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Abstract. We investigate the dynamical behaviour of a simplified model of our planetary system
(Mercury and the planets Uranus and Neptune were excluded) when we change the mass of
the Earth via a mass factor κE ∈ [1, 300]. This is done to study the motions in this “model
planetary system” as an example for extrasolar systems. It is evident that the new systems
under consideration can only serve as a model for a limited number of exosystems because
they have massive planets sometimes with large orbital eccentricities. We did these numerical
experiments using an already well tested numerical integration method (LIE-integration) in the
framework of the Newtonian equations of motions. We can show that these planetary systems
are very stable up to several hundred earth masses, but for some specific values of κE they show a
typical chaotic behaviour already in the semi-major axis. It is know from the inner Solar System
that the planets move in a small region of weak chaos, but this behaviour (close to κE = 5) was
quite unexpected. We then use a 1st order secular theory to explain the appearance of chaos.
The results may serve for a better understanding of the dynamics of some extrasolar planetary
systems.
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1. Introduction
Although we do not have an analytical proof up to now, all numerical and semi-

analytical results indicate, that our planetary system is dynamically stable for the lifetime
of the Solar System (e.g. Ito & Tanikawa 2002). From their and other results we can see
that the large planets exhibit remarkable stability of their orbital parameters on gigayear
time scales. On the contrary for the inner Solar System with the 4 terrestrial like planets
we have evidence that they are in a zone of weak chaos (Laskar 1990, 1994, 1996). The
cause of this chaotic behaviour is now partly understood as a consequence of secular
resonances between the motions of the perihelia and the nodes.

With the detection of extrasolar planetary systems (we now know more than 120
extrasolar planets†) the investigations of the dynamics of our own planetary systems
became more important. Although the orbital parameters are quite different in what
concerns the eccentricity (some planets move on very eccentric orbits) our own planetary
system may serve as a model for the dynamics of stable planetary systems.

In a previous paper (Dvorak & Süli 2002) the dynamical evolution of a simplified Solar
System consisting of the Sun, Venus, Earth, Mars, Jupiter and Saturn was studied; the

† http://www.obspm.fr/encycl/catalog.html
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Figure 1. Eccentricity vs. the semi-major axis for extrasolar planets. The x-axis is logarithmic.
The position of the Earth, Jupiter and Saturn are also indicated as diamonds with a plus sign
in the middle.

masses of the inner planets were uniformly magnified via a mass factor κ. The surprising
result was that in this model all the orbits were still stable for time scales of 107 years
up to κ < 245. In this new investigation we used the same dynamical model, but only
the mass of the Earth was multiplied by κE ∈ [1, 300].

In Section 2 we discuss some characteristics of extrasolar planetary systems, Section 3
presents the dynamical model, in Section 4 some results of the dynamics of our planetary
system together with the interesting motion of the node of Mars are shown. In Section 5
we show the results of the numerical experiments with a larger mass of the earth together
with more detailed results for κE = 5 and finally we summarise the investigation shortly
in Section 6.

2. Some characteristics of extrasolar planetary systems
The stability studies got a new impulse because of the recent findings of other planetary

systems around single and even double stars. About 120 exoplanetary systems (exosys-
tems) are now known. The so far discovered exoplanets have a mass range (m · sin(ip))
from 0.11 mJ to 17.5 mJ where mJ is Jupiter’s mass and ip is the inclination of the
orbital plane with respect to the plane of the sky. More than 90 % of these planets are
orbiting ‘their sun’ well inside Jupiter’s orbit (a � 3.3 AU). Their semi-major axes ac-
cumulate around 1 AU which is a matter of the analysis of observations of the radial
velocity curve over periods in the order of years. We can see from Fig. 1 that most of
them have significant eccentricities (some 70 % of their orbital eccentricities are larger
than e = 0.2). Nevertheless our planetary system may serve as model case for the ones
with small eccentricities which are also the ones where we may expect stable terrestrial
planets moving in habitable zones (e.g. Ashgari et al. 2004).

3. The dynamical model and the methods of investigation
The dynamical model which we studied consisted of the Sun, Venus, Earth, Mars,

Jupiter and Saturn. We have chosen this model to minimise the required CPU time for
the integration of the – purely Newtonian – equations of motion. Because of the small
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mass of Mercury, it only slightly perturbs the motion of the other planets, but it would
require a time step four times smaller than without the innermost planet. Although
Uranus and Neptune are massive planets, they orbit the Sun more than twice as far as
Saturn, and do not influence the motion of the inner planets significantly. This model was
tested already for other numerical computation of the orbits of the near earth asteroids
(e.g. Dvorak and Freistetter 2000) and turned out to be quite accurate.

Our method used to solve the equations of motion was the Lie-integration, a method
which uses the property of recurrence formulae for the Lie-terms (up to the order 14); one
of its advantages is that also high eccentric orbits are integrated accurately due to the
automatic step size. A detailed description can be found in Hanslmeier and Dvorak (1984)
and Lichtenegger (1984). Many numerical results were derived with this integrator (e.g.
Dvorak and Tsiganis 2000, Tsiganis et al. 2000) where the method was also compared to
other numerical integrators. The total CPU time used on a high end PC (AMD 2600+ and
comparable) was more than 200 days for our study. The interval of data output was set to
100 years which led to a total amount of data of approximately 6 GBs. Complementary
we used a secular perturbation theory up to the first order which was implemented in
MAPLE (Süli 2003). The comparison of analytical method and numerical results showed
quite a good agreement†.

4. Description of the our actual planetary systems
It is well known that the character of the variation of planetary orbital elements does

not change significantly even over the course of long-term simulations over hundreds of
million years. The variations of the semi-major axes are very small, for the inner planets
it is less than a 0.001 AU, for the outer ones it is less than 0.01 AU. We know from
the work of Laskar that the inner Solar System behaves in a chaotic manner and that
there are critical angles which change from circulation to libration and vice-versa on time
scales of tens of million years.

We do not have results for such long times in our recent study but we found a very
interesting behaviour of Ω, the longitude of the ascending node of Mars. If we compare the
time evolution of the orbital element i with Ω, it turns out, that whenever iMars < icr,
then ΩMars begins to librate around 105◦. The center of the temporarily libration of
ΩMars coincides with those of Jupiter (90◦ < ΩJupiter < 120◦) and of Saturn (75◦ <
ΩSaturn < 140◦). The same behaviour can be observed in the case of Venus and Earth
(which we do not show here) although there it is not so obvious in the respective plots.

The above phenomena is very well visible in Figs. 2 and 3, where Ω and i of Mars
are plotted versus the time. It is already reproduced by the first order secular theory.
We have used the well known Laplace-Lagrange theory for this system (Süli 2003): a
comparison of Figs. 2 and 3 with Fig. 4 shows that the periods of the appearance of
libration between numerical and analytical results agree qualitatively but not quantita-
tively (Pnum ∼ 2Ptheory). The reason for the above phenomena is the following: if the
reference frame is chosen such that the x, y plane is orthogonal to the total angular mo-
mentum vector (i.e. it coincides with the invariant plane) than all the nodes circulate.
If the reference frame is chosen sufficiently inclined with respect to the invariant plane,
some of the nodes appear to librate. This is the case of Jupiter’s and Saturn’s node in our
ecliptic reference frame, and the reason for the temporarily libration of Mars’ node. This
phenomena is very well visible in Fig. 4, where Ω, and i · 10 of Mars are plotted versus

† For the initial planetary orbital elements we have chosen for JD 2449200.5 with respect to
the mean ecliptic and equinox J2000 from the JPL ephemerides DE200. (Standish 1990).
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Figure 2. Inclination for Mars for our planetary system versus the time for 20 million years.
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Figure 3. Longitude of the node of Mars for our planetary system for 20 million years; note
that the libration modes coincide exactly with the minimum values of the inclinations.
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Figure 4. Longitude of the node and inclination (ten times larger) of Mars for 5 Million years
by a first order secular theory. Note that the periodic changes from circulation to libration have
only half the period of the numerically derived results.

the time. The icr is related to the inclination of the x, y plane relative to the invariant
plane.†

We emphasize that the same features are also present when integrating the equations
of motion with all 8 massive planets; it characterises the motion of Mars for at least 100
million years into the future and into the past (Dvorak and Gamsjaeger 2003). In the
respective plot for Mars (Fig. 5) we see the evolution of the inclination for the first 10
million years together with the evolution of the node. The period is quantitatively the
same as in the simplified model. For the time between 90 and 100 million years we found
that the change from libration to circulation and vice versa is NOT periodic any more
as a consequence of the chaotic nature of the inner planets.

† In the first order theory high order terms are ignored and the change from libration to
circulation is sensitive with respect to the periods in the inclination of Mars; this causes the
difference in the periods between numerical results and the theory.
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Figure 5. Inclination (upper graph) and longitude of the node (in radians) (lower graph) of
Mars for 10 million years after an accurate numerical integration of the complete planetary
system. Note that the periodic changes from circulation to libration have the same period as
the one in the simplified system.

5. Numerical experiments with a very massive Earth
Our aim was to study the stability of the system with respect to the mass of the Earth

which may be taken as an adequate model for some of the known exoplanetary system.
This kind of a model planetary system is of prior interest for systems where Trojans
planets may move on low eccentric orbits in habitable zones; we may even take it then
as a reference planetary system! We therefore magnified the mass of the Earth by a mass
factor between 1 � κE � 300. Between 1 � κE � 15 the step in κE was one, then up to
κE = 100 the step size was 5, then up to κE = 300 the step size was 10. For κE ∼ 90
the mass of Earth is comparable to the gas giant Saturn, for κE ∼ 300 to Jupiter; then
Venus and Mars can be considered as being protoplanets with relatively small masses.
These resulting systems may be considered as models for 47 Ursae Majoris with its three
massive planets, when we multiply the semi-major axes of this extrasolar system by 2.5.
In Fig. 6 we show how the masses of the planets compare when we introduce the mass
factor κE for the Earth. In Fig. 7 also the mass distribution of the known exoplanetary
systems is shown as a function of the mass parameter (MJup sin i).

We expected that Venus but especially Mars will suffer more and more from the per-
turbations due to a more massive Earth. To quantify these effects we checked the orbital
element eccentricity during the whole integration time of 2 · 107 years for every model
and every planet. We determined the maximum value of the eccentricity (=ME) which
is an important parameter for the dynamical evolution and stability of the system. It is
a reliable indicator of chaos and the maximum eccentricity method (MEM) was already
used successfully in many numerical investigations concerning the dynamics of planetary
systems (e.g. Dvorak et al. 2003). The respective plot of ME for the whole range is shown
in Fig. 7 (left panel), where no effect on Jupiter and Saturn is visible. We note that the
ME of Earth for κE = 1 is 60% greater than for κE = 2, and it decreases further as the
mass factor increases. The ME of Venus shows a similar behaviour as a consequence of
the strong coupling between Venus and Earth; we observe two larger values of the ME
of Venus, which are still rather small and do not influence the stability of the system.
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Figure 6. The mass distribution of the known exoplanetary systems are plotted together with
the mass of the Earth as a function of the mass factor (κE ) (solid line). The masses of the other
planets were unchanged, and are represented by straight dashed lines (units are Jupiter masses).
On the lower x-axis the mass factor is scaled; the upper x-axis shows the scaling of the mass
parameter of the exoplanetary system. The left y-axis is the mass of the planets in a logarithmic
scale; the right y-axis is the number of planets. The bin size is 0.2 mJupiter .
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Figure 7. Results of the MEM: the maximum eccentricity as a function of κE . On the left
graph 1 � κE � 15; on the right graph 1 � κE � 300

Then, for larger values of κE > 15 one can see a gradual but small increase of Venus’
ME (see Fig. 7, right panel).

Mars is playing a special role (Fig. 7, left panel): the ME of Mars steadily increases
with κE , and at κE = 5, it suddenly reaches a very high value (eMars = 0.26, perihelion
distance q = 1.13 AU). After this peak the ME drops down to its starting value, and
stays around 0.123. Beyond κE = 15 Mars’ ME linearly increases with the mass factor.

Checking the elements of Mars for κE = 5 we can see that the semi-major axes shows
an interesting non periodically modulation, which is also visible from the plot of the
eccentricity (Fig. 8). The eccentricity increases rapidly to e = 0.26 and shows a periodic
large variation 0.07 < e < 0.26, but after several million years stays rather large 0.19 <
e < 0.26. To explain this special behaviour we used again the first order secular theory,
although we know that for larger eccentricities it will fail to provide precise results.
Nevertheless we found the reason for this irregular behaviour: Table 1 shows the analysis
of the fundamental frequencies involved. We observe the closeness of the two frequencies
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Figure 8. Semi-major axis (top graph) and eccentricity (bottom graph) of the system with
κ = 5 for 2 · 107 years

f2 and f3 which shows that they are almost in a 1:1 resonance! A thorough investigation
of the planetary systems around the value of κE = 5 using numerical and analytical tools
is in progress. We hope to give then an even more detailed explanation of this interesting
and – up to now – not known dynamical behaviour of our slightly modified planetary
system.

Table 1. The secular frequencies of the model for κE = 5 calculated using the
Lagrange-Laplace secular theory. The units are in arcsec/yr, year and in degrees.

j gj [”/yr] Pj [yr] βj [deg] fj [”/yr] Pj [yr] γj [deg]

1 3.540609 366038.71 290.97 -47.160423 27480.67 76.93

2 8.679525 149316.93 109.16 -25.838731 50157.26 306.49

3 22.284358 58157.39 23.72 -25.682030 50463.30 129.59
4 25.686232 50455.05 116.03 -7.155340 181123.47 297.68
5 45.645800 28392.54 304.59 0 – –

6. Conclusions
We studied the dynamics of a simplified dynamical model of the Solar System to

have a kind of general model of exoplanetary systems with planets on not too eccentric
orbits. We found an interesting periodic change from circulation to libration of the Mars’
longitude of the node (and vice versa) what we have explained as a consequence of the
inclination of the ecliptic reference frame with respect to the invariant plane.
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We then studied in the same model the orbits of the planets when we increase the
mass of the Earth by a mass factor between 1 � κE � 300. These model systems were
still stable even when the Earth had Jupiter’s mass; older, not published results, showed
that from approximately mEarth ∼ 3MJupiter ∼ κE = 1000 on close approaches of Mars
and Venus to the Earth made the system dynamically unstable.

For κE = 5 signs of chaotic motion appeared in the semi-major axis of Mars, whose
orbital eccentricity reached values up to e = 0.256 during the integration time of 2 · 107

years. Using the results of the Lagrange-Laplace secular theory to the first order for
κE = 5, we found a secular resonance acting between the motions of the nodes of the
Earth and Mars. According to these results, the stability of the Solar System depends
strongly on the masses of the planets, and small changes in these parameters result in
a different dynamical evolution of the planetary system. Therefore we think that this
planetary system may be used as dynamical reference model for a better understanding
of the orbits in extrasolar systems.
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