RESIDUAL FINITENESS AND 'FREE' DISTRIBUTIVELY GENERATED NEAR-RINGS

DAVID J. JOHN

(Received 15 January; revised 9 April 1979)

Communicated by H. Lausch

Abstract

Let V be a variety of groups in which the free group is residually finite, and let S be a residually finite semigroup. Let $N_v(S)$ be the 'free' distributively generated near-ring constructed from S and V. *Theorem*; $N_v(S)$ is residually finite.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 76.

A near-ring N is a set with two binary operations + and \cdot , such that $\{N, +\}$ is a group, $\{N, \cdot\}$ is a semigroup, and \cdot is left distributive over +. A distributively generated near-ring is a near-ring N which is additively generated by a set of right (and left) distributive elements.

Given a variety V of groups and a semigroup S we define a new distributively generated near-ring, $N_{\mathbf{V}}(S)$. $\{N_{\mathbf{V}}(S), +\}$ is the free group in V on free generators of S. We define $\{N_{\mathbf{V}}(S), \cdot\}$ inductively on the words of $\{N_{\mathbf{V}}(S), +\}$. If $s, t \in S$ and $u, v, w \in N_{\mathbf{V}}(S)$, then $s \cdot t = st$ (the product of s and t in S), and

$$(-u) \cdot t = -(u \cdot t)$$
, and $(w + u) \cdot s = w \cdot s + u \cdot s$, and $w \cdot (u + v) = w \cdot u + w \cdot v$,
and $w \cdot (-u) = -(w \cdot u)$, and $w \cdot 0 = 0$.

It has been shown in Fröhlich (1960) and Evans and Neff (1964) that

$$\{N_{\mathbf{v}}(S), +, \cdot\}$$

is a distributively generated near-ring. When V is the variety of all groups and S is the free semi-group in the variety of all semigroups, $N_{v}(S)$ is the 'free' distributively generated near-ring.

A near-ring N is residually finite if for any $n \neq 0$ belonging to N there exists a finite near-ring N_f and a near-ring homomorphism $\theta: N \rightarrow N_f$ such that $n\theta \neq 0$.

More generally, an algebra A is residually finite if for any distinct $u, v \in A$, there exists a finite algebra F in the variety generated by A and a homomorphism $\beta: A \to F$ such that $u\beta \neq v\beta$.

We will show that if V is a variety of groups in which all free groups are residually finite, and if S is a residually finite semigroup, then $N_{v}(S)$ is a residually finite distributively generated near-ring.

THEOREM. If V is a variety of groups in which all free groups are residually finite, and if S is a residually finite semigroup, then $N_{v}(S)$ is residually finite.

PROOF. Let $w_0 \in N_V(S)$, w_0 different from zero. We can write w_0 as an additive word in terms of distinct $s_i \in S$, say $w_0(s_1, ..., s_n)$. Since $\{N_V(S), +\}$ is a free group in V, and by hypothesis a free group V is residually finite, there exists a finite group G in V and elements $x_1, ..., x_n$ of G such that $w_0(x_1, ..., x_n)$ is not zero. Let V(G) be the variety generated by G.

Since S is residually finite, for any $s_i, s_j \in S$, $i \neq j$, there exists a finite semigroup R_{ij} and a homomorphism $f_{ij}: S \to R_{ij}$ such that $s_i f_{ij} \neq s_j f_{ij}$. Let $R = \prod_{i \neq j} R_{ij}$, and define $f: S \to \prod_{i \neq j} R_{ij}$ by $tf = (tf_{ij})$. f is a homomorphism and $s_i f \neq s_j f$ for $i \neq j$. Suppose R contains m elements, $r_1, ..., r_m$.

Construct $N_{\mathbf{V}(G)}(R)$, the distributively generated near-ring with distributive generating set R such that $\{N_{\mathbf{V}(G)}(R), +\}$ is free in $\mathbf{V}(G)$ on generators R. Since G is a finite group and $\{N_{\mathbf{V}(G)}(R), +\}$ is a finitely generated free group in $\mathbf{V}(G)$, $\{N_{\mathbf{V}(G)}(R), +\}$ is finite. Thus $\{N_{\mathbf{V}(G)}(R), +, \cdot\}$ is a finite distributively generated near-ring. Let $\theta: N_{\mathbf{V}(G)}(R) \to N_{\mathbf{V}(G)}(R)$ be the near-ring homomorphism determined by

$$g_i \theta = \begin{cases} g_i f & \text{if } g_i \in \{s_1, \dots, s_n\}, \\ 0 & \text{otherwise.} \end{cases}$$

Now we have $w_0(s_1, ..., s_n)\theta = w_0(s_1\theta, ..., s_n\theta) = w_0(s_1f, ..., s_nf)$. f was chosen so that $s_i f \neq s_j f$ for $i \neq j$, so $\{s_1 f, ..., s_n f\}$ is a set of n distinct elements of R, that is n distinct free generators of $\{N_{V(G)}(R), +\}$. G was chosen with the restriction that $w_0(x_1, ..., x_n)$ was not zero. Since $N_{V(G)}(R)$ is free in V(G) the map $s_i \rightarrow x_i$ can be extended to a homomorphism, hence $w_0(s_1 f, ..., s_n f)$ is not zero.

We now have that $N_{\mathbf{v}}(S)$ is residually finite.

In John and Neff (1979) it is proved that the free near-ring N_0 in \mathcal{N}_0 , the variety of near-rings with the additional identity 0x = 0, is a subnear-ring of the 'free' distributively-generated near-ring. Hence, we have that N_0 is residually finite.

Portions of this paper appear in the author's Ph.D. dissertation written under the direction of Professor Mary F. Neff at Emory University.

David J. John

References

- T. Evans and M. F. Neff (1964), 'Substitution algebras and near-rings I', Notices Amer. Math. Soc. 11, 757.
- A. Fröhlich (1960), 'On groups over a d.g. near-ring I. Sum constructions and free *R*-groups', *Quart. J. Math. Oxford (Ser. II)* 193-210.
- David J. John and Mary F. Neff (1979), 'The word problem is solvable in N_0 ', Notices Amer. Math. Soc. 26, A-45.
- J. D. P. Meldrum (1976), 'The group distributively generated near-ring', Proc. London Math. Soc. (3), 32, 323-346.

Günter Pilz (1976), Near-rings (North-Holland, Amsterdam).

Department of Mathematics and Computer Science Valdosta State College Valdosta, Georgia 31601 U.S.A.