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ABSTRACT. A two-dimensional ice-flow model based on the shallow-ice approxima-
tion (SIA) is used to investigate the dynamics of Glacier de Saint-Sorlin, France. This gla-
cier 1s well suited for this kind of study. First, the particular geometry of the glacier itself as
well as that of the bedrock surface allows for correct applicability of the SIA (zeroth-order
equations), provided that thickness changes and termini positions rather than short-scale
dynamics are considered. Secondly, the wealth of available data for the glacier including
mass-balance series and records of glacier changes provides a reliable forcing and a
powerful constraining set for the model. Steady-state simulations show realistic results
and the capabilities of the model in reproducing the glacier extent at the beginning of
the 20th century. An extensive parameter study of ice rheology and sliding intensity is also
carried out and the results are checked against the thickness changes as well as the glacier
termini positions since 1905. It is possible to find a parameter combination that best
matches these two types of data with an ice-flow rate factor of 2 x 107 Pa °s 'and a
Weertman-type sliding factor of 5 x 107 m® N a ' which both appear to be in agree-
ment with similar inferences from recent modelling attempts.

1. INTRODUCTION

Mountain glaciers are good indicators of climate variability
(Houghton and others, 2001), since variations in their cli-
matic environment lead to changes in their geometry and
dynamics. This relationship remains complex, however,
and there is no simple theory connecting glacier changes
(extent, thickness, surface velocities) to the driving climatic
variations. Apart from some attempts to infer mass balance
from terminus positions with the help of a linearized ap-
proach (Nye, 1963), full numerical ice-flow models seem to
be the only way to capture the complexity of such a lagged
non-linear response, which involves many processes like ice
rheology or basal sliding. Although difficult to model, this
lagged response of a glacier to varying climatic conditions
offers interesting possibilities of inferring past climatic con-
ditions during periods for which no mass-balance measure-
ments are available. An ice-flow model 1s also the only way
of predicting mid- to long-term glacier response to climatic
scenarios. Large ice masses such as polar ice sheets have
been extensively modelled over the past few decades mainly
for past climate studies and ice-core dating purposes. Most
of these approaches rely for their success on the geometrical
properties of these ice caps, more specifically their small “as-
pect ratio” which allows the shallow-ice approximation
(STA) to be used, thereby considerably simplifying the
problem (Hutter, 1983; Morland, 1984). The SIA is based on
a scaling analysis which expands the equations under the
form of series of powers of a scaling parameter, the aspect
ratio € (generally the thickness-to-extent ratio (see Hutter
1983; Baral and others, 2001)). The order of the problem
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equals the maximum power of the aspect ratio € after trun-
cation of the series. The SIA traditionally refers to the zer-
oth-order problem (only terms of the zeroth power of € in
the equations, as in the present paper), whereas systems in-
cluding higher powers are referred to as first-order SIA, sec-
ond-order SIA and so forth. If a small enough aspect ratio is
a prerequisite for the power series to be meaningful, it
should be stressed that for a given €, the accuracy of the
SIA approach increases with the order of the problem. In
other words, the smallness criterion for the aspect ratio
becomes even more stringent with the zeroth-order ap-
proach.

Unfortunately, the geometrical properties of alpine-type
valley glaciers, unlike those of large ice sheets, usually make
their vertical- to longitudinal-extent aspect ratio too large
for correct applicability of the STA (Fowler, 1992). Moreover,
when bedrock slopes become more pronounced or exhibit
significant changes at a scale of similar order to that of the
mesh spacing, a topography-related aspect ratio signifi-
cantly larger than the preceding one takes over (Baral and
others, 2001), therefore requiring higher-order terms in the
series to be incorporated or, at worst, solution of the full
Stokes equations.

However, as a “cirque”-type glacier (Fig. 1), Glacier de
Saint-Sorlin, France, is somewhat atypical, with its fairly
large extent-to-thickness ratio leading to an overall aspect
ratio smaller than that of a typical valley glacier with for
instance a relatively thick ice tongue channelled into a nar-
row valley. With a typical thickness of 100 m (and a maxi-
mum of 140 m above the central trough), compared to a
typical longitudinal extent of 2km (see Figs 1 and 2), the
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Fig. 1. Outline of Glacier de Saint-Sorlin based on “mechan-
weal” grounds _from interpretation of a 1998 summer picture.
Using visible and estimated bergschrund positions, some per-
ipheral permanent snowfields or areas of slow ice motion have
been disregarded. See Vincent and others (2000, fig. 1) for a
more general location of the glacier.

ice geometry aspect ratio for Glacier de Saint-Sorlin is an
acceptably small one of about 5 x 1072, On the other hand,
prescribing the bedrock topography at each of the mesh
points of a 50 m spacing grid can potentially increase the
topography-induced aspect ratio unless bedrock changes
are very smooth. A 50 m spacing yields a 100 m Nyquist wa-
velength (Ay; see Baral and others, 2001), which would re-
quire typical vertical variations of <5m in order for the
corresponding bedrock aspect ratio to stay as low as
5 x 1072, Although the bedrock topography used in the
model is fairly smooth at the short scale (see section 3.3)
and does not show pronounced slopes at a larger scale nor
any major accident such as icefalls, typical variations in
bedrock heights can locally be as large as 50 m which cer-
tainly reduces the accuracy of the SIA zeroth-order equa-
tions. Indeed, as demonstrated by Kamb and Echelmeyer
(1986), over short-scale undulating beds, the longitudinal
coupling exerted by longitudinal stress gradients signifi-
cantly modifies the flow over a coupling length of the order
of several times the ice thickness. Since one of the conse-
quences of restricting to zeroth-order equations is to neglect
these longitudinal stress gradients, the SIA we consider in
our approach will not allow for accurate modelling of
short-scale glacier dynamics.

If STA-based models are unable to correctly predict dif-
fusion and propagation time-scales, they can still compute
the right volume time-scales (Gudmundsson and others,
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Fig. 2. 1957-99 averaged net mass-balance data obtained by
inlerpolation and extrapolation of stake measurements (in
muw.e.a ). Outlined are the present-day extent (solid line)
and the glacier terminus of 1905 ( dashed line ).

1998), which are in fact primarily driven by mass-balance
changes. Since our main concern is to model glacier past
thickness and extent changes and not small-scale dynamical
properties (as expressed by surface velocities), the zeroth-
order approach should still yield useful results. It was there-
fore thought that before getting into more complex models
by either including higher-order terms (Blatter, 1995; Hub-
bard and others, 1998; Baral and others, 2001) or explicitly
including deviatoric-stress gradients (Colinge and Blatter,
1998; Gudmundsson 1999), a simple two-dimensional SIA
approach was worth performing given the wealth of avail-
able data for Glacier de Saint-Sorlin.

A previous modelling attempt based on the SIA but re-
stricted to the one-dimensional case along a flowline (Vin-
cent and others, 2000) provided interesting results which
compared well to some of the data. The idea here is to
extend to the two-dimensional case, allowing for a better
account of the real geometry of the flow and for correct
computation of the glacier averaged front positions (see sec-
tion 5.2.1).

After a short description of the model (section 2), the
glacier’s main characteristics and the input data are pre-
sented (section 3). Section 4 describes the experimental set-
up including initial conditions and model parameters. The
results section (3) starts with steady-state runs for the pres-
ent-day and 1905 ice distributions, which yield interesting
information about mass balance and show the model’s abil-
ity to reproduce past glacier extents. This ability is promis-
ing for future inference of past climatic conditions, such as
those during the Little Ice Age. Time-dependent simula-
tions follow in order to simulate as realistically as possible
the glacier’s behaviour over recent decades. From the com-
parison with available data, an extensive sensitivity study on
ice rheology and sliding factors is carried out and allows us
to find a combination of these two parameters that gives the
best match for both thickness changes and snout positions
through time. Finally, results and their interpretation are
discussed in section 6.
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2. THE TWO-DIMENSIONAL ICE-FLOW MODEL
2.1. Continuity equation

Spatial variables for the model refer to a right-handed z, y, 2
Cartesian coordinate system (O, ;j; lg) with z directed to-
wards the east, y the principal direction of flow (north) and
z pointing vertically upwards, denoting altitude (z = 0 at
the geoid height). The time-dependent changes for the ice

thickness H are given by the continuity equation:

%Hza—vq', (1)

where ¢ stands for the horizontal ice flux and a is the surface
accumulation rate expressed as a water equivalent column
(mw.e.a ).

The flux ¢ is obtained from vertical integration of the ice
velocity ¥ = (u, v, w) from the ice bottom B (bedrock alti-
tude) up to the free surface S according to:

S
qg= / vdz. (2)
B
This ice motion results from internal deformation and pos-
sibly from basal sliding when basal conditions allow for it.
For simplicity, only internal ice deformation is considered
at this point. See further below for discussion of how basal

sliding is incorporated into the calculations.

2.2. Governing equations under the SIA

The main effect of the SIA is to considerably simplify the
conservation-of-momentum equations, which reduce to the
expression of the vertical gradient of the two basal shear
stresses 7, and 7, in the x and y directions as a function
of the glacier topography only (for more details see, e.g.,
Mabhatfty, 1976):
or

— = pgV S with 7= (Tm,ryz) and VS = (

oS 0S
Oz ’

oz’ dy
3)

where p is the ice density (917kgm *) and g the gravita-
tional acceleration. With vertical integration (from altitude
z to surface S) the two shear stresses are expressed as func-
tions solely of the local geometry (and altitude 2), according
tor

7(2) = 7(S) + /S pg(VS)dz= —pg(S — VS, (4)

assuming that the surface undergoes no shear stress
(Tez(2) = 7y2(z) = 0). The most commonly used stress—
strain relation for the creep of polycrystalline ice in ice
sheets and glaciers is a non-linear viscous power flow law of
Glen type with exponent n = 3 and a temperature-depend-
ent rate factor A(T') (e.g. Glen, 1955):

&y = A(T)r7, (5)

where T;j is the deviatoric-stress tensor, €;; is the strain-rate
tensor, 1" is the temperature measured relative to the pres-
sure-melting point and 7, is the second invariant of the
stress tensor. It should be noticed that, as for most alpine
glaciers, the ice is considered to be isothermal throughout,
with a temperature of 0°C corresponding to the ice melting
point at the ambient pressure. Therefore no temperature de-
pendence is taken into account for the rate factor A(T)
which then becomes a constant (hereafter referred to as A).
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In the STA, 7, depends only upon the two shear stresses 7,
and 7, according to:

2

Given the deviatoric strain-rates expression and noting that
under the SIA the horizontal gradients of the vertical com-
ponent of the velocity vector, Ow/dx and dw/dy, can be ne-
glected, the two main deviatoric strain rates €., and €,
reduce to (Ju/0z)/2 and (Ov/0z) /2, respectively, and some
reordering of Equations (3—6) allows us to write:

Bh = —24(pg)(5 - 2VSPVS, (D

where U is now the horizontal two-dimensional velocity
vector and |V S|? stands for (8S/dz)* + (0S/8y)*. Integra-
tion from z = B (bedrock height) to z finally allows us to
express the horizontal velocity ¥ as a function of altitude z
within the glacier, ice thickness H and surface gradient
terms 05/0x and 9S/dy. Now making use of Equation (2),
the flux finally becomes:

2A(pg)?
i 20

Here %, H represents the contribution gs of any basal hori-

|VSIPHVS . (8)

zontal velocity oy, to the flux. In the present model, basal
velocity (if any) is prescribed as a Weertman-type sliding
law (Weertman, 1964, 1972):
=P

B = A (9)
in which Ay is a sliding rate factor, p and ¢ are two exponents
whose values have been set to 3 and 1 respectively following
a study of Bindschadler (1983) on basal sliding for West Ant-
arctic outlet glaciers, and 7, is the basal shear stress. The
flux gs due to sliding can then be expressed in a form very
similar to that due to ice deformation, according to:

4 = —Apg)’ | VS H'VS . (10)
From Equations (8) and (10), the basic time-dependent

equation of the model (Equation (1)) can finally adopt the
general form:

o _ 200" [0 () 0 (,08]

with DH3|VS|2(AH2+5O;AS), (11)

in which the value for the diffusion coefficient D depends on
whether sliding is allowed (o = 1) or not (av = 0).

2.3. Numerical approach

Although analytical solutions for the mass-continuity equa-
tion do exist for the one-dimensional case, a numerical ap-
proach is necessary for a two-dimensional approach. We
therefore chose to treat the problem with a time-dependent
finite-difference method by digitizing the mass-continuity
equation (Equation (11)) onto a regular 50 m x 50 m grid
covering a 3.15 km X 3.15 km area over and around the gla-
cier as can be seen in Figure 2. The discretization method
follows from the use of a staggered grid in space in which
the diffusion coefficient D is computed at gridpoints that
are offset from those where the ice surface S is defined by
half a grid spacing. This spatial discretization scheme has
been fully described by Hindmarsh and Payne (1996)
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(method 1). The fully implicit scheme is more stable and
allows larger time-steps, but the method is tedious to solve
in the two-dimensional case. Instead, we use the alternat-
ing-direction-implicit (ADI) scheme, a two-step semi-im-
plicit scheme which solves the z and y directions
alternately and results in a matrix formulation (see Huy-
brechts, 1992, for details).

Boundary conditions for the system are implicitly ex-
pressed in the way the diffusivity D is computed. The latter
is set to 0 over deglaciated areas at the periphery of the do-
main, and for points lying exactly on the ice border the com-
putation of the ice-thickness gradient makes use of a
backward difference instead of centred finite difference.

3. GLACIER CHARACTERISTICS AND INPUT
DATASETS

3.1 Glacier main features

Glacier de Saint-Sorlin is a small glacier (3 km?) located in
the Grandes Rousses range in the French Alps, with a small
altitude range from about 2500 m at the snout to about
3300 m at the upper bergschrund downstream of Pic de
I'Etendard as shown in Figure 1.

Because the present-day glacier serves as initial condi-
tions for some simulations, proper outlining of the glacier
boundaries was necessary in order to obtain a “mechani-
cally” consistent and continuous body of mobile ice. The
limits were essentially set from bergschrund positions when
localizable from a 1998 summer aerial picture of the glacier
and from proper knowledge of the site. This led us to discard
some peripheral misleading snowfields and areas of sup-
posedly immobile ice referred to as “dead ice”as can be seen
in Figure 1.

3.2. Mass-balance data

Mass-balance data used to feed the ice-flow model come
from direct glaciological measurements for the 1957-99
period and from a relationship between mass balance and
meteorological data for the 1907-57 period (Vincent, 2002).
A linear mass-balance model (Lliboutry, 1974) was used to
calculate (i) the 1957-99 averaged net mass balance at each
point of the grid from direct stake measurements scattered
all over the glacier (see Vincent and others, 2000; Fig. 2), and
(i) interannual variations of this mass balance over the
whole period 1907-99 (Fig. 3). The resulting yearly mass-
balance forcing was then obtained by adding to the time-in-
dependent 1957-99 average distribution (i) the time-depen-
dent variation (ii) which, according to the linear mass-
balance model, is the same everywhere. The small altitudi-
nal range for the glacier certainly contributes to the validity
of such an assumption (Vallon and others, 1998). Obtaining
this time-dependent interannual variation is straightfor-
ward and reliable for the 1957-99 period (direct stake meas-
urements), whereas its extension back to 1907 (earliest date
for which an estimate of the glacier extent is available from a
1905 map) relies on the previously mentioned meteorologi-
cal relationship. Despite missing data for 1905 and 1906,
these reconstructed mass-balance data have been checked
against volume changes estimated from the 1905 map and
from geodetic measurements of the glacier surface (topog-
raphy and photogrammetry) carried out in 1952 (similar
measurements are also available for 1971, 1989 and 1998). In
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Fig. 5. Time variation of the yearly net mass balance with re-
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other words, the 1907-99 time variation in the annual net
mass balance as depicted in Figure 3 can be considered a
reliable forcing for the ice-flow model. As for mass-balance
data downstream of the current snout (necessary for the
steady-state simulation of the 1905 extent in section 5.1.2),
since no measurements are available, the values were
deduced from the closest ones available on the glacier
by applying a mass-balance altitudinal gradient of
0008 mw.e.m ' (see the resulting distribution extension off
the snout in Figure 2). All these mass-balance data are the
same (except that 1998 and 1999 measurements are now in-
cluded) as in Vincent and others (2000) where more infor-
mation on how they were obtained as well as their
accuracy can be found.

3.3. Bedrock and ice-surface topographies

The last set of required data for the model consists of the
respective bedrock and current ice topographies (some of
our simulations start from the present-day ice distribution).
As for the bedrock, the digital elevation model (DEM)
results from a compilation of various measurement tech-
niques including borehole coring, seismic soundings and
gravimetric measurements. The first seismic campaign was
carried out on the lower part of the glacier in 1961 (Belin,
1962), but is believed to contain mistakes (Lliboutry, 2002)
probably because of the method used (Siisstrunk, 1951).
New seismic soundings were undertaken by Vallon in 1975
and 1976 over the ablation zone and along the central line
of the glacier almost up to Col des Quirlies, with an im-
proved method for determining mirror-point locations
(Vallon, 1978). About 20 regularly scattered boreholes were
also drilled between 1967 and 1977, offering an accurate (al-
beit sparse) coverage of the glacier. These boreholes pro-
vided a good check on the seismic data and were also used
as constraining thicknesses for gravimetric measurements
that were also made by Vallon in 1975. These measurements
(M. Vallon, unpublished information) were performed with
an accuracy of 10 ?mgal (Warden gravimeter) and were
corrected for topography over a distance of 65 km.

All these measurements, in combination with a present-
day surface DEM obtained by photogrammetry (1998 aerial
photograph), served as a basis for compiling and kriging
maps of bedrock elevation and present-day ice thickness.
Because of the scarcity of the measurements (limited num-
ber of survey lines and measurement spots) and also the
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Fig. 4. Bedrock topography from the DEM ('see text). Also
outlined is the 1998 extent of the glacier.

variety in the methods, data have been interpolated and
extrapolated over large distances and a global accuracy is
difficult to assess. Lliboutry (2002) estimates a standard
error of £5m but it is expected that over the most poorly
covered places (e.g. in the area of Pic de I'Etendard) the un-
certainty of the bedrock height can locally be as much as
20-30m. This interpolation/extrapolation process over
large distance onto our 50m grid led to a significant
smoothing of the bedrock data, a prerequisite for the SIA
to apply (see section 1). Corresponding bedrock topography
is shown in Figure 4, and also in more detail but only for the
lower part of the glacier in Lliboutry (2002, fig. 3). As for the
current surface DEM obtained by photogrammetry, the ac-
curacy is of the order of 1 m. The present (1998) ice thickness
obtained by difference between the two maps is shown in
Figure 5.

4. EXPERIMENTAL SET-UP
4.1. Initial conditions

The model is run forward in time from initial conditions
usually consisting of the 1998 ice distribution or that of
1905 derived from a 1:10 000 scale map whose accuracy is
uncertain but assumed to be <5 m. Since the ice is consid-
ered to be isothermal, the only forcing comes from the
changes in mass balance at each gridpoint, obtained by add-
ing the appropriate time correction as depicted in Figure 3
to the 1957-99 average mass-balance distribution shown in
Figure 2.

4.2. Basal hydrology and general seasonal effects

Basal conditions play an important role in glacier dynamics
by essentially controlling whether the ice is sliding on the
bed and, if so, the intensity of the sliding. These conditions
are of two main types: those relating to the bedrock itself,
which can be assumed constant through time, and those
due to the basal hydrology, which are highly dependent
upon seasonal changes (e.g. Hubbard and others, 1998).
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Fig. 5. Present-day (1998) ice distribution. T he maximum ice
thickness of slightly less than 140 m lies above a southwest—
northeast-oriented trough between points “600m” and
“1400 m”. Points labelled 600, 1400, 1800 and 2200 m refer
to the distance from Col des Quirlies and are the same reference
points as in Vincent and others (2000). Also shown is the cross-
section location (near point 2200 m) used for computing the
snout average posttion ( see section 5.2.1).

Although time-steps in the model are in the order of several
days, seasonal effects are not accounted for, essentially
because time-dependent mass-balance data are yearly
averages and therefore do not carry any seasonal forcing.
As a consequence, time dependence of the basal hydrologic
forcing cannot be properly accounted for. We are therefore
led to prescribe a general sliding law that is supposed to ac-
count for both bedrock properties and a time-independent
hydrology. The spatial variability of sliding is also a problem
since its correct modelling would require detailed know-
ledge of both bedrock characteristics (roughness, hardness)
and the hydrologic system. A Weertman-type sliding law
like the one proposed in this study can reproduce any spatial
variability only very crudely, and in a way that in some
places must be quite far from reality.

The seasonality in sliding is necessarily reflected in the
glacier observed surface velocities. For the reasons ex-
plained above, the model is not capable of reproducing sea-
sonality, so it only outputs yearly-averaged fields. It might
therefore be tempting to overcome the problem by compar-
ing modelled velocities to yearly velocities measured in the
field from differences in stake positions from one year to the
next, as in Vincent and others (2000). As discussed in section
1, however, the geometry of the problem (that of the ice
body itself but also that of the bedrock) makes the restricted
SIA equations unsuitable for reproducing small-scale dy-
namics such as surface velocities. Moreover, even if one
assumes favourable geometry with a sufficiently small as-
pect ratio, water input at the base of the glacier reduces
basal friction. Theoretical considerations by Hindmarsh
(1993, 1996) show the necessity of quite a high basal traction
for the SIA to apply. This statement has recently been con-
firmed by Gudmundsson (2003), according to whom
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Table 1. Main parameters used in the model and their possible range of variation

Parameter Reference value

Varying range Remarks

1.3x107#Pa”’s
(Vincent and others, 2000)

Ice rate of deformation a(7)

Sliding factor Ag 15x 104 méN?a!
Time-step At 0.05 year
Grid spacing A 50 m

Applied mass-balance variation 0 (for steady state)

(0.125-5)x10~*4Pa s See section 5 for the varying range

(0-25) x10~14 m?N?a! See section 5

Fixed Kept constant throughout the study
Fixed The same in z and in y
0.58ma" Applied uniformly over the 1957-99

averaged field (Fig. 2)

longitudinal stresses become important when friction at the
bed is small. This means that even yearly mean velocities
cannot be reproduced by a SIA model (Vincent and others,
2000), so it 1s irrelevant to model velocities with such an ap-
proach. Consequently, velocities are not considered in this
paper. It also means that during phases of high melting, the
appropriateness of the SIA in predicting thickness or length
changes of the glacier is temporarily reduced. Resulting in-
accuracies must, however, be more or less smoothed out
when outputting yearly averages for these fields as our
model does.

4.3. Model parameters

Table 1 summarizes the main parameters used in the model.
Some of them are kept fixed throughout the study, whereas
the ice rate factor, the sliding factor and the mass-balance
change will vary within the depicted ranges as required by
the forthcoming experiments. The time-step was set to
0.05 years (18 days) from a small experiment (not shown)
in which a continuous range of values was tested until a con-
vergence criterion was safely met. For the ice rate factor 4, a
value of 1.3 x 1072* Pa *s ' (Vincent and others, 2000) was
used until later in the sensitivity study when the value was
allowed to vary. The sliding factor was initially set so as to
produce as much ice flow as that from ice deformation for a
typical ice thickness of 100m (A, = 15 x 107 m®N2a™).
This parameter will also vary in a similar fashion to the ice
rate factor during the forthcoming sensitivity study.

5. RESULTS

Results are of two types. We first present various steady-state
experiments for which the optimal choice of dynamic par-
ameters (ice rate and sliding factors) is not so crucial, but
which give some insight into mass-balance characteristics
for the glacier. Conversely, the following time-dependent
experiments will appear more sensitive to these two par-
ameters, as will be seen in the parameter study.

5.1. Steady-state experiments

5.1.1. Present-day ice distribution

The simplest experiment started from the present-day
(1998) ice distribution and involved running the model for-
ward in time with the 1957-99 average mass-balance field
(Fig. 2) until steady state was reached. Unless otherwise spe-
cified, parameters are those appearing in the “Reference
value” column of Table 1. The initial ice distribution is de-
picted in Figure 5, whereas the final state of the glacier after
steady state has been reached is shown in Figure 6. Inspec-
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tion of these figures shows that the current ice distribution is
far from equilibrium and has not entirely adjusted to the last
four decades of mass balance. In other words, the glacier
still reflects the effects of pre-1957 mass-balance values
which were significantly higher than for the last 45 years
(see Vincent, 2002, fig. 9a). This is in line with a generally
decreasing mass balance since at least the beginning of the
20th century, to which the glacier has been responding with
some lag. Indeed, as can be seen from the 1905 extent in Fig-
ure 6, the current glacier retreat is already pronounced to-
day and could easily continue, should the mass balance stay
the same, as demonstrated by the steady-state run. From this
simulation, we found an average loss of 9.6 mw.e. over the
present (1998) surface. Cumulative specific net balance over
a similar period, 1957-97 (Vincent and others, 2000), gave
an average loss of 12.4 mw.e. over a significantly larger gla-
cier area (that of 1971). The reason for such a discrepancy is
that the 1957 glacier configuration is more out of balance
than that of 1998 with regard to the 1957-99 (or 1957-97)
average mass-balance distribution.

Another interesting issue is the time required for the gla-
cier to reach steady state. For this purpose, the model out-

Present-day ice extent
= 1907 ice extent
=== Surface every 20 m
— ~  Surface every 10 m r

200 400 600 800m

Fig. 6. Steady-state ice distribution corresponding to the 1957—
99 average mass-balance distribution and obtained after 250
years of sumulation. The longitudinal profile used in Figure 8
Jfor assessing the necessary mass-balance increase in section is
also depicted.
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Fig. 7. Stationarity index for the model in terms of averaged
yearly thickness changes (inmw.e. a ). Also shown is the cor-
responding cumulative curve, which reveals that the average
loss for the glacier is 25 mw.e. Experimental design is that
of the steady-state run of section 5.1.1. After 40 years, the gla-
cier has lost an equivalent layer of 9.6 m, whereas 71 years of
stmulation are necessary for the initial imbalance to reduce by
63% after 15.7 m have been lost ( see conclusion ).

puts a “stationarity index” which represents the average of
yearly thickness changes over all glacier-covered gridpoints.
This index is represented in Figure 7 and shows that it takes
about 250 years of constant forcing for the glacier to asymp-
totically reach equilibrium with the 1957-99 average mass-
balance distribution.

An alternative way of quantifying the present glacier de-
gree of imbalance with regard to the 1957-99 average mass-
balance distribution consists of assessing by how much this
mass balance should be raised for the corresponding steady-
state glacier to remain the same as today. Given the previous
initial “thickness imbalance” as depicted in Figure 7, the ex-
pected increase should be close to +030mw.e.a . The
same experiment was therefore repeated, but now with
various uniform increases of the 1957-99 mass-balance dis-
tribution. Results are depicted on a longitudinal profile in
Figure 8 where it can be seen that the required increase lies
between the +0.25 and +0.30 mw.e. a ' curves, but closer to
+025mw.c.a ' (probably a consequence of the evolving
surface of the glacier over which this mass-balance increase

3400
3300
3200
3100 |
£
% 3000 | T T T T
D m——  Bedrock 2600 2800 3000 3200
T 2900 = +10em -
------ +20cm >
2800 - e +25cm . -
==== +30cm iy
2700 | e +50cm TS L
—— 1998 profile =
2600 T T T T T
500 1000 1500 2000 2500 3000 3500

Distance (m)

Fig. 8. Glacier steady-state longitudinal profiles as a function
of the mass-balance increase (cmuw.e.a’) applied to the
1957-99 average duistribution. A good match with the 1998
profile requires an increase of 25-30 cmw.e. a ' Profile
location is depicted on Figure 6.
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Present-day ice extent
= 1907 ice extent
Surface every 20 m
= Surface every 10 m

 —
200 400 600 800m

Fig. 9. Steady-state ice distribution following a 0.58 mw.e. a '
wncrease applied to the 195799 average mass-balance distri-
bution.

is applied). The two “extreme” runs show the quite high sen-
sitivity to the balance shift, since the +0.10mw.e.a ' run
gives a significant recession, whereas the +0.50 mw.e.a '
run leads to a major advance. In order to ensure that the
simulations have been carried out for a long enough time
for a steady state to be reached, the “stationarity index” was
used again and showed about the same required time of
about 250 years of simulation as was found earlier.

Finally, careful inspection of Figure 8 reveals an over-
thickening at several places along the profile (except for
the +0.10mw.e.a ' run). A different parameter set, espe-
cially for the ice deformation rate or the sliding factors,
may give a better match, although such steady-state experi-
ments appeared to be quite insensitive to these dynamic
parameters. Uncertainties in the bedrock heights can also
explain this mismatch. The inferred mass-balance shifts
nevertheless remain reliable owing to the extreme sensitiv-
ity of the snout position to the shift values (Fig. 8).

5.1.2. The 1905 ice extent

Given the rather precisely known extent of the glacier in
1905, it was also interesting to find out whether, starting
from different initial conditions like the present ones, any
steady-state simulation could reproduce this shape. More-
over, assuming that the glacier was close enough to steady
state at the beginning of the 20th century, the increase
required on top of the 1957-99 mass-balance field for such a
steady-state simulation to match the 1905 extent should give
an indication of what the mass balance may have been at
that time. Precise information as to how close to steady state
the glacier was at the time is currently lacking. Some
concomitant indications (temperature estimations, dated
frontal moraines, pictures), however, suggest a long period
of stagnation for alpine glaciers after the major recession at
the end of the Little Ice Age around the mid-19th century.
This would make the 1905 ice distribution suitable for initial
conditions when modelling the time-dependent behaviour
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g, 10. Measured (with error bars) and modelled (solid
line) snout positions (a) and thickness changes (b1—4),
1907-97. The distance indicated in parentheses in each of the
bottom_frames refers to the distance from Col des Quirlies and
corresponds to the points labelled in Figures 5, 6 and 9. The
rate factors for ice deformation and basal sliding are the “Re-
ference value” ones shown in Table 1.

of the glacier during the 20th century, as is done in section
52.

A whole range of mass-balance increases was thus tested
and the 1905 glacier extent was best reproduced for a value
of +0.58mw.e.a ' on top of the 1957-99 field (Fig. 9).
Because of the high sensitivity of the snout position to mass
balance, and because elevations on the 1905 map seem more
questionable than the outer contour, it was the 1905 glacier
extent rather than its thickness distribution that was used as
a matching criterion. Vincent (2002) found a similar value
of +0.55 mw.c.a ', but owing to his approach he was only
able to constrain it by matching the 1905 thicknesses along
their flowline (a possible explanation for the small discre-
pancy given uncertainties on these thicknesses). As can be
seen in the figure, our match is fairly good, except for the
western snout which is not entirely reproduced, probably as
a result of inaccurate mass-balance values from an extrapo-
lation over far too large distances in this area.

5.2. Ice rheology and sliding conditions

Our aim now is to use the constraining power of thickness
and length changes measured on Glacier de Saint-Sorlin
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over most of the century as shown in figure 7 (left) and fig-
ure 9 inVincent and others (2000). Owing to the inability of
the model to reproduce surface velocities (see discussion in
section 1), no attempt has been made to match the velocity
field as did Vincent and others (2000). The experiment in-
volved taking the 1905 glacier as initial conditions and run-
ning the model forward in time by forcing it with the time-
dependent mass balance as shown in Figure 3.

5.2.1. Snout posttions and ice-thickness changes

A first run over the last 90 years with the “reference” param-
eters (first column in Table 1) was performed and corres-
ponding ice-thickness and terminus position changes
checked against data as shown in Figure 10. Figure 10a dis-
plays snout positions both computed (solid line) and meas-
ured (with error bars). These snout measurements
correspond to an averaged terminus position obtained by
dividing the glaciated area downstream of a theoretical
cross-section (depicted in Fig. 5) by the width of this section.
Corresponding errors are due to the uncertainties when
mapping the various points constituting the bottom contour
of the glacier and interpolating them into a continuous
curve. Early data (measurements performed before 1960)
are thus believed to give the snout position to within
115 m, whereas the more recent ones have an estimated ac-
curacy of 10 m (see error bars in Fig. 10). It should be stressed
that because of this “surficial” method used to record the
snout positions over the last century, only a two-dimen-
sional approach as proposed here can provide meaningful
similar results to compare to the data. As can be seen in Fig-
ure 10a, the match is quite satisfactory except for the 1935~
85 period during which the retreat is first too pronounced
before reducing and lagging behind from the 1960s.

Figure 10bl—4 is the exact equivalent of figure 7 (left) in
Vincent and others (2000), where modelled thickness
changes are compared to the data for the four reference
points labelled according to their distance from Col des
Quirlies along the flowline of Vincent and others (2000)
and which are also represented in Figures 5, 6 and 9. The
1905 data are from the corresponding map, the uncertainty
of whose thicknesses is difficult to assess (they are, however,
represented with a £5m error bar). Except for 1997, when
measurements were performed by topographic means (with
an estimated accuracy of <0.50 m), all thickness measure-
ments were obtained by photogrammetric methods. Their
accuracy, depending upon the quality of the aerial photo-
graphs, 1s generally around 2m except over the accumu-
lation zone (600 m; Fig. 10a) where the lack of contrast due
to the permanent snow reduces the accuracy to about 3—
4m. Last, for the 1952 photographs, the characteristics of
the camera lens led to large distortions in the picture, there-
by increasing the uncertainty to 4 m. As can be seen in Fig-
ure 10, the overall match is fairly poor and definitely not as
well reproduced as by Vincent and others (2000). This misfit
probably results from a wrong choice of ice rheology and/or
sliding parameters, which justifies the following sensitivity
study. The fact that, despite a similar ice rate factor, our
results differ from those of Vincent and others (2000) can
be explained by their neglect of basal sliding (even if they
tune it afterwards) as well as their crude treatment of two-
dimensional effects by prescribing a convergence parameter
along the flow.
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g, 11, Matching index, in metres, between measured and
modelled dataset as shown in Figure 10. (a) Standard devia-
tions for snout positions at 14 equally spaced dates between
1907 and 1997 ( selected among those represented in Figure
10a). (b) The same, but for thicknesses at all of the 24 meas-
urement points at the reference locations depicted in Figure
10b1—4. The grey and black crosses represent the exact
locations of the pairs of parameters used in Figures 10 (initial
set) and 12 (optimal set) respectively.

5.2.2. Parameter study

The fact that the deformation rate factor A and the sliding
coefficient Ag both contribute to the ice flow makes it diffi-
cult to optimize each of these two parameters individually.
A systematic double scanning of these two parameters was
therefore carried out with exactly the same experimental
protocol as in section 52.1, and the corresponding results
compared to snout positions and thickness changes as
above. The two parameters were varied according to the
range specified in'Table 1, and the corresponding parameter
space can be seen in Figure 11. Then for each of the two
datasets, a matching criterion (3 was defined as the standard
deviation between the N measured points X; and their
modelled counterparts Y; according to:

(12)

Figure 1la displays (8 for snout positions throughout the
parameter space, whereas Figure 1lb is for thickness
changes. The interesting result is that these two sets of inde-
pendent data give a similar area of minimal mismatch in
the two-parameter space. The uncertainties in these data
(see error bars in Fig. 10) provide some slack and widen the
areas of acceptable match such that a rate factor of about
2% 1072*Pa *s ' associated with a sliding coefficient
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around 5 x 107 m® N"?a ! (located by the black crosses
in the parameter space in Figure 1I) represent approxi-
mately the optimal combination with respect to both data-
sets.

The corresponding results in terms of snout position and
thickness changes for this “optimal” combination of par-
ameters are depicted in Figure 12. Regarding glacier termini
positions, no improvement is noticeable compared to Figure
10. This 1s to be expected from inspection of Figure 11 where
it can be seen that the two pairs of parameters
(1.3 x 10724 Pa s’} 15x 1074 m® N 7a) and
(2x107%Pa’s 5 5x 107 m?Na ™) lie at about the
same level of match (about 40 m; see crosses). Conversely,
thickness changes are better reproduced, especially for Fig-
ure 12b3 and 4, whereas the mismatch for Figure 12bl re-
mains about the same.

6. DISCUSSION

One of the main assumptions underlying the previous sensi-
tivity study is that the 1905 glacier was in steady state, which
is questionable. Therefore, the question remains how much
the delayed response of the glacier to pre-1905 mass-balance
history can “contaminate” the results and for how long.
Resulting deviations from the theoretical model prediction
will depend upon two factors, the degree of initial imbal-
ance and the time required for it to be damped out.
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With regard to the first, there are good reasons to believe
that the initial imbalance at the turn of the century, if any,
must have been moderate (see section 5.1.2). Concerning the
second, it is the response time of the glacier which controls
for how long a given imbalance will persist, and in the pres-
ent case it is the volume time-scale that is of concern, as was
discussed in section 1.

6.1. Volume time-scale of the glacier

According to Jéhannesson and others (1989), the volume
time-scale for a glacier is given by the thickness scale
divided by the mass balance at the terminus, which for Gla-
cier de Saint-Sorlin gives about 40 years. (Vincent and
others (2000) found 60 years by applying the formula of Pat-
erson (1994) who considers the maximum thickness instead.)
This time-scale is the time required for a step mass-balance
change to supply the volume difference between initial and
final steady states (Johannesson and others, 1989). It is ana-
logous to the characteristic time-scale of a glacier asympto-
tically relaxing to a new steady state following a step change
in mass balance. This is illustrated by the steady-state ex-
periment in section 5.1.1, and more particularly by Figure 7
where the exponential decay is observable and from which
the corresponding time-scale of about 70 years can be esti-
mated after 63% of the total change has been achieved. This
relative consistency gives some credibility to these inferred
short time-scales and means that errors resulting from a
possible initial imbalance would rapidly decay after the first
decades of simulation. Therefore, provided the deviation
from steady state in 1905 is not too pronounced as we be-
lieve, only minor impacts on the inferred parameter values
of the sensitivity test are to be expected.

6.2. Inferred parameters

The inferred value for the ice rate factor A is substantially
larger than that of 1.3 x 10724 Pa ®s ' used by Vincent and
others (2000). Although they directly obtained good results
for thickness changes, they did not perform a sensitivity test,
and it is not known whether a different value for this param-
eter could have given even better results. Their different
approach (one-dimensional approach, different treatment
of basal sliding) could also explain this difference for the ice
rate factor. It should be noted that the values for the ice rate
factor at the pressure-melting point found in the literature
span an order of magnitude, ranging roughly from
1.3 x 10724 pa 35! (Lliboutry, 1964; Vincent and others,
2000) to 1.4 x 10723 Pa *s ' (Lliboutry, 2002), with various
intermediate values such as the widely used one of
6.8 x 1072 Pa ®s'  (Paterson, 1994) or that of
5.1 x 1072 Pa *s ' (Iken and Truffer, 1997) for the extreme
bottom part of a temperate alpine glacier. The reason for this
large scatter is to be found in the numerous factors influ-
encing the rheology of the ice (e.g. impurity and water con-
tents) and also sometimes in the common use of
enhancement factors to account for the effects of fabrics in
ice sheets. Our inferred optimal value of 2.0 x 10724 Pa s
seems to be more in agreement with more recent modelling
studies on alpine glaciers. For instance, Hubbard and others
(1998) obtained an optimal fit with data by using
2 x 1072 Pa *s !, while Gudmundsson (1999) inferred a
value of 2.37 x 1072 Pa s ' by comparing modelled and
measured velocities. These authors acknowledged the fact
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that their inferred values are substantially smaller than that
recommended by Paterson (1994).

As regards the sliding factor, one should be very cautious
in interpreting the inferred value since the validity of the
sliding law can be criticized on the same grounds as those
explained in section 4.2. Accounting for the short-term vari-
ations in sliding due to the water supply in the basal hydro-
logical system would require the model to be able to output
seasonal (ideally daily) results, therefore implying a similar
variability in the input mass balance. Moreover, spatial
variations in both basal hydrology and bedrock characteris-
tics definitely influence basal sliding. The resulting variabil-
ity in basal velocities can only be correctly reproduced if
basal conditions can be assessed at a relatively short scale,
which for most glaciers represents an unrealistic amount of
fieldwork. Should these conditions be met, the appropriate
sliding law would still have to be able to reproduce a variety
of sliding behaviours in response to the variety of basal con-
ditions usually encountered under a glacier. In other words,
the approach proposed here only contributes to a global es-
timation of the effects of basal sliding, allowing for a better
constraint on other processes such as ice deformation. A bet-
ter understanding of the physics involved in basal processes
would require a different method strongly relying on field
measurements. This could explain our relatively low sliding
coefficient of 5 x 107 m® N ?a !, which, associated with
the optimal rate factor as deduced earlier, would give a ratio
of basal velocity to surface velocity of about 0.16 for an ice
thickness of 100 m. This relatively low ratio, however, still
fits in the range obtained over glaciers in various parts of
the world compiled by Paterson (1994). Last, considering a
thickness of 50 m which is probably more representative of
Glacier de Saint-Sorlin, our sliding law gives a ratio of about
0.65, which is closer to to the confidence interval of 0.9-1.5
inferred by Gudmundsson and others (1999) from tilt meas-
urements on Unteraargletscher, Switzerland.

6.3. The two-dimensional approach

The interest of such a two-dimensional approach 1s two-fold
in the sense that, first, it allows for a better account of the
flow geometrical properties and, second, it offers a richer
output to compare to data maps than its one-dimensional
counterpart. Indeed, over most of the glacier, flowlines are
usually not parallel (compressive or extensive flow), making
it necessary to compute a two-dimensional flow divergence
in order to account for lateral contributions. A one-dimen-
sional approach can only crudely deal with this aspect by
prescribing the glacier width along the flowline. Such a par-
ameterization is constant and can hardly be properly up-
dated in the case of a changing glacier.

Secondly, by modelling the entire geometry of the gla-
cier, the two-dimensional approach allows for more con-
straining geometrical comparisons with data in terms of
glacier extent and/or ice-thickness distribution. This is all
the more important in our case as those geometry changes
constitute the only reliable output of the model.

6.4. Applicability of the SIA; neglect of longitudinal
stress gradients

This study confirms that a SIA zeroth-order model remains
appropriate for modelling the response of a mountain gla-
cier to climate changes provided that two conditions are ful-
filled. First, a minimum “shallowness” must hold with
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regard to both the ice-body geometry and the bedrock top-
ography, a prerequisite which restricts the applicability of
the model to a limited category of glaciers, which includes
Glacier de Saint-Sorlin. Secondly, the method is only valid
if large-scale dynamics represented by volume or glacier
length changes are concerned. Indeed, the main conse-
quence of the SIA approach is that longitudinal stress gradi-
ents are neglected. Longitudinal effects mainly result from
short-scale disturbances usually issued from sharp trans-
itions in basal conditions (bed roughness) such that they
cancel out over horizontal distances of several times the ice
thickness. This explains (partly) why local horizontal
velocities, for instance, cannot be correctly modelled with
the SIA, whereas larger-scale outputs like volume changes
or glacier extents usually give better results. Indeed, as
stated earlier, the SIA is not incompatible with a correct
volume time-scale whose prediction does not require inclu-
sion of longitudinal stress gradients. This follows from the
fact that the shallowness of the problem reduces the import-
ance of the horizontal gradient of the flux in the continuity
equation (Equation (1)), making the thickness rate of
change mainly depend upon the mass-balance term.

7. CONCLUSION

This study represents the continuation of a preliminary one-
dimensional modelling approach aiming at exploiting the
wealth of available data on Glacier de Saint-Sorlin. By ex-
tending to a two-dimensional model, the spectrum of usable
data has been broadened and made more constraining. In
particular, snout positions provided an extra independent
dataset against which model results were tested, yielding
“optimal” factors for ice deformation and basal sliding
similar to those inferred from thickness-change data (re-
spectively 2 x 1072 Pa®s ' and 5x 107 m®N7a™).
However, the SIA upon which the model is based has limita-
tions and excludes the possibility of using surface velocity
data, for instance. The next upgrade therefore includes lon-
gitudinal stress gradients, and will possibly account for the
strong variability in basal conditions in order to be able to
better reproduce the detailed dynamics of the glacier.
Nevertheless, our SIA model has several applications, as
can be seen from its ability to reproduce past glacier extents,
for instance. This offers interesting possibilities of inferring
past climatic conditions during the Little Ice Age. In similar
fashion to what we did for the beginning of the 20th century,
the appropriate mass balance for this epoch can certainly be
constrained by matching a modelled glacier extent with evi-
dence from dated moraines.
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