination in a process known as
immunosenescence [32–34]. Individuals with low frailty, includ-
ing school children and healthy adults, are generally not listed
in vaccine prioritisation. Importantly, these individuals contribute

(a) (b)

Fig. 2. Ratio of epidemic size in the scenario with vaccination to the scenario without vaccination as a function of the vaccine efficacy and contact avoidance for
vaccinated individuals. For given parameters Ve and pv, a ratio greater than one indicates that the total number of infections with vaccination is higher than that
without vaccination. The avoidance behaviour for susceptible individuals is (a) ps = 0.4 and (b) ps = 0.8.

(a) (b)

Fig. 3. Age-specific relative infection ratio in the scenario with vaccination to the scenario without vaccination. A ratio greater than one indicates that the total
number of infections in an age group with vaccination is higher than that in the same age group without vaccination. The avoidance behaviour for susceptible
individuals is (a) ps = 0.4 and (b) ps = 0.8. Colour curves correspond to different values of vaccine efficacy and contact avoidance for vaccinated individuals.

Epidemiology and Infection 5

https://doi.org/10.1017/S0950268818003540 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268818003540


to a substantial portion of disease transmission due to their age-
specific pattern and sheer volume of contacts [35, 36]. Inclusion
of healthy children in vaccination programmes against influenza
could blunt the level of transmission in the population. While
quantitative evaluation of vaccinating children, based on data
from countries that have implemented this strategy (e.g.
England that prioritises all children aged 2–9 years [37]), is
required to assess its population-wide benefits, our results suggest
that higher vaccine effectiveness in healthy children and adults
may have a large impact on reducing disease transmission.

This study is particularly relevant to the 2017–2018 influenza
season with interim estimates of low vaccine effectiveness against
A(H3N2) strain, reporting 17% in Canada [16], 10% in Australia
[38] and 25% in the USA [14]. The public health implications of
low vaccine effectiveness have been well recognised [15], espe-
cially for vaccines produced by the conventional egg-based tech-
nology that is prone to antigenic changes in egg-adapted strains
[4, 39]. New vaccine technologies, including cell-based [15, 40],
deoxyribonucleic acid (DNA)-based [41], and virus-like particle-
based [42, 43], have shown to provide a promising path towards

universal immunisation with a broader spectrum of immune
responses [15]. While these technologies aim to improve vaccine
effectiveness, they also have the advantage of short-timelines over
egg-based technology for the rapid and large-scale production of
strain-specific vaccines that can be used to mitigate the impact of
emerging influenza viruses with pandemic potential. However,
despite the low effectiveness conferred by egg-based vaccines,
influenza vaccination remains an important public health meas-
ure to reduce the severity of disease and its associated costs, espe-
cially in the geriatric population [29, 30].

Our findings in this study are based on Monte-Carlo stochastic
simulations, taking into account heterogeneities of contacts and
variability in vaccine effectiveness at the individual level. We para-
meterised the model with Canadian databases for population
demographics, vaccination coverage and the age-dependent frailty
index that affected vaccine effectiveness. However, we note a
number of limitations that arise from the lack of data and evi-
dence. For example, the baseline transmission probability in the
process of Bernoulli trial was assumed to be the same in all con-
tacts regardless of the duration of each contact. In many

(a) (b)

(c) (d )

Fig. 4. Per-contact risk-of-infection in different age groups in the presence of vaccination. Vaccine efficacy is (a, b) Ve = 0.2 and (c, d) Ve = 0.8. The parameter of
contact avoidance for susceptible individuals is (a, c) ps = 0.4 and (b, d) ps = 0.8. Colour curves correspond to the risk-of-infection in susceptible individuals
(black) and vaccinated individuals (red) with different avoidance parameter pv.
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communicable diseases, including influenza, disease transmission
is affected by close-range contacts between individuals and the
time spent in contact [18], and therefore different contact dura-
tions might yield very different transmission probabilities [18,
44, 45]. Some contacts are very short and correspond to a small
transmission probability, but many contacts are long and could
play a crucial role in disease dynamics. While we have simulated
the model for a specific reproduction number, it is worth noting
that the qualitative aspects of our results are independent of the
choice of R0, which is adjusted in the transmission probability
during the calibration process. As disease transmission depends
on clinical status of an infectious individual, we relied on previous
studies and assumed that asymptomatic infection is 50% less
infectious than symptomatic infection [27]. Although viral shed-
ding in patients with asymptomatic influenza occurs [46], the evi-
dence for the level of disease transmissibility from asymptomatic
infection is weak [47]. In the model presented here, we did not
consider the effect of pre-existing (or cross-reactive) immunity
due to prior vaccination or natural infection. The duration and
strength of such immunity can influence both the epidemic size
and effectiveness of vaccination [48, 49], but this seems likely to
be balanced in our calculation by the possibility of developing
asymptomatic infection in 30%–70% of susceptible individuals
who became infected. Despite these limitations that merit further
consideration as more data and evidence become available, our
results indicate an important interplay between vaccine effective-
ness and behavioural avoidance in disease dynamics. Beyond the-
oretical investigation [10, 12], quantitative studies are needed to
estimate the impact of behavioural responses in the context of
vaccination during seasonal influenza epidemics.
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be found at https://doi.org/10.1017/S0950268818003540
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