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1. Introduction

The motivation of this work comes from the following vague but inspiring thought:

Question: If we run a minimal model program of a moduli space, do all the steps
admit a modular interpretation?

For example, this is true for the moduli spaces of vector bundles over many classes of

surfaces (see [16, 54, 48, 43, 17, 19, 22] or surveys [21, 35, 44]).
In this paper, we look at this question for the coarse moduli space Mg,n of Deligne–

Mumford stable n-pointed curves of genus g. The main result of the paper is that all

the first natural steps of the minimal model program (MMP) for Mg,n admit a modular

interpretation; more precisely, they are moduli spaces of suitable singular curves.

The MMP for Mg,n is closely related to the Hassett–Keel program (see [33, 34, 9, 8, 7]),
which is interested in studying the modular interpretation of the log canonical models

Mg,n(α) := Proj
⊕
m≥0

H0
(
Mg,n ,

⌊
m
(
KMg,n

+ψ+α(δ−ψ)
)⌋)

(1.1)

of Mg,n with respect to KMg,n
+ψ+α(δ−ψ) as α decreases from 1 to 0. However, the

point of view of the MMP is slightly different, since it is interested in contracting K-
negative rays, or more generally faces, of the Mori cone Mg,n and then flipping them if

the resulting contraction is small. It turns out that the first three steps of the Hassett–

Keel program coincide with some of the steps of the MMP described in this paper, as we
explain in detail toward the end of the introduction.

As a by-product of our investigation, we produce many morphisms (with connected

fibres) from Mg,n to other normal projective varieties. The number of these morphisms
grows exponentially in (g,n). This gives a partial answer to [29, Question, page 275]),

which asks for a classification of all such morphisms. To the best of our knowledge, the

only previously known birational morphisms from Mg,n (with g > 5) were the first two

steps of the Hassett–Keel program and, for n= 0, the Torelli morphism from Mg to the
Satake compactification of the moduli space of principally polarised abelian varieties (note

that it is unknown whether the Satake compactification admits a modular interpretation

as moduli space of curves).
The geometry of the morphisms that we construct in this paper will be further studied

in our work. This paper is independent of its sequel [20], tu for the sake of completeness

we have included here some results from that work.
As a further by-product, we produce many new weakly modular (and sometimes also

modular) compactifications (in the sense of [26, Sec. 2.1]) of the moduli space Mg,n of

n-pointed smooth curves of genus g (see Remark 4.15). Moreover, our weakly modular
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compactifications involve curves whose singularities are of the simplest kind, namely
nodes, cusps and tacnodes – a problem that was explicitly discussed in [26, p. 21–22].

1.1. The first step

As a warm-up, let us describe the possible first steps of the MMP for Mg,n, assuming for

the moment that the characteristic of the base field k is 0.

A first natural K-negative1 extremal ray of NE
(
Mg,n

)
is generated by the elliptic

tail curve Cell – that is, the curve Cell (well defined up to numerical equivalence) of Mg,n

parametrising a moving 1-pointed elliptic curve (E,p) attached in p to a fixed n+1-pointed

smooth irreducible curve of genus g−1. The contraction associated to the extremal ray
R≥0 ·Cell has a modular meaning and can be identified with the modular contraction

Υ : Mg,n →M
ps

g,n , (1.2)

where M
ps

g,n is a projective normal Q-factorial irreducible variety which is the coarse

moduli space of the proper smooth Deligne–Mumford stack of n-pointed pseudostable

curves of genus g – that is, n-pointed projective connected (reduced) curves of genus
g with nodes and cusps as singularities, not having elliptic tails and with ample log

canonical line bundle2 – and Υ sends an n-pointed stable curve C ∈Mg,n(k) into the n-

pointed pseudostable curve Υ(C) of M
ps

g,n(k) which is obtained by contracting the elliptic

tails of C into cusps (see Propositions 3.11, 5.1 and 5.5).
The morphism Υ is a birational divisorial contraction of relative Picard number 1, and

it is the unique such morphism if g≥ 5, by [29, Prop. 6.4]. Moreover, if the F-conjecture is

true and n≤ 2, then a close inspection of formulae [29, Thm. 2.1] reveals that R≥0 ·Cell is
the unique K-negative extremal ray of NE

(
Mg,n

)
. On the other hand, if the F-conjecture

is true and n≥ 3, then there are other extremal rays of NE
(
Mg,n

)
that are K-negative,

but R≥0 ·Cell is the unique one which is also K +ψ-negative. In both the MMP and
the Hassett–Keel program of Mg,n, it seems that the divisor class K+ψ is more natural

than the divisor K; one reason is that, on the stack, it is stable under the clutching

morphisms (see, for example, [15, Chap. XVII, Sec. 4]). The upshot of this discussion is

that the morphism (1.2) is the ‘natural’ (and conjecturally unique for n≤ 2) first step of
the MMP for Mg,n.

1.2. The next steps

Let us now analyse the natural possible ways of continuing the MMP of Mg,n by looking

for K-negative extremal rays of M
ps

g,n.

Given a hyperbolic pair (g,n) (that is, such that 2g−2+n > 0), consider the set

Tg,n := ({irr}∪{(τ,I) : 0≤ τ ≤ g,I ⊆ [n] := {1, . . . ,n}}\{(0,∅),(g,[n])})/∼ , (1.3)

1In this introduction, we will be deliberately vague on the canonical class K; what we are going
to say works both for the canonical class of the stack and for its coarse moduli space.

2We assume from now on that (g,n) �= (1,1),(2,0), because Mps
1,1 is empty, while Mps

2,0 is neither

separated nor with finite inertia and M
ps
2,0 is only an adequate moduli space.
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where ∼ is the equivalence relation such that irr is equivalent only to itself and (τ,I) ∼
(τ ′,I ′) if and only if (τ,I) = (τ ′,I ′) or (τ ′,I ′) = (g− τ,Ic), where Ic = [n] \ I. We will

denote the class of (τ,I) in Tg,n by [τ,I] and the class of irr in Tg,n again by irr. Set
T ∗
g,n = Tg,n \{irr}.

Definition 1.1 (Elliptic bridge curves, see Figure 1). Consider the following irreducible

curves (well defined up to numerical equivalence) in Mps

g,n (or in M
ps

g,n), which we call

elliptic bridge curves :

1. If g ≥ 2 and (g,n) 
= (2,0), we denote by C(irr) the closure of the curve formed by a
varying 2-pointed rational nodal elliptic curve (R,p,q) attached to a fixed n-pointed

smooth irreducible curve D of genus g−2 in the two points p and q. If (g,n) = (2,0),

C(irr) is the closure of the curve formed by a varying rational curve with two nodes.

2. For every {[τ,I],[τ +1,I]} = {[τ,I],[g− 1− τ,Ic]} ⊂ Tg,n−{(1,∅), irr}, we denote by

C([τ,I],[τ+1,I]) the curve formed by a varying 2-pointed rational nodal elliptic curve

(R,p,q) attached in p to a fixed smooth irreducible curve D1 of genus τ and with
marked points {pi}i∈I and attached in q to a fixed smooth irreducible curve D2 of

genus g− 1− τ with marked points {pi}i∈Ic , with the convention that if τ = 0 and

I = {k} for some k ∈ [n], then instead of attaching the fixed curve D1, we consider p

as the kth marked points, and similarly for the case (g−1− τ,Ic) = (0,{k}).

The type of an elliptic bridge curve is defined as follows: C(irr) has type {irr} ⊂ Tg,n, and

C([τ,I],[τ +1,I]) has type equal to {[τ,I],[τ +1,I]} ⊂ Tg,n.

The elliptic bridge curves generate linearly independent extremal rays of NE
(
M

ps

g,n

)
that are both K- and K +ψ-negative (see Proposition 5.9). For an arbitrary subset

T ⊆ Tg,n, we denote by FT the K-negative face of NE
(
M

ps

g,n

)
spanned by the classes of

the elliptic bridge curves whose type is contained in T (see Lemma 5.12 for the properties

of FT ).

If the F-conjecture (see [29, Conj. (0.2)]) holds, then the following are true:

g−2

p1
. . .

pn

1

τ

p1
...

pk

1

g− τ −1

pk+1
...
pn

Figure 1. The elliptic bridge curves C(irr) and C([τ,I],[τ + 1,I]), where I = {1, . . . ,k}. The varying

component is a 2-pointed rational nodal curve.
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• The elliptic bridge curves are the unique 1-strata of Mps

g,n which are KMps
g,n

+ψ-

negative. In particular, they are the unique 1-strata of Mps

g which are KMps
g
-

negative.
• The elliptic bridge curves are the unique KMps

g,n
-negative curves of Mps

g,n which

are the image of KMg,n
-positive 1-strata of Mg,n.

Hence the natural prosecution of the MMP for Mg,n is the contraction of one of these
extremal rays, or, more generally, of a face FT and its flip. The goal of this paper is to

show that both the contractions of these K-negative faces and their flips have a modular

description, and to describe explicitly their geometrical properties.

1.3. T -semistable and T+-semistable curves

To give these modular descriptions, we need new stability notions. Given a tacnode p of
an n-pointed projective curve of genus g with ample log canonical line bundle, we define

the type of p as

• type(p) := {irr} ⊆ Tg,n if the normalisation of C at p is connected;
• type(p) := {[τ,I],[τ +1,I]} ⊆ Tg,n if the normalisation of C at p consists of two

connected components, one of which has arithmetic genus τ and marked points
{pi}i∈I and the other of which has arithmetic genus g−1− τ and marked points
{pi}i∈Ic .

In a similar fashion, we define the type of an A1/A1-attached elliptic chain (see

Definition 3.2).

Definition 1.2 (see Definition 3.16). Set T ⊆ Tg,n.

(i) We denote by MT

g,n the stack of T -semistable curves – that is, n-pointed projective

connected curves of genus g having singularities that are nodes, cusps or tacnodes
of type contained in T , not having either A1-attached elliptic tails nor A3-attached

elliptic tails and with ample log canonical line bundle.

(ii) We denote byMT+

g,n the stack of T+-semistable curves – that is, T -semistable curves
without any A1/A1-attached elliptic chain of type contained in T .

1.4. Main results

We can now state the three main results of this paper. We work over an algebraically

closed field k. For some of our results, we will need to assume that the characteristic of

k is big enough with respect to the pair (g,n), which we write as char(k) � (g,n) (see
Definition 4.1); for some others we assume that the characteristic of k is 0.

The first main result describes the relation between the stacks of pseudostable curves,

T -semistable curves and T+-semistable curves and their good moduli spaces.
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Theorem A (= Theorems 3.19 and 4.4). Assume (g,n) 
= (2,0) and T ⊂ Tg,n.

(1) The stack MT

g,n is algebraic, smooth, irreducible and of finite type over k, and we

have open embeddings

Mps

g,n
� � ιT �� MT

g,n MT,+

g,n .� �
ι+T��

(2) Assume that char(k) � (g,n). Then the algebraic stacks MT

g,n and MT+

g,n admit

good moduli spaces M
T

g,n and M
T+

g,n, respectively, which are proper normal irreducible
algebraic spaces over k. Moreover, there exists a commutative diagram

Mps

g,n
� � ιT ��

φps

��

MT

g,n

φT

��

MT+

g,n
� �

ι+T��

φT+

��

M
ps

g,n

fT �� M
T

g,n M
T+

g,n

f+
T��

where the vertical maps are the natural morphisms to the good moduli spaces (indeed,

φps is also a good moduli space if char(k) � (g,n)) and the bottom horizontal

morphisms fT and f+
T are proper (and birational, if (g,n) 
= (1,2)) morphisms.

Theorem A(1) (which coincides with Theorem 3.19) is proved in Section 3. In this

section, we also investigate the properties of the stacks MT

g,n and MT+

g,n: we describe the

containment relation among all these different stacks in Proposition 3.22; we describe the

closed points and the isotrivial specialisations of MT

g,n and MT+

g,n in Propositions 3.24

and 3.27; and we describe the Picard groups of MT

g,n and MT+

g,n in Corollary 3.29.

Theorem A(2) is proved in Section 4 (see Theorem 4.4). The strategy is the same
as the one pioneered by Alper, Fedorchuk, Smyth and van der Wyck in [9] to perform

the first steps of the Hassett–Keel program. The key property is the fact that the open

embeddings of stacks in part (1) of the theorem arise from local variation of geometric

invariant theory (VGIT) with respect to δ−ψ (in the sense of [9, Def. 3.14]). One little
improvement of those methods is provided in Proposition 4.9, which generalises [8, Prop.

1.4] from characteristic 0 to arbitrary characteristic and allows us to construct the good

moduli spaces, provided that the automorphism group schemes of the algebraic stacks
are linearly reductive, which is true if the characteristic is big enough (see Lemma 4.2

and Remark 4.3).

After the completion of this work, Alper, Halpern-Leistner and Heinloth posted on
arXiv a preprint [11] in which they provide a necessary and sufficient criterion for a stack

to admit a good moduli space. Hence it should be possible to prove the existence of

the good moduli spaces M
T

g,n and M
T+

g,n (and also Proposition 4.9) using their criterion;
however, we have not checked the details.

Our second main result identifies, in characteristic 0, the morphism fT with the

contraction of the K-negative face FT of the Mori cone of M
ps

g,n.
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Theorem B (= Theorem 6.1). Assume char(k) = 0, (g,n) 
= (2,0) and T ⊆ Tg,n. The

good moduli space M
T

g,n is projective and the morphism fT : M
ps

g,n →M
T

g,n coincides with

the contraction of the face FT .

The proof of this theorem follows, using the rigidity lemma (Lemma 2.1), from the

fact that fT is a contraction with the property that a curve C ⊂Mps

g,n is contracted by
fT if and only if its class [C] lies in FT (see Lemma 5.12 and Proposition 6.2). From

Theorem B and standard corollaries of the cone theorem, we derive a description of the

rational Picard group of M
T

g,n and of its nef/ample cone (see Corollary 6.4).
In our sequel paper [20], we investigate the geometric properties of the moduli space

M
T

g,n and of the morphism fT (see Proposition 6.7 for a recap of some of those results).

Our last main result is a description of the morphism f+
T : M

T+

g,n →M
ps

g,n (which turns

out to be a projective contraction; see Propositions 7.12 and 7.15) as the flip (in the sense

of Definition 7.1) of fT with respect to suitable Q-line bundles.

Theorem C (= Theorem 7.4, Corollary 7.13, Corollary 7.20). Assume char(k)� (g,n),

(g,n) 
= (2,0),(1,2), and T ⊆ Tg,n. Let L ∈ Pic
(
M

ps

g,n

)
Q
= Pic
(
Mps

g,n

)
Q
= Pic
(
MT

g,n

)
Q
.

The morphism f+
T is the L-flip of fT if and only if L is fT -antiample and the restriction

of L to MT+

g,n descends to a Q-line bundle on M
T+

g,n. In particular:

(i) The morphism f+
T : M

T,+

g,n →M
T

g,n is the
(
KMps

g,n
+ψ
)
-flip of fT .

(ii) The morphism f+
T : M

T,+

g,n → M
T

g,n is the KM
ps
g,n

-flip of fT if and only if M
T,+

g,n

is Q-Gorenstein – that is, if and only if T does not contain subsets of the form
{[0,{j}],[1,{j}],[2,{j}]} for some j ∈ [n] or (g,n) = (3,1),(3,2),(2,2).

Therefore, M
T+

g,n is projective if char(k) = 0.

In proving this result, we investigate the properties of the space M
T+

g,n and of the

morphism f+
T : M

T+

g,n → M
ps

g,n in Section 7. We compute the rational Picard group of

M
T+

g,n in Proposition 7.7 (and in particular, we describe explicitly when a Q-line bundle

on MT+

g,n descends to a Q-line bundle on M
T+

g,n) and we describe when M
T

g,n is Q-factorial
or Q-Gorenstein in Corollary 7.9. Moreover, we describe the exceptional locus of f+

T in

Proposition 7.15 and its relative Mori cone in Proposition 7.19.

Finally, we prove in Corollary 7.21 that whenever fT : M
ps

g,n →M
T

g,n is small and M
T,+

g,n

is Q-factorial, for any Q-line bundle L on M
ps

g,n which is fT -antiample, the rational map(
f+
T

)−1 ◦fT : M
ps

g,n ���MT,+

g,n can be decomposed as a sequence of elementary L-flips.

A posteriori, we can recover our stacks of T -semistable and T+-semistable curves as
semistable loci for convenient line bundles, as explained in the following remark:

Remark 1.3. Let U lci
g,n be the stack of n-pointed curves of arithmetic genus g with

locally complete intersection singularities and with ample log canonical line bundle, as in

Section 3.2. Recall that U lci
g,n is a smooth and irreducible algebraic stack of finite type over
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k. The stack MT

g,n of T -semistable curves is an open substack of U lci
g,n, and its complement

contains a unique divisor, namely the divisor Δ1,∅ parametrising curves with an elliptic

tail.

Assume that char(k) = 0 and consider the projective good moduli space φT :MT

g,n →
M

T

g,n (see Theorem B). Let M be an ample line bundle on M
T

g,n and let L be a line

bundle on U lci
g,n whose restriction to MT

g,n coincides with
(
φT
)∗

(M) (note that such a

line bundle L exists, since U lci
g,n is regular). By combining [4, Thm. 11.5] and the proof

of [4, Thm. 11.14(ii)], it follows that the stack MT
g,n is exactly the semistable locus of

U lci
g,n with respect to LN := L⊗OUlci

g,n
(NΔ1,∅) for N � 0 (in the sense of [4, Def. 11.1])

and M
T

g,n is the good moduli space provided by [4, Thm. 11.5]. A similar statement holds

true for φT+ :MT+

g,n →M
T+

g,n.

1.5. Relation with the Hassett–Keel program

We can now describe in detail the connection between our work and the first steps of

the Hassett–Keel program, as established in [33, 34, 9, 8, 7]. From [7, Thm. 1.1] and
Proposition 5.5(i), it follows (assuming char(k) = 0) that

Mg,n(α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mg,n if 9

11 < α≤ 1,

M
ps

g,n if 7
10 < α≤ 9

11,

M
Tg,n

g,n if α= 7
10,

M
Tg,n+

g,n if 2
3 < α < 7

10 .

(1.4)

Therefore, Theorems B and C imply that at the second critical value of the Hassett–
Keel program, 7/10, the variety Mg,n(7/10) is obtained from Mg,n(7/10+ ε) ∼=M

ps

g,n by

contracting the entire elliptic bridge face of the Mori cone of M
ps

g,n (whose dimension is

computed in Remark 5.10), while the variety Mg,n(7/10− ε) is obtained by flipping this

contraction with respect to K+ψ. As a by-product of our analysis, we obtain some results
on the geometry of Mg,n(7/10) and of Mg,n(7/10− ε): we compute their rational Picard

groups (see Example 6.5 and Corollary 7.11) and determine when they are Q-factorial or

Q-Gorenstein (see Proposition 6.7 and Remark 7.10).

1.6. Open questions

This work leaves out some interesting questions, which we hope to be able to address in

the future:

(1) For any Q-line bundle L on M
ps

g,n which is fT -antiample, we can construct the L-flip
of fT at least if char(k) = 0 (see Lemma 7.3(ii)). Theorem C implies that the L-flip of

fT coincides with f+
T , provided that the restriction of L to MT+

g,n is T+-compatible.

If this condition fails (which can only happen if M
T+

g,n is not Q-factorial), is there a

modular description of the L-flip of fT ?
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(2) Can we describe modularly all the small Q-factorialisations of M
T

g,n – that is, all the
Q-factorial normal proper algebraic spaces endowed with a small contraction X →
M

T

g,n? Even more, it would be interesting to determine the chamber decomposition

Cl
(
M

T

g,n

)
R
/Pic
(
M

T

g,n

)
R
=
∐

Nef
(
Xi/M

T

g

)
,

where Xi → M
T

g,n vary among all the small Q-factorialisations of M
T

g (see [41,

Exercise 116] and [45, Thm. 12.2.7]).

In this paper, we have described modularly some of theQ-factorialisations of M
T

g,n,

namely M
Tdiv

g,n (which coincides with M
ps

g,n whenever fT is small; see Proposition 6.7)

and M
S+

g,n for all subsets S ⊆ T that satisfy the conditions of Corollary 7.9(ii).

However, when M
T+

g,n is not Q-factorial, we know for sure there are other Q-

factorialisations, namely the Q-factorial flips of the morphisms fS : M
ps

g,n → M
S

g,n

where S ⊆ T and M
S+

g,n is not Q-factorial (see the previous question).

(3) Theorem B implies that the moduli space M
T

g,n (and hence also M
T+

g,n) is projective if

char(k) = 0. Is this true in positive characteristics (big enough so that M
T

g,n exists)?
For the special case T = Tg,n, this is achieved in Example 6.5 by building upon

the geometric invariant theory (GIT) analysis of [34] for n= 0. In the general case,

when no GIT construction seems plausible, we could try to use Kollár’s approach

[40], but the main difficulties are that the stack MT

g,n does not have finite stabilisers

and it parametrises nonnodal curves.

(4) Can we find some (or all) Q-line bundles L (perhaps of adjoint type) on Mg,n for

which Proj
⊕

m≥0H
0
(
Mg,n ,�mL�

)
is isomorphic to M

T

g,n or M
T+

g,n? A quite complete

answer for M
T

g,n is contained in [20, Sec. 4].

2. Notation and background

We work over a fixed algebraically closed field k of arbitrary characteristic. Further
restrictions on the characteristic of k will be specified when needed.

2.1. Notations for curves

An n-pointed curve (C,{pi}ni=1) is a connected, reduced, projective 1-dimensional scheme

C over k with n distinct smooth points pi ∈ C (called marked points). If the number of
marked points is clear from the context, we will denote an n-pointed curve simply by

C. The (arithmetic) genus of a curve C will be denoted by g(C). The log canonical line

bundle of an n-pointed curve (C,{pi}ni=1) is ω
log
C := ωC (

∑n
i=1 pi).

A singular point p ∈ C is called:

• a node (or singularity of type A1) if the complete local ring ÔC,p of C at p is
isomorphic to k[[x,y]]/(xy) (or to k[[x,y]]/

(
y2−x2

)
if char(k) 
= 2);
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• a cusp (or singularity of type A2) if ÔC,p
∼= k[[x,y]]/

(
y2−x3

)
;

• a tacnode (or singularity of type A3) if ÔC,p is isomorphic to k[[x,y]]/
(
y
(
y−x2

))
(or to k[[x,y]]/

(
y2−x4

)
if char(k) 
= 2).

When dealing with the deformation theory of a tacnode, we will often assume char(k) 
=
2 for simplicity (note that the semiuniversal deformation space of a tacnode has dimension

3 if char(k) 
= 2 and 4 if char(k) = 2).

We use the notation Δ = SpecR and Δ∗ = SpecK, where R is a k-discrete valuation
ring with residue field k and fraction field K; we set 0, η and η to be, respectively, the

closed point, the generic point and a geometric generic point of Δ. Given a flat and proper

family π : C →Δ, we denote by C0 the special fibre, by Cη the generic fibre and by Cη a
geometric generic fibre.

An isotrivial specialisation is a flat and proper family π : C →Δ of curves such that the

restriction C ×ΔΔ∗ →Δ∗ is trivial – that is, C ×ΔΔ∗ ∼= C×k SpecK for some curve C

defined over k. In this case, we say that C isotrivially specialises to C0, and we write C �

C0. This isotrivial specialisation is called nontrivial if C0 
∼= C, or equivalently (compare

[50, Prop. 2.6.10]), if C 
∼= C×kΔ. Similar definitions can be given for pointed curves, by

requiring that the family π : C →Δ admit sections.

2.2. Notations for Mori theory

A proper morphism f :X → Y between two reduced algebraic spaces of finite type over
k is called a contraction if f∗OX =OY .

Given a reduced proper k-algebraic space X, we denote by N1(X) ∼= ZρX the

(numerical) Néron–Severi group, and we set N1(X)R = N1(X)⊗Z R (the real Néron–
Severi vector space). Via the intersection product, the dual of N1(X) is naturally

identified with the group N1(X) of 1-cycles up to numerical equivalence, and we set

N1(X)R = N1(X)⊗Z R. Inside N1(X)R are the effective cone of curves NE(X), which
is the convex cone consisting of all effective 1-cycles on X, and its closure NE(X), the

Mori cone. Given a contraction π : X → Y between reduced proper k-algebraic spaces,

the π-relative effective cone of curves is the convex subcone NE(π) of NE(X) spanned

by the integral curves that are contracted by π (that is, the integral curves C of X such
that π(C) is a closed point of Y ), and its closure NE(π) := NE(π)⊆NE(X) is called the

π-relative Mori cone. We will use the following facts:

• If Y is projective, then NE(π) is a face of NE(X), and hence NE(π) is a face of
NE(X) (the proof of [24, Prop. 1.14(a)] for NE(π) works also for NE(π)). Moreover,
the class of an integral curve [C] belongs to NE(π) if and only if π∗([C]) = 0.

• If X and Y are projective (which implies that also π is projective), then π is
uniquely determined by NE(π) up to isomorphism (see [24, Prop. 1.14(b)]).

• If π is projective, then the relative Kleiman ampleness criterion holds: a Cartier
divisor D on X is π-ample if and only if D is positive on NE(π) \ {0} (see [42,
Thm. 1.44]).
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Given a projective k-variety X and a face F of NE(X), if there exists a (projective)

contraction π :X → Y into a projective k-variety Y such that NE(π) = F , then π :X → Y

(which is unique by what we have already said) is called the contraction of the face F
and will be denoted by πF :X →XF . Note that not all the faces F of NE(X) can have

an associated contraction; a necessary condition for that to happen is that the closure of

F be equal to a face of NE(X). Contraction of faces of the effective cone of curves can
also be characterised as follows:

Lemma 2.1. Let X be a projective k-variety and let F be a face of NE(X) for which

there exists a contraction πF : X → XF . If f : X → Y is a contraction onto a reduced

proper (not necessarily projective!) k-algebraic space Y such that an integral curve C ⊂X

is contracted by f if and only if [C] ∈ F , then there exists an isomorphism XF
∼= Y under

which f = πF .

Proof.By the assumption on f and the definition of the contraction πF of F , it follows

that an integral curve C ⊂ X is contracted by f if and only if it is contracted by πF .

Since X is assumed to be projective, the morphisms f and πF are projective contractions,
which implies that their closed fibres are connected projective k-varieties. Using suitable

hyperplane sections, we can connect any two closed points of a closed fibre of f (resp.,

πF ) by a chain of integral curves contained in the given fibre of f (resp., πF ). Hence,

from what we have said for curves, we conclude that a closed subscheme of X is a fibre
of f if and only if it is a fibre of πF .

We can now apply the rigidity lemma of [24, Lemma 1.15] to conclude that f factors

through πF and πF factors through f . This implies that there exists an isomorphism
Y ∼=XF under which f = πF .

In Lemma 2.1, the assumption that a curve C ⊂ X is contracted by f if and only if

[C] ∈ F cannot be replaced by the weaker condition that NE(f) = F , as the following
example shows:

Example 2.2. Consider a projective smooth complex 3-fold X with a KX -negative

extremal ray R such that the contraction of R, πR :X → Y , contracts a divisor E∼=P1×P1

to a singular point in Y . In this case, by [46, Thm. 3.3], the normal bundle of E is
O(−1,−1), and the two rulings of E are numerically equivalent on X. Such a 3-fold does

exist, by [46, Section 10, Example 3.44.2].

By Nakano’s theorem, E can also be contracted analytically along one of its rulings by a

holomorphic map f :X →Z. The end result Z is a proper complex smooth algebraic space
(or equivalently, a proper Moishezon manifold) and NE(f) =R. The complex manifold Z

is therefore nonprojective, and it can be seen as a small resolution of Y .

3. The moduli stacks of T -semistable and T+-semistable curves

The aim of this section is to define the relevant moduli stacks of n-pointed curves, with

which we will work throughout the paper.
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Figure 2. An elliptic tail and an elliptic bridge.

F
ig
.
2
-
B
/
W

o
n
li
n
e
,
B
/
W

1

q1

1 1 1

q2

Figure 3. An elliptic chain of length 4. The 1s indicate the genus of the irreducible components.
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3.1. Special subcurves

In this subsection, we will introduce some special subcurves that will be used in the

definition of our moduli stacks. The reader can safely skip this section at a first reading

and come back to the relevant definitions when needed.

Definition 3.1 (Tails, bridges and chains [9, Def. 2.1 and 2.3, Lemma 2.13], see Figures 2

and 3).

1. An elliptic tail is a 1-pointed irreducible curve (E,q) of arithmetic genus 1 (that is,

E is either a smooth elliptic curve or a rational curve with one node or one cusp).

2. An elliptic bridge is a 2-pointed curve (E,q1,q2) of arithmetic genus 1 which either

is irreducible or has two rational smooth components R1 and R2 that meet in either
two nodes or one tacnode, and such that qi ∈Ri for i= 1,2.

3. An elliptic chain of length r is a 2-pointed curve (E,q1,q2) which admits a finite,

surjective morphism γ :
⋃r

i=1(Ei,p2i−1,p2i)→ (E,q1,q2) such that:
(a) (Ei,p2i−1,p2i) is an elliptic bridge for i= 1, . . . ,r;

(b) γ induces an open embedding of Ei \{p2i−1,p2i} into E \{q1,q2} for i= 1, . . . ,r;

(c) γ(p2i) = γ(p2i+1) is a tacnode for i= 1, . . . ,r−1;

(d) γ(p1) = q1 and γ(p2r) = q2.

Note that an elliptic chain of length r has arithmetic genus 2r−1. An elliptic chain of
length 1 is just an elliptic bridge.

Definition 3.2 (Attached elliptic tails and chains [9, Def. 2.4], see Figure 4). Let

(C,{pi}ni=1) be an n-pointed curve of genus g. Let k,k1,k2 be equal to 1 or 3.

1. (C,{pi}ni=1) has an Ak-attached elliptic tail if there exists a finite morphism γ :

(E,q)→ (C,{pi}ni=1) (called a gluing morphism) such that:

(a) (E,q) is an elliptic tail;

(b) γ induces an open embedding of E−{q} into C−∪n
i=1{pi};

(c) γ(q) is an Ak-singularity.
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g− τ −1

Figure 4. Three curves with, respectively, an A1-attached elliptic tail, an A3-attached elliptic tail and

an A1/A1-attached elliptic bridge.
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2. (C,{pi}ni=1) has an Ak1
/Ak2

-attached elliptic chain (of length r) if there exists a

finite morphism γ : (E,q1,q2)→ (C,{pi}ni=1) (called a gluing morphism) such that:

(a) (E,q1,q2) is an elliptic chain (of length r);

(b) γ induces an open embedding of E−{q1,q2} into C−∪n
i=1{pi};

(c) γ(qi) is an Aki
-singularity or ki = 1 and γ(qi) is a marked point (for i= 1,2).

An Ak1
/Ak2

-attached elliptic chain of length 1 is also called an Ak1
/Ak2

-attached

elliptic bridge. An Ak/Ak-attached elliptic chain γ : (E,q1,q2)→ (C,{pi}ni=1) of length
r such that γ(q1) = γ(q2) is called closed. In this case, γ is surjective and (g,n) =(
2r−1+ k+1

2 ,0
)
.

In analysing the automorphism group of the curves we will be dealing with, a central

role is played by rosaries, as introduced in [34] (see also [9, Sec. 2.5]).

Definition 3.3 (Open and closed rosaries [34, Def. 6.1, 6.3], [9, Def. 2.26], see Figure 5).

1. An open rosary of length r, or simply a rosary of length r, is a 2-pointed
curve (R,q1,q2) which admits a finite, surjective morphism γ :

⋃r
i=1(Li,p2i−1,p2i)→

(R,q1,q2) with:

(a) (Li,p2i−1,p2i) is 2-pointed smooth rational curve for i= 1, . . . ,r;

(b) γ induces an open embedding of Li \{p2i−1,p2i} into R\{q1,q2} for i= 1, . . . ,r;

(c) ai := γ(p2i) = γ(p2i+1) is a tacnode for i= 1, . . . ,r−1;

(d) γ(p1) = q1 and γ(p2r) = q2.

2. A closed rosary of length r is a (0-pointed) curve R which admits a finite, surjective

morphism γ :
⋃r

i=1(Li,p2i−1,p2i)→R such that:
(a) (Li,p2i−1,p2i) is 2-pointed smooth rational curve for i= 1, . . . ,r;

(b) γ induces an open embedding of Li \{p2i−1,p2i} into R for i= 1, . . . ,r;

(c) ai := γ(p2i) = γ(p2i+1) for i= 1, . . . ,r−1, and ar := γ(p1) = γ(p2r) are tacnodes.

Note that an open rosary (R,q1,q2) of length r has arithmetic genus g(R) = r−1, while

a closed rosary R of length r has arithmetic genus g(R) = r+1.
An open rosary (R,q1,q2) of length r is such that ωR(q1 + q2) is ample if (and only

if) r ≥ 2 (this is the reason why open rosaries of length 1 will not play any role in the

sequel). An open rosary of length 2 is an elliptic bridge and is the unique elliptic bridge
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Figure 5. A rosary of length 3 and a closed rosary of length 4.
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containing a tacnode; for this reason, we will also call it the tacnodal elliptic bridge. More

generally, any open rosary of even length r can be regarded as an elliptic chain of length
r/2 in which all the elliptic bridges are tacnodal.

Remark 3.4. Assume char(k) 
=2. Open rosaries and closed rosaries of even length share
similar properties and can be described as follows, following [34, Prop. 6.5] (see also [9,

Def. 2.20(2)] for open rosaries of length 2 that coincide with 7/10-atoms):3

(i) An open rosary (R,q1,q2) of length r ≥ 1 can be obtained by gluing the disjoint

union of r projective lines {Li}ri=1 with homogeneous coordinate [si,ti] and the
r−1 affine tacnodal curves Speck[xi,yi]/

(
y2i −x4

i

)
via the gluing relations

xi =

(
ti
si
,
si+1

ti+1

)
∈ k

[
ti
si

]
×k

[
si+1

ti+1

]
, (3.1)

yi =

((
ti
si

)2
,−
(
si+1

ti+1

)2)
∈ k

[
ti
si

]
×k

[
si+1

ti+1

]
. (3.2)

Note that the marked points are equal to q1 = [0,1] ∈ L1 and q2 = [1,0] ∈ Lr, while

the tacnodes have coordinates (for every 1≤ i≤ r−1)

ai = [1,0] on Li and ai = [0,1] on Li+1.

The connected component of the automorphism group of (R,q1,q2) is equal
to the multiplicative group Gm which acts, in the coordinates already given,

by

λ · [si,ti] =
[
λ(−1)i+1

si,ti

]
, λ ·xi = λ(−1)ixi, λ ·yi = λ2(−1)iyi.

Note that the weights of the Gm-action on the tangent spaces at the marked points

are

wtGm
(Tq1(R)) = 1 and wtGm

(Tq2(R)) = (−1)r.

3Closed rosaries of odd length have different properties: they depend on one modulus and they
do not admit an infinite group of automorphisms. Since we will not need them, we refrain from
giving an explicit description, and direct the interested reader to [34, Prop. 6.5].
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(ii) A closed rosary R of even length r≥ 1 can be obtained by gluing the disjoint union

of r projective lines {Li}ri=1 with homogeneous coordinate [si,ti] and the r affine

tacnodal curves Speck[xi,yi]/
(
y2i −x4

i

)
via the gluing relations

xi =

(
ti
si
,
si+1

ti+1

)
∈ k

[
ti
si

]
×k

[
si+1

ti+1

]
, (3.3)

yi =

((
ti
si

)2
,−
(
si+1

ti+1

)2)
∈ k

[
ti
si

]
×k

[
si+1

ti+1

]
, (3.4)

where we adopt the cyclic convention Lr+1 := L1, xr+1 := x1 and yr+1 := y1. Note

that the tacnodes have coordinates (for every 1≤ i≤ r)

ai = [1,0] on Li and ai = [0,1] on Li+1.

The connected component of the automorphism group of R is equal to the

multiplicative group Gm which acts, in the coordinates given, by

λ · [si,ti] =
[
λ(−1)i+1

si,ti

]
, λ ·xi = λ(−1)ixi, λ ·yi = λ2(−1)iyi.

Note that this is well defined, since (−1)r+1 = (−1)1 because r is even.

Similar to elliptic chains, open rosaries also can be attached in different ways inside

a pointed curve. However, we will need to consider only nodal attachments, as we now

define:

Definition 3.5 (Attached rosaries [34, Def. 6.3] and [9, Def. 2.26]). Let (C,{pi}ni=1) be

an n-pointed curve. We say that (C,{pi}ni=1) has an A1/A1-attached rosary (of length r),
or simply an attached rosary, if there exists a finite morphism γ : (R,q1,q2)→ (C,{pi}ni=1)

(called a gluing morphism) such that:

(a) (R,q1,q2) is a rosary (of length r);

(b) γ induces an open embedding of R−{q1,q2} into C−∪n
i=1{pi};

(c) γ(ri) is a node or a marked point (for any i= 1,2).

Note that we could have an A1/A1-attached rosary γ : (R,q1,q2)→ (C,{pi}ni=1) of length
r such that γ(q1) = γ(q2): in this case we have C =R and (g,n) = (r,0).

Next we want to define the type of a tacnode, of an Ak1
/Ak2

-attached elliptic chain,
of an attached rosary and of a closed rosary, which will be a subset of the set Tg,n (see

definition (1.3)).

Definition 3.6 (Types of tacnodes, attached elliptic chains, attached and closed rosaries,
see Figures 6). Let (C,{pi}ni=1) be a n-pointed curve such that C is Gorenstein and

ωC (
∑n

i=1 pi) is ample.

(1) Let p ∈ C be a tacnode. We say that p is of type:
• type(p) := {irr} ⊆ Tg,n if the normalisation of C at p is connected;
• type(p) := {[τ,I],[τ + 1,I]} ⊆ Tg,n if the normalisation of C at p has two

connected components, one of which has arithmetic genus τ and marked points
{pi}i∈I .
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(2) Let γ : (E,q1,q2)→ (C,{pi}ni=1) be an Ak1
/Ak2

-attached elliptic chain of length r≥ 1

and with k1,k2 = 1 or 3. Set

ε(k1,k2) =

⎧⎪⎨⎪⎩
0 if k1 = k2 = 1,

1 if (k1,k2) = (1,3) or (3,1),

2 if k1 = k2 = 3.

We say that (E,q1,q2) is of type:
• type(E,q1,q2) := {[0,{pi}],[1,{pi}], . . . ,[2r − 1 + ε(k1,k2),{pi}]} ⊆ Tg,n if either

γ(q1) = pi or γ(q2) = pi;
type(E,q1,q2) := {irr} ⊆ Tg,n if γ(q1) and γ(q2) are singular points (either

nodes or tacnodes) of C and C \γ(E) is connected (which includes also the case
of a closed Ak1

/Ak2
-attached elliptic chain, in which case C \γ(E) = ∅);

• type(E,q1,q2) := {[τ,I],[τ +1,I], . . . ,[τ +2r−1+ ε(k1,k2),I]} ⊆ Tg,n if γ(q1) and

γ(q2) are singular points (either nodes or tacnodes) of C and C \γ(E) consists
of two connected components, one of which has arithmetic genus τ with marked
points {pi}i∈I .

(3) Let γ : (R,q1,q2) → (C,{pi}ni=1) be an attached rosary of length r. We say that
(R,q1,q2) is of type:
• type(R,q1,q2) := {[0,{pi}],[1,{pi}], . . . ,[r− 1,{pi}]} ⊆ Tg,n if either γ(q1) = pi or

γ(q2) = pi;
• type(R,q1,q2) := {irr} ⊆ Tg,n if γ(q1) and γ(q2) are nodes of C and C \γ(R) is

connected (which includes also the case where C \γ(R) = ∅, which can happen
only if (g,n) = (r,0) and γ(q1) = γ(q2));

• type(R,q1,q2) := {[τ,I],[τ +1,I], . . . ,[τ + r− 1,I]} ⊆ Tg,n if γ(q1) and γ(q2) are

nodes of C and C \γ(R) consists of two connected components, one of which
has arithmetic genus τ with marked points {pi}i∈I .

(4) The type of a closed rosary R is set to be type(R) := {irr}.

One can check that these definitions are well posed.

τ
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pk

1

g− τ −2

pk+1
...
pn

τ

p1
...

pk

1 1 1

g− τ −5

pk+1
...
pn

Figure 6. A curve with an A3/A1-attached elliptic bridge of type {[τ,I],[τ +1,I],[τ +2,I]} and a curve

with an A1/A1-attached elliptic chain of type {[τ,I],[τ +1,I], . . . ,[τ +5,I]}, where I = {1, . . . ,k}.
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g− τ −1 τ

0 0
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Figure 7. An A1/A1-attached elliptic bridge and a tacnode that isotrivially specialise to an A1/A1-

attached rosary of length 2.
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Remark 3.7. Note that the type γ : (R,q1,q2) → (C,{pi}ni=1) of an attached rosary is
the union of the types of all the tacnodes contained in γ(R), and similarly for a closed

rosary.

We conclude this subsection by describing some isotrivial specialisations that come

from the Gm-action on open rosaries and closed rosaries of even lengths (see Remark 3.4)

and will play a crucial role in what follows. Given a (possibly n-pointed) curve C with a
special subcurve R, we say that R specialises isotrivially to R′ if there exists an isotrivial

specialisation of C into a (possibly n-pointed) curve C ′ which is obtained by attaching

R′ to C \R.

Lemma 3.8 (see Figure 7 and 8). Assume that char(k) 
= 2. We have the following

isotrivial specialisations:

(i) an A1/A1-attached elliptic chain of length r ≥ 1 isotrivially specialises to an

attached rosary of length 2r;

(ii) an A1/A3-attached elliptic chain of length r ≥ 1 isotrivially specialises to an

attached rosary of length 2r+1;

(iii) an A3/A3-attached elliptic chain of length r ≥ 0 (which for r = 0 is a tacnode by

convention) isotrivially specialises to an attached rosary of length 2r+2;

(iv) a closed A3/A3-attached elliptic chain of length r ≥ 1 isotrivially specialises to a

closed rosary of length 2r.

Moreover, each of these isotrivial specialisations preserves the type – that is, the type of

the attached elliptic chain (or of the tacnode) is the same as the type of the closed or

attached rosary to which it specialises.

Proof. See [34, Prop. 8.3, 8.6]

3.2. The stacks of T -semistable and T+-semistable curves

The aim of this subsection is to introduce the stacks of T -semistable and T+-semistable
n-pointed curves.

Let Ug,n (resp., U lci
g,n) be the algebraic stack of flat, proper families of n-pointed curves

(π : C →B,{σi}ni=1), where {σi}ni=1 are distinct sections that lie in the smooth locus of
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Figure 8. Two A3/A1-attached elliptic bridges that isotrivially specialise to an A1/A1-attached rosary

of length 3.
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π, such that the geometric fibres of π are Gorenstein (resp., locally complete intersection

[lci]) curves of arithmetic genus g and the line bundle ωC/B (
∑

σi) is relatively ample. Note
that Ug,n is of finite type over k, since it parametrises log canonically polarised n-pointed

curves, and U lci
g,n is an open substack of Ug,n which is smooth and irreducible, since lci

curves are unobstructed (see [50, Cor. 3.1.13(ii)] or [52, Tag 0DZX]) and smoothable (see

[31, Ex. 29.0.1, Cor. 29.10]) and the condition of being lci is open (see [30, Def. 19.3.6, Cor.
19.3.8]). For any 1≤ k≤ 3, we denote by Ug,n(Ak)⊂U lci

g,n the open substack parametrising

curves with at worst A1, . . . ,Ak-singularities. Note that Ug,n(A1) =Mg,n.

Let us now recall the definition and the basic properties of the stack of pseudostable
curves.

Definition 3.9.

(i) An n-pointed pseudostable curve of genus g is an n-pointed curve (C,{pi}ni=1) in

Ug,n(A2) that does not have A1-attached elliptic tails.

(ii) The stack of pseudostable n-pointed curves of genus g is denoted by Mps

g,n.

The stack of pseudostable curves Mps

g,n coincides with the stack Mg,n(9/11− ε) =

Mg,n(7/10+ε) from [9, Def. 2.5 and Sec. 2.2]. We have decided to adopt this terminology

because it is a natural extension of the case n= 0 originally considered by Schubert [49]
(see also Hassett and Hyeon [33] and Hyeon and Morrison [37]).

Fact 3.10 ([9, Thm. 2.7]). We have the following open embeddings:

Mg,n ↪→Mg,n(9/11) := Ug,n(A2)←↩Mg,n(9/11− ε) =Mps

g,n .

In particular, the stack Mps

g,n is a smooth irreducible algebraic stack of finite type over k.

Note that for small values of (g,n), the stack Mps

g,n is degenerate: if g = 0, then Mps

0,n =

M0,n, while for (g,n) = (1,1) we have Mps

1,1 = ∅.
The properties of the algebraic stack Mps

g,n and its relation with the stack Mg,n of

stable curves are collected in the following proposition:

Proposition 3.11. Assume that (g,n) 
= (1,1),(2,0).

(i) There is a surjective morphism Υ̂ :Mg,n →Mps

g,n which, on geometric points, sends

a stable n-pointed curve (C,{pi}) into the pseudostable n-pointed curve Υ̂(C,{pi})
which is obtained by replacing every (A1-attached) elliptic tail of (C,{pi}) by a cusp.
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(ii) Mps

g,n is a proper stack with finite inertia.

(iii) If char(k) 
= 2 or 3, then Mps

g,n is a Deligne–Mumford (DM) stack.

Proof. This is well known to experts, so we give only a sketch of the proof.

Part (i): the morphism of stacks Υ̂ can be constructed (using the fact that (g,n) 
= (2,0))
as in [33, Thm. 1.1], which deals with n= 0 (note that the assumption char(k) = 0 is not

needed in that proof).

Part (ii): the properness of Mps

g,n can be deduced from the properness of Mg,n and the

existence of the surjective morphism Υ̂ :Mg,n →Mps

g,n, as in [26, Prop. 2.23].

In order to show that Mps

g,n has finite inertia and to prove part (iii), consider (C,{pi})∈
Mps

g,n(k), with k= k, and denote by
(
C̃, {qj}

)
the normalisation of C together with special

points {qj} that are either the inverse images of the points {pi} or the inverse images of

the singular points of C. It can be checked (using the fact that (g,n) 
= (1,1)) that

every component of C̃ of genus 0 (resp., 1) has at least three (resp., one) special points.

(*)
Since the abstract automorphism group of (C,{pi}) injects into the abstract automor-

phism group of
(
C̃, {qj}

)
, and this latter is finite by (*), we deduce that Mps

g,n has finite

inertia.

Moreover, if char(k) 
= 2,3, then the Lie algebra of the automorphism group scheme of

(C,{pi}), which is isomorphic to H0 (C,TC (−
∑

pi)), injects into H0
(
C̃,TC̃ (−

∑
qj)
)
by

[51, Proposition 2.3], and this latter vector space is zero by (*), which shows part (iii).

Remark 3.12. If char(k) is equal to 2 or 3, [51, Example 1] shows that a high-genus

cuspidal curve can have nonzero vector fields, hence Mps

g,n is not a DM stack.

If (g,n) = (2,0), then the stack Mps

g,n does not have finite inertia and is not separated
(hence it is neither proper nor DM), as we now discuss.

Remark 3.13 (Pseudostable curves with (g,n) = (2,0)). In the special case (g,n) = (2,0),

pseudostable curves are of these types: smooth curve C∅, integral curve Cn with one node
and geometric genus 1, integral curve Cc with one cusp and geometric genus 1, rational

curve with two nodes Cnn, rational curve Cnc with one node and one cusp, curve Cnnn

made of two smooth rational curves meeting in three nodes, and rational curve Ccc with
two cusps (see [20, Fig. 1] for a picture of all the strata of Mps

2 ). A pseudostable curve in

Mps

2 is a closed point if and only if either it is nodal or it is the curve Ccc with two cusps.

The pseudostable Cc and Cnc with only one cusp isotrivially specialise to Ccc, and hence

they both contain Ccc in their closure (see [36, Thm. 1]). Moreover, the automorphism
group of Ccc is equal to Gm.

Since Mps

g,n is a proper (smooth and irreducible) stack with finite inertia, we can apply
[38] to deduce the following result:

Corollary 3.14. If (g,n) 
= (1,1),(2,0), then there exist a proper normal irreducible

algebraic space M
ps

g,n and a morphism φps :Mps

g,n →M
ps

g,n which is a coarse moduli space.
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Remark 3.15. If (g,n) = (2,0), then it follows from [36, Thm. 1] that Mps

2 is the quotient
stack of the GIT semistable locus in the Chow variety of tricanonical curves of genus 2.

This implies that the associated GIT quotient, which we will denote by M
ps

2 , is a normal

irreducible projective variety that comes equipped with a morphism φps : Mps

2 → M
ps

2

which is an adequate moduli space in the sense of Alper [5].

We now define the stack of T -semistable and T+-semistable curves for T ⊆ Tg,n (see

definition (1.3)).

Definition 3.16. Fix a subset T ⊆ Tg,n.

(1) Let Ug,n(A3(T )) be the substack of Ug,n(A3) parametrising n-pointed curves in

Ug,n(A3) such that all their tacnodes have type contained in T .

(2) In Ug,n, define the following constructible loci:

BT := {curves containing an A1/A1-attached elliptic chain of type contained in T},

T Ak := {curves containing an Ak-attached elliptic tail}, for k = 1,3 .

(3) Consider the following substacks of Ug,n(A3(T )):

MT

g,n := Ug,n(A3(T ))\
(
T A1 ∪T A3

)
, MT,+

g,n :=MT

g,n \BT .

The n-pointed curves in MT

g,n are called T -semistable, while the n-pointed curves

in MT,+

g,n are called T+-semistable.

Remark 3.17. The two extreme cases of Definition 3.16 are easily described:

1. If T = ∅, then MT

g,n =MT,+

g,n =Mps

g,n .

2. If T = Tg,n, then

MT

g,n =Mg,n(7/10) and MT,+

g,n =Mg,n(7/10− ε),

with the notation of [9, Def. 2.8].

We now want to prove that MT

g,n and MT,+

g,n are algebraic stacks of finite type over k.
Let us first consider the stack Ug,n(A3(T )).

Lemma 3.18. The locus Ug,n(A3(T )) is open in Ug,n(A3). In particular, Ug,n(A3(T )) is

an algebraic stack of finite type over k.

Proof. We will show that Ug,n(A3)\Ug,n(A3(T )) is closed. Since Ug,n(A3(T )) is clearly
constructible in Ug,n(A3), it suffices to show that Ug,n(A3)\Ug,n(A3(T )) is closed under

specialisations.

To this aim, consider a family (π : C →Δ,{σi}ni=1) of curves in Ug,n(A3) (over the
spectrum Δ = SpecR of a discrete valuation ring) such that Cη has a tacnode pη. It is

enough to show that the central fibre C0 has a tacnode p0 of the same type as pη. Up to

passing to a finite base change of Δ, we can assume that there exists a section s of π such
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that s(η̄) = pη. We are now going to show that p0 := s(0) is a tacnode of C0 of the same

type as s(η).

Since the δ-invariant is upper semicontinuous and the tacnodes are the unique singular
points of curves in Ug,n(A3) that have δ-invariant equal to 2, we have that s(0) ∈ C0 is

also a tacnode. Hence the family π : C →Δ is equigeneric (even equisingular) along the

section s; this implies that the partial normalisation of C along the section s produces
a flat and proper family π′ : Y →Δ of curves whose geometric fibres Y0 and Yη are the

partial normalisations of, respectively, C0 and Cη at, respectively, the points s(0) and

s(η) (see [25, I.1.3.2] for k = C and [23, Thm. 4.1] for an arbitrary field k = k; see also
[9, Prop. 2.10] for an ad hoc proof in the case of outer A-singularities). In a flat and

proper morphism with reduced geometric fibres, the number of connected components

of the fibres stays constant and coincides with the number of connected components of

the geometric fibres, so we see that there are two possibilities: either Y0 and Yη are
both connected or they both have two connected components. In the first case, we have

type(s(η)) = irr = type(s(0)). In the second case, we have that Y is the disjoint union of

two flat and proper families π1 : Y1 →Δ and π2 : Y2 →Δ with geometrically connected
fibres of arithmetic genera equal to, respectively, τ ≥ 0 and g−τ −1≥ 0. Moreover, since

the sections σi of π do not meet the section s, they can be lifted uniquely to sections σ′
i

of π′ and hence there exists I ⊆ [n] such that {σ′
i}i∈I are sections of π1 and {σ′

i}i∈Ic are
sections of π2. This clearly implies that type(s(0)) = {[τ,I],[τ +1,I]}= type(s(η)).

This is the main result of this subsection.

Theorem 3.19. Assume that (g,n) 
= (2,0) and fix a subset T ⊆ Tg,n. The stack MT

g,n is
algebraic, smooth, irreducible and of finite type over k, and we have open embeddings

Mps

g,n
� � ιT �� MT

g,n MT,+

g,n .� �
ι+T��

This result is false for (g,n) = (2,0) (see [20, Rmk. 3.9]). If T = Tg,n, then using

Remark 3.17, Theorem 3.19 reduces to [9, Thm. 2.7] for αc = 7/10 (but we have to

assume that (g,n) 
= (2,0)).

Proof. Since the locus T A1 ∪T A3 is closed in Ug,n(A3) by [9, Prop. 2.15(1)], we have that

MT

g,n is open in Ug,n(A3(T )), and hence it is open in U lci
g,n by Lemma 3.18. Therefore,

we conclude that MT

g,n is a smooth and irreducible algebraic stack of finite type over k

because the same is true for U lci
g,n. Moreover, since Ug,n(A2) is open in Ug,n(A3(T )), the

inclusion

Mps

g,n = Ug,n(A2)\T A1 = Ug,n(A2)\
(
T A1 ∪T A3

)
⊆ Ug,n(A3(T ))\

(
T A1 ∪T A3

)
is an open embedding. It remains to prove that BT is closed in MT

g,n. Since BT is

constructible, it is enough to prove that BT is closed under specialisation.

To this aim, consider a family (C → Δ,{σi}) of curves in MT

g,n (over the spectrum
Δ = SpecR of a discrete valuation ring) such that (Cη,{σi(η)}) contains an A1/A1-

attached elliptic chain (E,q1,q2) of length r (for some r ≥ 1) and type contained in T .

Since (g,n) 
= (2,0), we have that q1 is not attached to q2. Therefore, following the proof of

https://doi.org/10.1017/S1474748021000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000116


166 G. Codogni, L. Tasin and F. Viviani

[9, Prop. 2.15(2)]4 and using that (C0,{σi(0)}) is not contained in T A1 ∪T A3 , we get that
(C0,{σi(0)}) contains an A1/A1-attached elliptic chain (E0,t1,t2) of length s ≤ r which

is contained in the limit of (E,q1,q2). From the explicit description of all such possible

limits given in [9, Lemma 2.14], it follows that type(E0,t1,t2)⊆ type(E,q1,q2), and hence
that type(E0,t1,t2) ⊆ T . Therefore the central fibre (C0,{σi(0)}) is contained in BT and

we are done.

Remark 3.20. As observed after [9, Thm. 2.7], the stack Ug,n is the quotient stack of
a locally closed smooth subscheme of an appropriate Hilbert scheme of some projective

space PN by PGLN+1. Hence the same is true for all the stacks MT

g,n and MT+

g,n, since

they are open substacks of Ug,n.

The containment relation among the different stacks MT

g,n is determined in Proposi-

tion 3.22, whose proof is given in [20]. Before that, we need the following definitions:

Definition 3.21.

(i) A subset T ⊆ Tg,n is called admissible if [1,∅] 
∈ T and irr 
∈ T if g = 1 and, for every

[τ,I] in T , either [τ −1,I] or [τ +1,I] is in T .

(ii) Given a subset T ⊂ Tg,n, we obtain an admissible subset T adm ⊆ T as follows:

• First we set T̃ := T −{[1,∅]} if g ≥ 2 and T̃ := T −{[1,∅], irr} if g ≤ 1.

• Then we remove from T̃ all the elements [τ,I] ∈ T̃ such that [τ −1,I] 
∈ T̃ and

[τ +1,I] 
∈ T̃ .

(iii) A subset T ⊂Tg,n is said to beminimal if T = {irr} and g≥ 2 or T = {[τ,I],[τ+1,I]}
(which then forces g ≥ 2 or g = 1 and n≥ 2) for some element [τ,I] 
= [1,∅] of Tg,n.

Observe that the empty set is admissible and is the unique admissible subset if g = 0
or (g,n) = (1,0). If g ≥ 2 or g = 1 and n ≥ 2, then the minimal subsets are exactly the

minimal admissible nonempty subsets of Tg,n. Moreover, a subset T ⊂ Tg,n is admissible

if and only if it is the union of the minimal subsets contained in T .

Proposition 3.22. [[20, Prop. 3.4]] Given two subsets T,S ⊆ Tg,n, we have

MT

g,n ⊆MS

g,n ⊂ Ug,n(A3)⇐⇒ T adm ⊆ Sadm.

In particular, we have MT

g,n = MS

g,n ⇐⇒ T adm = Sadm, in which case we also have

MT,+

g,n =MS,+

g,n .

On the other hand, it can be shown that if Sadm 
= T adm, then MT+

g,n and MS+

g,n are

incomparable.

4The proof of this result is correct if we assume that q1 is not attached to q2 (which is always
the case if (g,n) �= (2,0)), while it is not in general true if q1 is attached to q2 (which always
happens for (g,n) = (2,0)).
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3.3. T -closed and T+-closed curves

The aim of this subsection is to describe the closed points of the stacks of T -semistable

and T+-semistable curves.5

Let us start by describing the closed points of the stack of T -semistable curves.

Definition 3.23 (T -closed curves). Assume that (g,n) 
= (2,0). A curve (C,{pi})
in MT

g,n(k) is T -closed if there is a decomposition (C,{pi}) = K ∪
(
E1,q

1
1,q

1
2

)
∪ ·· · ∪

(Er,q
r
1,q

r
2), where the following are true:

(1)
(
E1,q

1
1,q

1
2

)
, . . . , (Er,q

r
1,q

r
2) are attached rosaries of length 2, or equivalently A1/A1-

attached tacnodal elliptic bridges, of type contained in T .

(2) K does not contain tacnodes nor A1/A1-attached elliptic bridges of type contained

in T . In particular, every connected component of K is a pseudostable curve that
does not contain any A1/A1-attached elliptic bridge of type contained in T .

Here K (which could be empty or disconnected) is regarded as a pointed curve with

marked points given by the union of {pi}ni=1 ∩K and K ∩
(
C \K
)
. We call K the T -

core of (C,{pi}ni=1), and we call the decomposition C =K ∪E1∪·· ·∪Er the T -canonical

decomposition of C.

Note that a Tg,n-closed curve is the same as a 7/10-closed curve as in [9, Def. 2.21].

Proposition 3.24. Fix a subset T ⊂ Tg,n and assume that (g,n) 
= (2,0) and char(k) 
= 2.

(i) A curve (C,{pi}) ∈MT

g,n(k) isotrivially specialises to the T -closed curve (C,{pi})�,
which is the stabilisation of the n-pointed curve obtained from (C,{pi}) by replacing

each tacnode (necessarily of type contained in T ) by a rosary of length 2 and each

A1/A1-attached elliptic bridge of type contained in T by a rosary of length 2.

(ii) A curve (C,{pi}) is a closed point of MT

g,n if and only if (C,{pi}) is T -closed.

Note that if T = Tg,n, this proposition becomes [9, Thm. 2.22] for αc = 7/10 (or [34,

Prop. 9.7] if, furthermore, n= 0).
This proposition is false for (g,n) = (2,0) and T = {irr}; see [20, Rmk. 3.8] for an explicit

description of all the isotrivial specialisations and of the closed points of Mirr

2 .

Proof. Part (i) follows directly from Lemma 3.8.

We now prove part (ii). Part (i) implies that if (C,{pi}) ∈ MT

g,n(k) is a closed point

of MT

g,n, then it must be T -closed. Conversely, let (C,{pi}) ∈ MT

g,n(k) be T -closed

and consider an isotrivial specialisation (C,{pi}) � (C ′, {p′i}) to a closed (and hence

T -closed) point (C ′, {p′i}) of MT

g,n. Since the connected component Aut(C ′, {p′i})
o
of

the automorphism group scheme Aut(C ′, {p′i}) is a torus (see [9, Prop. 2.6]), we can

apply [10, Thm. 1.2] to deduce that MT

g,n is étale locally at (C ′, {p′i}) isomorphic

5In analogy with GIT, we could call these closed points T -polystable (resp., T+-polystable)
curves. We decided not to use this terminology.
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to
[
W/Aut(C ′, {p′i})

o]
, for some affine variety W endowed with an action of the

torus Aut(C ′, {p′i})
o
. We can now apply [39, Thm. 1.4] to deduce that there exists

a one-parameter subgroup λ : Gm → Aut(C ′, {p′i})
o
such that limt→0λ(t) · [(C,{pi})] =

[(C ′, {p′i})]. In other words, (C,{pi}) is in the basin of attraction of (C ′, {p′i}) with respect

to λ.
Now, mimicking the explicit analysis in [34, Prop. 9.7] of the basin of attraction of the

one-parameter subgroups of Aut(C ′, {p′i})
o
(which come from the automorphism groups

of the attached length 2 rosaries of (C ′, {p′i}), as described in Remark 3.4), we deduce

that (C,{pi})∼= (C ′, {p′i}), and hence that (C,{pi}) is a closed point of MT

g,n.

Remark 3.25. It is possible to give an alternative proof of Proposition 3.24(ii) (and
also of Proposition 3.27(ii)) by proving directly, by arguing as in [9, Thm. 2.22], that any

isotrivial specialisation of a T -closed (or T+-closed) curve is actually trivial.

We now move to the description of the closed points of the stack of T+-semistable
curves.

Definition 3.26 (T+-closed curves). We say that a curve (C,{pi}) in MT,+

g,n is T+-closed
either if C is a closed rosary of even length r (which can happen only if (g,n) = (r+1,0)

and irr ∈ T ) or if there is a decomposition (C,{pi}) = K ∪
(
R1,q

1
1,q

1
2

)
∪ ·· · ∪ (Rr,q

r
1,q

r
2),

where the following are true:

(1)
(
R1,q

1
1,q

1
2

)
, . . . , (Rr,q

r
1,q

r
2) are attached rosaries of length 3 (automatically of type

contained in T );

(2) K does not contain A1/A3-attached elliptic bridges of type contained in T nor

closed A3/A3-attached elliptic chains of type contained in T .

Here K (which is allowed to be empty or disconnected) is regarded as a pointed curve
with marked points given by the union of {pi}ni=1∩K and of K ∩ (C \K).

We call K the T+-core of (C,{pi}ni=1), and we call the decomposition C = K ∪R1 ∪
·· ·∪Rr the T+-canonical decomposition of C. Note that K does not contain any A1/A3-

attached elliptic chain of type contained in T , because such a chain would necessarily
contain an A1/A3-attached elliptic bridge of type contained in T , contradicting the

assumptions on K.

Proposition 3.27. Fix a subset T ⊂ Tg,n and assume that (g,n) 
= (2,0) and char(k) 
= 2.

(i) A curve (C,{pi}) ∈ MT,+

g,n (k) isotrivially specialises to the T+-closed curve
(C,{pi})†, which is the stabilisation of the n-pointed curve obtained from (C,{pi})
by replacing each A1/A3-attached elliptic bridge of type contained in T by a rosary

of length 3 and each closed A3/A3-attached elliptic chain of length r and of type
contained in T by a closed rosary of length 2r.

(ii) A curve (C,{pi}) is a closed point of MT+

g,n if and only if (C,{pi}) is T+-closed.

Note that if T = Tg,n and n= 0, then this proposition recovers [34, Prop. 9.9].

Proof. Part (i) follows directly from Lemma 3.8. Arguing as in the proof of Proposi-

tion 3.24(ii), part (ii) follows from (i) and the fact that a T+-closed curve does not lie
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on any basin of attraction of any other T+-closed curve, a property that is checked as in

[34, Prop. 9.9].

3.4. Line bundles on the stacks Mps

g,n MT

g,n and MT+

g,n

The aim of this section is to describe the Picard group of the three stacks Mps

g,n, M
T

g,n

and MT+

g,n that were introduced in Section 3.2.

From the deformation theory of lci singularities, it follows that the stack U lci
g,n is smooth

and the open substack Mg,n = Ug,n(A1)⊂U lci
g,n has complement of codimension 2 (which

can be proved as in [50, Prop. 3.1.5]). Hence, any line bundle on Mg,n extends uniquely to
a line bundle on U lci

g,n. In particular, we can define the Hodge line bundle λ, the canonical

line bundle K, the cotangent line bundles ψi and the boundary line bundles δirr and δi,I
(for every [i,I]∈ Tg,n−{irr} such that |I| ≥ 2 if i= 0) associated to the boundary divisors
Δirr and Δi,I (for an explicit definition of the line bundles λ and K on the entire Ug,n, see

[6, Sec. 1.1].) Following [29], we will set δ0,{i} =−ψi so that the divisors δi,I are defined

for every [i,I]∈ T ∗
g,n. The total boundary line bundle, the total cotangent line bundle and

the extended total boundary line bundle are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ :=
∑

[i,I]∈T∗
g,n:

|I|≥2 if i=0

δi,I + δirr,

ψ :=
n∑

i=1

ψi,

δ̂ = δ−ψ =
∑

[i,I]∈T∗
g,n

δi,I + δirr.

Fact 3.28.

(1) The rational Picard group Pic
(
U lci
g,n

)
Q
=Pic
(
U lci
g,n

)
⊗Q of U lci

g,n is generated by λ, δirr
and {δi,I}[i,I]∈Tg,n−{irr} with no relations if g ≥ 3, and with the following relations

for g = 1,2:

(i) If g = 2, then

10λ= δirr+2δ1, where δ1 :=
∑

[1,I]∈T∗
2.n

δ1,I .

(ii) If g = 1, then ⎧⎪⎪⎨⎪⎪⎩
12λ= δirr,

δirr+12
∑

[0,I]∈T∗
1,n:

p∈I

δ0,I = 0 for any 1≤ p≤ n.

(2) [Mumford’s formula] The canonical line bundle K is equal to

K = 13λ−2δ+ψ.

https://doi.org/10.1017/S1474748021000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000116


170 G. Codogni, L. Tasin and F. Viviani

Indeed, the relations for g = 0 are also known, but we do not include them in this
statement since we will not need them in this paper (see [15, Chap. XIX]).

Proof. Since U lci
g,n is smooth, the Picard group of U lci

g,n is equal to its divisor class group

Cl
(
U lci
g,n

)
, and moreover, since Mg,n is an open subset of U lci

g,n whose complement has

codimension 2, we have Cl
(
U lci
g,n

)
= Cl
(
Mg,n

)
= Pic

(
Mg,n

)
. Hence, both statements

follow from the analogous statements for Mg,n: for (3.28), see [15, Chap. XIX] and the
references therein if char(k) = 0 and [47] if char(k) > 0; for (3.28), see [15, Chap. XIII,

Thm. 7.15] (whose proof works over an arbitrary field).

As a corollary of this fact, we can determine the rational Picard group of the stacks

Mps

g,n, M
T

g,n and MT+

g,n:

Corollary 3.29. We have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pic
(
Mps

g,n

)
Q
= Pic
(
MT

g,n

)
Q
=

Pic
(
U lci
g,n

)
Q

(δ1,∅)
,

Pic
(
MT+

g,n

)
Q
=

Pic
(
U lci
g,n

)
Q(

δ1,{i} : {[0,{i},[1,{i}]⊆ T
) .

Proof. SinceMps

g.n is an open substack of the smooth stack U lci
g,n, its rational Picard group

coincides with its rational divisor class group and it is a quotient of Cl
(
U lci
g,n

)
Q

by the

classes of the irreducible divisors in U lci
g,n \M

ps

g,n, namely δ1,∅. The argument for MT

g,n and

MT+

g,n is similar using the fact that the unique divisor in U lci
g,n \M

T

g,n is again Δ1,∅, while

the irreducible divisors in U lci
g,n \M

T+

g,n are Δ1,∅ and
{
Δ1,{i} : {[0,{i},[1,{i}]} ⊆ T

}
.

From now on, we will denote the restriction of a line bundle on U lci
g,n to one of the open

substacks Mps

g,n, M
T

g,n and MT+

g,n with the same symbol.

Remark 3.30. Recently, Fringuelli and the third author proved in [27] that if char(k) 
=2,

then Pic
(
Mg,n

)
is generated by the tautological line bundles subject to the relations of

Fact 3.28(3.28) (if g ≥ 1). Hence Fact 3.28(3.28) and Corollary 3.29 hold true for the

integral Picard group if char(k) 
= 2.

4. Existence of good moduli spaces

In this section we want to prove that the moduli stacks of T -semistable and T+-semistable

curves admit a good moduli space in the sense of Alper [4].
From now on, we will assume that the characteristic is big enough, as specified in the

following:

Definition 4.1 (Characteristic big enough with respect to T or (g,n)). Given T ⊆ Tg,n,
we will say that the base field k has characteristic big enough with respect to T , and we

will write char(k)� T , either if char(k) = 0 or if the characteristic is positive and does not

divide the order of the étale group scheme of connected components of the automorphism
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group schemes of every k-point of MT

g,n. Given a hyperbolic pair (g,n), we will say that
the base field k has characteristic big enough with respect to (g,n), and we will write

char(k)� (g,n), if char(k)� Tg′,n′ for any hyperbolic pair (g′,n′) such that g′ ≤ g and

n′ ≤ n+(g−g′).

The relevance of the first condition, char(k)� T for the moduli stackMT

g,n, is explained

in the following lemma, and the definition of char(k)� (g,n) is dictated by the induction

used in the proof of Theorem 4.4:

Lemma 4.2. Given T ⊆ Tg,n, the automorphism group scheme of every k-point MT

g,n is
linearly reductive if and only if char(k)� T .

Proof. The automorphism group scheme Aut(C,{pi}) of every k-point (C,{pi}) of M
T

g,n

is an extension of the étale group scheme π0 (Aut(C,{pi})) of its connected components

by the connected component Aut(C,{pi})o containing the identity, which is a torus by [9,

Prop. 2.6]. Hence Aut(C,{pi}) is linearly reductive if and only if char(k) does not divide

the order of the étale group scheme π0 (Aut(C,{pi})) (see [1, §2]) – that is, if and only if
char(k)� T .

Remark 4.3. For any T ⊆ Tg,n, there exists a constant C(T ) such that if char(k)≥C(T ),

then char(k)� T . This follows from the fact that since MT

g,n is of finite type over k, the

order of the finite group schemes of connected components of k-points of MT

g,n is bounded

from above. Similarly, for any hyperbolic pair (g,n) there exists a constant C(g,n) such

that if char(k)≥ C(g,n), then char(k)� (g,n).

It would be interesting to find upper bounds for C(T ) and for C(g,n) (for the analogous
problem for Mg, see [53]).

Theorem 4.4. Let (g,n) 
= (2,0) and fix a subset T ⊆ Tg,n. Assume that char(k)� (g,n)

as in Definition 4.1. The algebraic stacks Mps

g,n, MT

g,n and MT+

g,n admit good moduli

spaces M
ps

g,n, M
T

g,n and M
T+

g,n, respectively, which are normal proper irreducible algebraic

spaces over k. Moreover, there exists a commutative diagram

Mps

g,n
� � ιT ��

φps

��

MT

g,n

φT

��

MT+

g,n
� �

ι+T��

φT+

��

M
ps

g,n

fT �� M
T

g,n M
T+

g,n

f+
T��

(4.1)

where the vertical maps are the natural morphisms to the good moduli spaces and the

bottom horizontal morphisms fT and f+
T are proper morphisms.

By Remark 3.17, the two extremal cases of this theorem are either trivial or already

known at least in characteristic 0: if T adm = ∅ (which is always the case for g = 0 or

(g,n) = (1,1)), then the theorem is trivially true, since Mps

g,n =MT

g,n =MT+

g,n; if T
adm =
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T adm
g,n and char(k) = 0, then the theorem reduces to [8, Thm. 1.1] for αc = 7/10 (but one

has to exclude the case (g,n) = (2,0)).

Remark 4.5. Theorem 4.4 degenerates (but is still true) in the cases (g,n) = (1,1) and

(g,n) = (1,2), while it is false for (g,n) = (2,0) and T adm 
= ∅ (which implies that T adm =

{irr}), as we now discuss.

(1) If (g,n) = (1,1), then Mps

g,n =MT

g,n =MT+

g,n = ∅ for every T .

(2) If (g,n) = (1,2) and T adm 
= ∅ (in which case it must be true that T adm =

{[0,{1}],[1,{1}]}), then all the curves in MT

1,2 isotrivially specialise to the tacnodal

elliptic bridge, so that M
T

1,2 is equal to a point. On the other hand, the stack MT+

1,2

(and hence also its good moduli space M
T+

1,2 ) is empty.

(3) If (g,n) = (2,0) and T adm = {irr}, then we do not know if the good moduli space

for MT

2 = Mirr

2 exists, but certainly if it exists it will not be separated [20]. On

the other hand, the stack MT+

2 =Mirr+

2 is not well defined, since it is not an open

substack of Mirr

2 (but only locally closed) [20, Rmk. 3.9].

Following the strategy of [8], there are two key ingredients in the proof. The first is the

following:

Proposition 4.6. Assume (g,n) 
= (2,0) and char(k)� T and fix a subset T ⊆ Tg,n. Then

the open embeddings

Mps

g,n
� � ιT �� MT

g,n MT,+

g,n
� �

ι+T��

arise from local VGIT with respect to the line bundle δ−ψ on MT

g,n.

We refer to [9, Def. 3.14] for the definition of when two open substacks of a given

algebraic stack X arise from local VGIT at some (or any) closed point x ∈ X (k) with
respect to a line bundle L on X .

Proof. The proof of [9, Thm. 3.17] (or its expanded version in [13, Thm. 3.11]) carries

through, as we now briefly indicate.

Let (C,{pi}) be a closed point of MT

g,n – that is, (C,{pi}) is a T -closed curve by Propo-

sition 3.24(ii). As explained in Remark 3.4, for every A1/A1-attached tacnodal elliptic

bridge
(
Ei,q

1
i ,q

2
i

)
of (C,{pi}), we have a one-parameter subgroup ρi : Aut

((
Ei,q

1
i ,q

2
i

))∼=
Gm ↪→ Aut(C,{pi}), and these one-parameter subgroups freely generate the connected

component Aut(C,{pi})o of Aut(C,{pi}) containing the identity. Arguing as in [9, Prop.

3.25], the character χδ−ψ of Aut(C,{pi})o induced by the line bundle δ−ψ is equal to a
positive power of the diagonal character

χ∗ : Aut(C,{pi})o ∼=
r∏

i=1

Aut
((
Ei,q

1
i ,q

2
i

))
−→Gm ,

(t1, . . . ,tr) �→ t1 · · · tr.
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We can choose coordinates on the first-order deformation space T 1 := T 1((C,pi)) of

(C,{pi}) as in [13, Prop. 3.22], in such a way that the action of Aut(C,{pi})o is diagonal.
Arguing as in [9, Prop. 3.26] (see also [13, Prop. 3.29] for more details), the VGIT ideals

I+χ∗ and I−χ∗ of the action of Aut(C,{pi})o on A := k
[
T 1
]
with respect to the character

χ∗ are such that V
(
I+χ∗

)
is the locus of deformations of (C,{pi}) that keep the tacnode

of some
(
Ei,q

1
i ,q

2
i

)
and smooth out the attaching nodes, while V

(
I−χ∗

)
is the locus of

deformations of (C,{pi}) that smoothe out the tacnode of some
(
Ei,q

1
i ,q

2
i

)
and keep

the attaching nodes. Note that given an A1/A1-attached tacnodal elliptic bridge of type

S ⊂ T , if we smooth out the attaching nodes we are left with a tacnode of type S, and if we
smooth out the tacnode we are left with an elliptic bridge of type S. Therefore, the images

I+χ∗Â and I−χ∗Â of the VGIT ideals in the completion Â := k
[[
T 1
]]

are equal to the ideals

induced by, respectively, the reduced closed substacks MT

g,n \M
ps

g,n and MT

g,n \M
T,+

g,n of

MT

g,n. By [9, Prop. 3.15], this is enough to conclude that the open embeddings

Mps

g,n
� � ιT �� MT

g,n MT,+

g,n
� �

ι+T��

arise from local VGIT with respect to the line bundle δ−ψ on MT

g,n.

The second key point is the proof that the complements of Mps

g,n and of MT+

g,n in MT

g,n

admit good moduli spaces. Let us introduce a notation for these complements:

Definition 4.7. Consider the following closed substacks (with reduced structure) in

MT

g,n:

Z−
T =MT

g,n \M
ps

g,n , and for (g,n) 
= (2,0), Z+
T =MT

g,n \M
T,+

g,n .

Observe that these loci have the following explicit description:

Z−
T =
{
curves in MT

g,n with at least one tacnode (of type contained in T )
}
,

Z+
T =

{
curves in MT

g,n with at least one A1/A1-attached elliptic chain (4.2)

of type contained in T

}
. (4.3)

We first focus on the existence of a good moduli space for the stack Z−
T .

Proposition 4.8. Fix T ⊆ Tg,n and assume that char(k)� T . If MT ′

g′,n′ admits a proper

good moduli space for all T ′ ⊆ Tg′,n′ with either g′ < g and 1 ≤ n′ ≤ n+1 or (g′,n′) =

(g−2,n+2), then Z−
T ⊂MT

g,n admits a proper good moduli space.

Note that Z−
T coincides with the stack Sg,n(7/10) of [8, Section 4] in the case where

T adm = T adm
g,n . Hence, this proposition generalises [8, Prop. 4.10] for αc = 7/10. At the

other extreme, if T adm = ∅, then Z−
T = ∅ by Remark 3.17, and the result is trivial.
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Moreover, if (g,n) = (1,2) and T adm 
= ∅, then Z−
T = S1,2(7/10)∼=BGm because it consists

of one point, namely the tacnodal elliptic bridge, which has automorphism group Gm (see

[8, Lemma 4.3]) and the good moduli space is just a point.

The strategy for the proof of Proposition 4.8 is similar to the one of [8, Prop. 4.10] and

consists in finding a finite cover of Z−
T which is a stacky projective bundle over suitable

stacks MT ′

g′,n′ (as in the statement of Proposition 4.8) and then concluding by applying

the criterion contained in the following proposition, which generalises [8, Prop. 1.4] from

char(k) = 0 to arbitrary characteristic:

Proposition 4.9. Let f : X → Y be a morphism of algebraic stacks of finite type over
an algebraically closed field k (of arbitrary characteristic). Suppose that the following are

true:

(i) the morphism f : X →Y is finite and surjective;

(ii) there exists a good moduli space with X →X with X separated;

(iii) the algebraic stack Y is a global quotient stack – that is, it is isomorphic to [Z/G]

for an algebraic space Z of finite type over k and a reductive algebraic k-group G,

and it admits local quotient presentations (which implies that the stabilisers of its

closed k-points are linearly reductive).

Then there is a good moduli space Y → Y with Y separated. Moreover, if X is proper, so

is Y .

Proof. The proof of [8, Prop. 1.4] works verbatim, provided that we replace [8, Lemma

3.6] with Lemma 4.10.

Lemma 4.10 (Chevalley theorem for stacks). Consider a commutative diagram

X →Y →X

of algebraic stacks of finite type over an algebraically closed field k (of arbitrary
characteristic), where X is an algebraic space. Suppose that the following are true:

(i) the morphism X →Y is finite and surjective;

(ii) the morphism X →X is cohomologically affine;

(iii) the algebraic stack Y is a global quotient stack such that the stabilisers of its closed

k-points are linearly reductive.

Then Y →X is cohomologically affine.

Proof. The first part of the proof follows [8, Lemma 3.6]. Write Y = [V/G] for an algebraic

space V of finite type over k and a reductive algebraic k-group G. Since X →Y is affine, X
is the quotient stack X = [U/G], where U = V ×Y X . Since U →X is affine and X →X is
cohomologically affine, the morphism U →X is affine by Serre’s criterion. The morphism

U → V is finite and surjective, and therefore by Chevalley’s theorem we can conclude

that p : V →X is affine.
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Since the affine morphism p : V →X is G-invariant and G is reductive, we can factor p
as

p : V → [V/G]
φ−→ V/G := SpecOX

p∗(OV )
G →X.

Since the morphism V/G→X is affine (and hence cohomologically affine), it is enough to
show that φ is cohomologically affine (and indeed, we will show that it is a good moduli

space).

Let v be a k-point of V with a closed G-orbit – that is, a closed k-point of Y = [V/G].

Luna’s slice theorem (in the generalised form [10, Thm. 2.1]) implies that we can find a
Gv-invariant locally closed algebraic subspace Wv ⊂ V , containing v and affine over X,

such that the morphism fv :Wv/Gv → V/G is étale and the diagram

[Wv/Gv] ��

φv

��

[V/G]

φ

��
Wv/Gv

fv �� V/G

is Cartesian. Now, since Gv is linearly reductive, the morphism φv is a good moduli space

by [4, Thm. 13.2]. Iterating this argument for all k-points of V with a closed G-orbit and

using the quasi-compactness of V/G, we obtain an étale cover f : Z → V/G such that the
pullback of φ via f is a good moduli space. This implies also that φ is a good moduli

space by [4, Prop. 4.7(ii)], and we are done.

Remark 4.11.

(i) Assumption (iii) in Proposition 4.9 is satisfied for quotient stacks of the form
[U/G], where U is a normal and separated scheme of finite type over k and G is

a smooth linear algebraic k-group, having the property that the stabilisers of the

closed k-points are linearly reductive (see [8, Prop. 2.3] and the references therein).

(ii) If char(k) = 0, then the condition of the stabilisers in Lemma 4.10 can be removed
(indeed, it follows from the first two assumptions on the lemma), as in [8, Lemma

3.6]. However, if char(k) = p > 0, then the condition cannot be dropped, as the

following example (suggested to us by Maksym Fedorchuk) shows:

X = Speck →Y = [Speck/(Z/pZ)]→X = Speck.

Now, before entering into the proof of Proposition 4.8, we will need to review some
constructions from [8, Sec. 4.2], adapted to our setting and notation.

The sprouting stack Sproutg,n(A3) is the algebraic stack (see [8, Def. 4.6]) consisting

of flat and proper families of curves
(
C → S,{σi}n+1

i=1

)
with n+1-sections σi such that

• the family (C → S,{σi}ni=1) is a S-point of Ug,n(A3) and
• C has a tacnodal singularity along σn+1.

Note that the type of the tacnode remains constant along σn+1 (see the proof

of Lemma 3.18), so that Sproutg,n(A3) is the disjoint union of closed and open

substacks where the type of σn+1 is fixed. We will denote by Sproutg,n(A3)
irr
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(resp., Sproutg,n(A3)
0,{j}; resp., Sproutg,n(A3)

h,M ) the closed and open substack of
Sproutg,n(A3) where the tacnodal section σn+1 has type {irr} (resp., {[0,{j}],[1,{j}]};
resp., {[h,M ],[h+1,M ]} with [h,M ] 
= [0,{j}] for any j ∈ [n]).

There is an obvious forgetful morphism

F : Sproutg,n(A3)→Ug,n(A3)

given by forgetting the last section σn+1. The morphism F is finite (and representable)
by [8, Prop. 4.7]. The restriction of F to Sproutg,n(A3)

irr (resp., Sproutg,n(A3)
0,{j}; resp.,

Sproutg,n(A3)
h,M ) will be denoted by Firr (resp., F0,{j}; resp., Fh,M ).

As explained in [8, Sec. 4.2], given a family
(
C → S,{σi}n+1

i=1

)
∈ Sproutg,n(A3)(S), we

can normalise along the section σn+1 and then stabilise in order to get a new family(
Cs → S,{σs

i }n+l
i=1

)
(with l = 0 or 2). The number of connected components of Cs → S,

their genera and number of marked points and the number l is determined by the type

of the tacnodal section σn+1. We can distinguish the following three cases:

• If the tacnodal section σn+1 is of type {irr}, then Cs → S is connected, hence we
get a morphism

Nirr : Sproutg,n(A3)
irr −→Ug−2,n+2(A3),(

C → S,{σi}n+1
i=1

)
�→
(
Cs → S, {σs

i }
n+2
i=1

)
,

where the first n sections σs
i are the images of the first n sections σi, and the last

sections
{
σs
n+1,σ

s
n+l

}
are the two inverse images of σn+1 under the normalisation

along σn+1.
• If the tacnodal section has type equal to {[0,{j}],[1,{j}]}, then the normalisation of

C → S will have two connected components: one a family of genus g−1 curves with
n marked points, and the other one a family of genus 0 curves with two marked
points. When we stabilise, the second component gets contracted and hence we
end up with a morphism

N0,{j} : Sproutg,n(A3)
0,{j} −→Ug−1,n(A3),(

C → S,{σi}n+1
i=1

)
�→ (Cs → S, {σs

i }
n
i=1),

where the first n−1 sections σs
i are the images of the sections {σi}i�=j,n+1, and the

last section σs
n is one of the two inverse images of σn+1 under the normalisation

along σn+1.
• If the tacnodal section has type equal to {[h,M ],[h+1,M ]} with [h,M ] 
= [0,{j}] for

any j ∈ [n], then the normalisation of C → S will have two connected components,
C1 → S of genus h curves and with |M |+1 marked points and C2 → S of genus g−
h−1 and with |M c|+1 marked points. Hence, after stabilising, we get a morphism

Nh,M : Sproutg,n(A3)
h,M −→Uh,|M |+1(A3)×Ug−h−1,|Mc|+1(A3),(

C → S,{σi}n+1
i=1

)
�→
((
Cs
1 → S, {σs

i }i∈M ,σs
n+1

)
,
(
Cs
2 → S, {σs

i }i∈Mc ,σ
s
n+2

))
,

where the sections {σs
i }i∈M∪Mc are the images of the first n sections σi, and the

last sections
{
σs
n+1,σ

s
n+l

}
are the images of the two inverse images of σn+1 under

the normalisation along σn+1.

https://doi.org/10.1017/S1474748021000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000116


Minimal model program for moduli of curves 177

By [8, Prop. 4.9], the maps Nirr, N0,{j} and Nh,M are stacky projective bundles. For

later use, observe that the codomains of these stacky projective bundles are always stacks

of pointed curves with at least one marked point. This is clear for Nirr and Nh,M , and for
N0,{j} it follows from the fact that the morphismN0,{j} : Sproutg,n(A3)

0,{j} →Ug−1,n(A3)

is defined only if {[0,{j}],[1,{j}]} ⊂ Tg,n which implies that n≥ 1.

We now study the compatibility of the maps Nirr, N0,{j} and Nh,M and of Firr, F0,{j}
and Fh,M with the open substacks of T -semistable curves.

Lemma 4.12. Set T ⊆ Tg,n. Then the preimages of MT

g,n via the maps Firr, F0,{j} and
Fh,M are computed as follows:

(i) F−1
irr

(
MT

g,n

)
=

{
∅ if irr 
∈ T,(
N−1

irr

)(
MTg−2,n+2

g−2,n+2

)
if irr ∈ T.

(ii) F−1
0,{j}

(
MT

g,n

)
=

⎧⎨⎩∅ if {[0,{j}],[1,{j}]} 
⊂ T,(
N−1

0,{j}

)(
MT̂

g−1,n

)
if {[0,{j}],[1,{j}]} ⊂ T,

where T̂ is the subset of Tg−1,n defined by⎧⎪⎪⎨⎪⎪⎩
irr ∈ T̂ ⇔ irr ∈ T,

[τ,I] ∈ T̂ ⇔
{
[τ,I] ∈ T if n+1 
∈ I,

[g−1− τ,[n+1]−{I}] if n+1 ∈ I.

(iii) F−1
h,M

(
MT

g,n

)
=

⎧⎨⎩∅ if {[h,M ],[h+1,M ]} �⊂ T,(
N−1

h,M

)(
MT̃h,M

h,|M|+1×MT̃g−h−1,Mc

g−1−h,|Mc|+1

)
if {[h,M ],[h+1,M ]} ⊂ T,

where T̃h,M is the subset of Th,|M |+1 defined by⎧⎪⎪⎨⎪⎪⎩
irr ∈ T̃h,M ⇔ irr ∈ T,

[τ,I] ∈ T̃h,M ⇔
{
[τ,I] ∈ T if |M |+1 
∈ I,

[h− τ,[|M |+1]−{I}}] if |M |+1 ∈ I,

with the convention that [|M |] = [|M |+1]−{|M |+1} is identified with the subset
M ⊂ [n], and where T̃g−h−1,Mc ⊆ Tg−h−1,|Mc|+1 is defined similarly by replacing h

with g−h−1 and M with M c.

Proof. Recall that MT

g,n is the open substack whose k-points are n-pointed curves

(C,{pi}) ∈ Ug,n(A3) that do not have A1- or A3-attached elliptic chains and whose
tacnodes have type contained in T . Hence we can argue with families of curves over

k – that is, with n-pointed curves.

Let us first prove (i). First of all, since for any
(
C,{pi}n+1

i=1

)
∈ Sproutg,n(A3)

irr(k) the

n-pointed curve Firr

(
C,{pi}n+1

i=1

)
= (C,{pi}ni=1) ∈ Ug,n(A3)(k) will have a tacnode of type

{irr} in pn+1, we deduce that F−1
irr

(
MT

g,n

)
= ∅ if irr 
∈ T . We can therefore assume that

irr ∈ T . Note that Firr

(
C,{pi}n+1

i=1

)
= (C,{pi}ni=1) will have an A1- or A3-attached elliptic
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chain if and only if the same property holds for Nirr

(
C,{pi}n+1

i=1

)
=
(
Cs, {psi}

n+2
i=1

)
. Hence

the result follows because every tacnode of
(
Cs, {psi}

n+2
i=1

)
becomes a tacnode of type

{irr} when seen in (C,{pi}ni=1).
Let us now prove (ii). Since for any

(
C,{pi}n+1

i=1

)
∈ Sproutg,n(A3)

0,{j}(k) the n-

pointed curve F0,{j}
(
C,{pi}n+1

i=1

)
= (C,{pi}ni=1) ∈ Ug,n(A3)(k) will have a tacnode of

type {[0,{j}],[1,{j}]} in pn+1, we deduce that F−1
0,{j}

(
MT

g,n

)
= ∅ if {[0,{j}],[1,{j}]} 
⊆ T .

We can therefore assume that {[0,{j}],[1,{j}]} ⊆ T . Note that F0,{j}
(
C,{pi}n+1

i=1

)
=

(C,{pi}ni=1) ∈ Ug,n(A3)(k) will have an A1- or A3-attached elliptic chain if and only

if the same property holds for N0,{j}
(
C,{pi}n+1

i=1

)
=
(
Cs, {psi}

n+1
i=1

)
. Hence the result

follows because every tacnode of
(
Cs, {psi}

n+1
i=1

)
of type {irr} remains of type {irr}

when seen in (C,{pi}ni=1), while every tacnode of
(
Cs, {psi}

n+1
i=1

)
of type {[τ,I],[τ +1,I]}

becomes, when seen in (C,{pi}ni=1), of type {[τ,I],[τ + 1,I]} if n+ 1 
∈ I and of type
{[g−2− τ,[n+1]−{I}],[g−1− τ,[n+1]−{I}]} if n+1 ∈ I.

Let us finally prove (iii). First of all, since for any
(
C,{pi}n+1

i=1

)
∈ Sproutg,n(A3)

h,M (k)

the n-pointed curve Fh,M

(
C,{pi}n+1

i=1

)
= (C,{pi}ni=1)∈Ug,n(A3)(k) will have a tacnode of

type {[h,M ],[h+1,M ]} in pn+1, we deduce that F−1
h,M

(
MT

g,n

)
= ∅ if {[h,M ],[h+1,M ]} 
⊂

T . We can therefore assume that {[h,M ],[h+1,M ]} ⊂ T . Note that Fh,M

(
C,{pi}n+1

i=1

)
=

(C,{pi}ni=1) ∈ Ug,n(A3)(k) will not have an A1- or A3-attached elliptic chain if and

only if the same property holds for both
(
Cs

1, {psi}i∈M ,{pn+1}
)
∈ Uh,|M |+1(A3)(k) and(

Cs
2, {psi}i∈M ,{pn+2}

)
∈ Ug−h−1,|Mc|+1(A3)(k). Hence it remains to determine the type

of the tacnodes of
(
Cs

1, {psi}i∈M ,{pn+1}
)
and
(
Cs

2, {psi}i∈M ,{pn+2}
)
when considered in

(C,{pi}ni=1). We will only examine the tacnodes of
(
Cs

1, {psi}i∈M ,{pn+1}
)
, the other case

being analogous. A tacnode of
(
Cs

1, {psi}i∈M ,{pn+1}
)
of type {irr} remains of type {irr}

when seen in (C,{pi}ni=1), while a tacnode of
(
Cs, {psi}

n+1
i=1

)
of type {[τ,I],[τ + 1,I]}

becomes, when seen in (C,{pi}ni=1), of type {[τ,I],[τ +1,I]} if |M |+1 
∈ I and of type
{[h− τ −1,[|M |+1]−{I}],[h− τ,[|M |+1]−{I}]} if |M |+1 ∈ I. This implies the result.

Using this lemma, we can prove the existence of the proper good moduli space for Z−
T .

Proof.[Proof of Proposition 4.8] Consider the open substack of Sproutg,n(A3):

ET := F−1
irr

(
MT

g,n

) ∐
[0,{j}]∈Tg,n

F−1
0,{j}

(
MT

g,n

) ∐
[h,M]∈Tg,n:

0≤h≤g−1,[h,M ] �=[0,{j}]

F−1
h,M

(
MT

g,n

)
.

The morphism F restricted to ET gives rise to a morphism

FT = F|ET
: ET →MT

g,n ,

which is finite by [8, Prop. 4.7]. By construction, the image of FT is the locus of MT

g,n

having at least one tacnode – that is, exactly Z−
T .
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Observe that the algebraic stack Z−
T , being a closed substack of MT

g,n, is a global
quotient stack of a normal variety by Remark 3.20 and has linearly reductive stabilisers

by Lemma 4.2 and our assumption on char(k). Moreover, Lemma 4.12 and [8, Prop. 4.9]

imply that ET is a stacky projective bundle over the disjoint unions of stacks of the form

MT ′

g′,n′ for suitable T ′ ⊆Tg′,n′ with either g′ <g and 1≤n′ ≤n+1 or (g′,n′)= (g−2,n+2).

Since all these stacks MT ′

g′,n′ admit proper good moduli spaces by assumption, ET also

admits a proper good moduli space. We can now apply Proposition 4.9 and Remark 4.11(i)
to infer that Z−

T admits a proper good moduli space.

Now we turn to the existence of a good moduli space for the stack Z+
T .

Proposition 4.13. Fix T ⊆ Tg,n with (g,n) 
= (2,0) and assume that char(k) � T . If

MT ′

g′,n′ admits a proper good moduli space for all T ′ ⊆ Tg′,n′ with either g′ < g and 1 ≤
n′ ≤ n+1 or (g′,n′) = (g−2,n+2), then Z+

T ⊂MT

g,n admits a proper good moduli space.

Note that Z+
T coincides with the stack Hg,n(7/10) of [8, Sec. 4] in the case where

T adm = T adm
g,n . Hence, this proposition generalises [8, Prop. 4.15] for αc = 7/10 (but one

has to assume that (g,n) 
= (2,0)). At the other extreme, if T adm = ∅, then Z+
T = ∅ by

Remark 3.17 and the result is trivial. Moreover, if (g,n) = (1,2) and T adm 
= ∅, then

Z+
T = MT

1,2 admits a point as a good moduli space by Remark 4.5 (which follows also

from the description Z+
T =H1,2(7/10)∼= [A3/Gm], where Gm acts on A3 with weights 2,3

and 4, see [8, Lemma 4.11]).

The strategy of the proof of Proposition 4.13 is similar to that of [8, Proposition 4.15],
and consists in finding a finite cover of Z+

T consisting of the disjoint union of the product of

a stack admitting a good moduli space with suitable stacks MT ′

g′,n′ (as in the statement

of Proposition 4.13) and then concluding by applying Proposition 4.9. In order to use
this strategy we will need to review some constructions from [8, Sec. 4.3], adapted to our

setting and notation.

For any integer r ≥ 1, let

ECr ⊂M2r−1,2(7/10) =MT2r−1,2

2r−1,2

be the closure (with reduced structure) of the locally closed substack of elliptic chains of

length r. It is proved in [8, Lemma 4.12] that ECr admits a proper good moduli space.

By gluing to an elliptic chain of length r suitable pointed curves, we can obtain n-

pointed curves in Ug,n(A3). More precisely, there are the following two types of gluing
morphisms:

• For any 1≤ r ≤ g/2, we consider the gluing morphism

Gr
irr : Ug−2r,n+2(A3)×ECr −→Ug,n(A3),((
C,{pi}n+2

i=1

)
,(Z,q1,q2)

)
�→ (C ∪Z,{pi}ni=1)/(pn+1 ∼ q1,pn+2 ∼ q2).

Note that we include in this case also the limit case (g,n) = (2r,0), where
Ug−2r,n+2(A3) = U0,2(A3) = ∅ and in this construction we have to glue q1 with q2.
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• For any 0 ≤ h ≤ g− 2r+1 and any M ⊆ [n] with the restriction that |M | ≥ 1 if
either h= 0 or h= g−2r+1, we consider the gluing morphism

Gr
h,M : Uh,|M |+1(A3)×Ug−h−2r+1,|Mc|+1(A3)×ECr −→Ug,n(A3),(

(C,{pi}i∈M,s1),
(
C ′, {p′i}i∈Mc ,s2

)
,(Z,q1,q2)

)
�→ (C ∪C ′∪Z,{pi}ni=1)/

(s1 ∼ q1,s2 ∼ q2).

Note that we include in this case also three degenerate cases: (h,M) = (0,{j}),
in which case Uh,|M |+1(A3) = U0,2(A3) = ∅ and the point q1 is regarded
as the jth marked point; and (g − h − 2r + 1,M c) = (0,{j}), in which case
Ug−h−2r+1,|Mc|+1(A3) = U0,2(A3) = ∅ and the point q2 is regarded as the
jth marked point; and the case where both occurrences happen, namely
(g,n) = (2r − 1,2), when the gluing morphism is the embedding of ECr into
U2r−1,2(A3).

It follows from [8, Lemma 4.13 and 4.14] that the morphisms Gr
irr and Gr

h,M are finite.

For later use, observe that the stacks of the form Ug′,n′(A3) that appear in the domain
of the morphisms Gr

irr and Gr
h,M have the property that n′ ≥ 1 – that is, there is at least

one marked point.

We now study the compatibility of the maps Gr
irr and Gr

h,M with the open substacks of
T -semistable curves.

Lemma 4.14. Set T ⊆ Tg,n.

(i) If irr ∈ T , then

(Gr
irr)

−1
(
MT

g,n

)
=MTg−2r,n+2

g−2r,n+2 ×ECr.

(ii) If {[h,M ], . . . ,[h+2r−1,M ]} ⊆ T and (h,M),(g−h−2r+1,M c) 
= (1,∅), then

(
Gr
h,M

)−1
(
MT

g,n

)
=MT̃h,M

h,|M |+1×MT̃g−h−2r+1,Mc

g−h−2r+1,|Mc|+1×ECr,

where T̃h,M is the subset of Th,|M |+1 defined by⎧⎪⎪⎨⎪⎪⎩
irr ∈ T̃h,M ⇔ irr ∈ T,

[τ,I] ∈ T̃h,M ⇔
{
[τ,I] ∈ T if |M |+1 
∈ I,

[h− τ,[|M |+1]−{I}] ∈ T if |M |+1 ∈ I,

with the convention that [|M |] = [|M |+1]−{|M |+1} is identified with the subset
M ⊂ [n] (which allows us to consider any subset of [|M |] as a subset of [n]), and

where T̂g−h−2r+1,Mc ⊆ Tg−h−2r+1,|Mc|+1 is defined similarly by replacing h with g−
h−2r+1 and M with M c.

https://doi.org/10.1017/S1474748021000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000116


Minimal model program for moduli of curves 181

Proof.Let us first prove (i). First of all, note that Gr
irr

((
C,{pi}n+2

i=1

)
,(Z,q1,q2)

)
does not

have an A1- or A3-attached elliptic chain if and only if the same is true for
(
C,{pi}n+2

i=1

)
.

Moreover, every tacnode of Z and of C becomes of type {irr} in (C ∪Z,{pi}ni=1)/(pn+1 ∼
q1,pn+2 ∼ q2), from which the conclusion follows.

Let us now prove (ii). We will assume that we are not in one of the three degenerate
cases discussed after the definition of Gr

h,M , and leave those three limit cases (which

are easier to deal with) to the reader. First of all, note that since (h,M),(g−h− 2r+

1,M c) 
= (1,∅) by assumption, Gr
h,M

(
(C,{pi}i∈M,s1),

(
C ′, {p′i}i∈Mc ,s2

)
,(Z,q1,q2)

)
does

not have an A1- or A3-attached elliptic chain if and only if the same is true for

(C,{pi}i∈M,s1) and
(
C ′, {p′i}i∈Mc ,s2

)
. Next, every tacnode of Z, when considered in

(C ∪C ′∪Z,{pi}ni=1)/(s1 ∼ q1,s2 ∼ q2), is of type contained in {[h,M ], . . . ,[h+2r−1,M ]},
and hence in T by our assumption. On the other hand, a tacnode of (C,{pi}i∈M,s1) of
type {irr} remains of type {irr} when seen in (C ∪C ′∪Z,{pi}ni=1)/(s1 ∼ q1,s2 ∼ q2), while

if it has type {[τ,I],[τ +1,I]}, it remains of the same type if |M |+1 
∈ I and becomes of

type {[h− τ −1,[|M |+1]−{I}],[h− τ,[|M |+1]−{I}]} if |M |+1 ∈ I. A similar analysis
can be done for C ′, and this concludes the proof.

Using this lemma, we can prove the existence of the good moduli space for Z+
T .

Proof.[Proof of Proposition 4.13] First of all, note that MT

g,n = MT\[1,∅]
g,n , because a

tacnode of type [1,∅] corresponds to a tacnodal elliptic tail, and we have already removed

such a tail from MT

g,n in Definition 3.16. We can thus assume that [1,∅] 
∈ T .

Consider the stack

HT :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∐

{[h,M ],...,[h+2r−1,M ]}⊆T

(
Gr
h,M

)−1
(
MT

g,n

)
if irr 
∈ T,

∐
{[h,M ],...,[h+2r−1,M ]}⊆T

(
Gr
h,M

)−1
(
MT

g,n

) ∐
1≤r≤g/2

(Gr
irr)

−1
(
MT

g,n

)
if irr ∈ T.

The finite morphisms Gr
irr and Gr

h,M give rise to a finite morphism

GT :HT →MT

g,n ,

whose image, by construction, is the locus of MT

g,n having at least one A1/A1-attached
elliptic chain of type contained in T – that is, exactly Z+

T .

Observe that the algebraic stack Z+
T , being a closed substack of MT

g,n, is a global

quotient stack of a normal variety by Remark 3.20 and has linearly reductive stabilisers
by Lemma 4.2 and our assumption on char(k). Moreover, Lemma 4.14 implies that the

stack HT is a (finite) disjoint union of products of the stacks ECr, which admit a proper

good moduli space by [8, Lemma 4.12], and of the stacks MT ′

g′,n′ for suitable T ′ ⊆ Tg′,n′

with either g′ < g and 1≤ n′ ≤ n+1 or (g′,n′) = (g−2,n+2), which admit a proper good
moduli space by assumption. Therefore, HT also admits a proper good moduli space. We

can now apply Proposition 4.9 and Remark 4.11(i) to infer that Z+
T admits a proper good

moduli space.
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We can now prove the main result of this section.

Proof.[Proof of Theorem 4.4] First of all, Proposition 4.6 implies that the two open

embeddings

Mps

g,n ↪→MT

g,n ←↩MT+

g,n

arise from local VGIT with respect to the line bundle δ−ψ on MT

g,n.

Next, the stack Mps

g,n admits a coarse proper moduli space φps : Mps

g,n → M
ps

g,n (see

Proposition 3.11). Since the stabiliser of any k-point of Mps

g,n is linearly reductive by our

assumption on the characteristic (see Lemma 4.2 and recall that Mps

g,n ⊆MT

g,n), we infer

that φps is also a good moduli space by [1, Thm. 3.2].
Therefore, thanks to [8, Theorem 1.3], the existence of proper good moduli spaces fitting

into commutative diagram (4.1) will follow if we show that the stacks Z−
T =MT

g,n \M
ps

g,n

and Z+
T = MT

g,n \M
T+

g,n admit good moduli spaces. This follows from Propositions 4.8

and 4.13 using induction on g: the base of the induction is the case g = 0 when

MT

0,n = M0,n is a variety (hence it is its own good moduli space) and the assumption

on the characteristic of the base field k allows us to apply induction. Observe that the

nonexistence of a proper moduli space for Mirr

2,0 (see Remark 4.5) does not interfere with

this inductive proof, since all the stacks MT ′

g′,n′ appearing in the inductive hypothesis of

Propositions 4.8 and 4.13 are such that n′ ≥ 1.

Finally, observe that the morphisms fT and f+
T are proper (being morphisms between

proper algebraic spaces) and all the good moduli spaces are normal and irreducible, since

the corresponding algebraic stacks are smooth and irreducible by Theorem 3.19 (see [4,

Theorem 4.16(viii)]).

Remark 4.15. Since the stacks MT

g,n and MT+

g,n contain the stack Mg,n of n-pointed

smooth curves of genus g as an open substack, the spaces M
T

g,n and M
T+

g,n are weakly

modular compactifications of Mg,n in the sense of [26, Def. 2.6]. Moreover, they are

modular compactifications of Mg,n in the sense of [26, Def. 2.1] whenever the spaces M
T

g,n

and M
T+

g,n are coarse moduli spaces, or equivalently whenever the stacks MT

g,n and MT+

g,n

are DM, and this happens under the following conditions:

• MT

g,n is a DM stack if and only if char(k)� T and MT

g,n =Mps

g,n – that is, if and

only if T adm = ∅.
• Assume that char(k) � T . Then MT+

g,n is a DM stack if and only if T does not
contain subsets of the form {[τ,I],[τ +1,I],[τ +2,I]} with [τ,I],[τ +2,I] 
= [1,∅].

5. The moduli space of pseudostable curves and the elliptic bridge face

The aim of this section is to study the geometric properties of the moduli space M
ps

g,n

of pseudostable curves and to describe a face of its Mori cone, which we call the elliptic

bridge face, that will play a special role in the sequel.
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We start by studying the singularities, the Picard group and the canonical class of M
ps

g,n.

Proposition 5.1. Assume (g,n) 
= (2,0) and char(k) 
= 2,3. Consider the stack Mps

g,n of

pseudostable curves of genus g with n marked points and let φps : Mps

g,n → M
ps

g,n be the
morphism into its coarse moduli space.

(i) The space M
ps

g,n is normal with finite quotient singularities, hence it is Q-factorial.

If char(k) = 0, then M
ps

g,n is klt.

(ii) The pullback via the morphism φps induces an isomorphism

(φps)∗ : Pic
(
M

ps

g,n

)
Q

∼=−→ Pic
(
Mps

g,n

)
Q
.

(iii) If (g,n) 
= (1,2),(2,1),(3,0), then the canonical line bundle of M
ps

g,n is such that

(φps)∗
(
KM

ps
g,n

)
=KMps

g,n
.

In particular, using (ii) and Mumford’s formula for KMps
g,n

(see Fact 3.28(3.28)),

we get

KM
ps
g,n

= 13λ−2δ+ψ.

From now on, we identify (in char(k) 
=2,3) Q-line bundles on Mps

g,n with Q-line bundles

on M
ps

g,n via the isomorphism (φps)∗ of (ii), similar to what is usually done for Q-line

bundles on Mg,n and on Mg,n.

Proof. Part (i): since Mps

g,n is a smooth and separated DM stack by Fact 3.10 and

Proposition 3.11, its coarse moduli space M
ps

g,n is normal with finite quotient singularities
by [2, Lemma 2.2.3]. We conclude since finite quotient singularities are Q-factorial and,

if char(k) = 0, klt by [42, Prop. 5.15].

Part (iii): it is enough to show that the morphism φps is an isomorphism in codimension

1. First of all, the assumptions on (g,n) guarantee that the locus of n-pointed smooth
curves with nontrivial automorphisms has codimension at least 2 (see [15, Chap. XII,

Prop. 2.15]); hence the morphism φps is an isomorphism in codimension 1 when restricted

to Mg,n ⊂Mps

g,n. Secondl a generic point of a boundary divisor of Mps

g,n does not have
nontrivial automorphisms, and hence φps is also an isomorphism in codimension 1 at the

boundary of Mps

g,n.

Part (ii): consider the following commutative diagram

Pic
(
Mps

g,n

)
Q

�� Cl
(
Mps

g,n

)
Q

(φps)∗

��

Pic
(
M

ps

g,n

)
Q

(φps)∗

��

�� Cl
(
M

ps

g,n

)
Q
.

The upper horizontal morphism is an isomorphism because Mps

g,n is a smooth stack;

the lower horizontal arrow is an isomorphism because M
ps

g,n is normal and Q-factorial
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by (i); and the right vertical arrow is an isomorphism because φps is an isomorphism

in codimension 1, as observed in the proof of (iii). Hence, by the commutativity of the

diagram, we infer that (φps)∗ is also an isomorphism.

Remark 5.2. We do not know whether M
ps

g,n has finite quotient singularities or is simply

Q-factorial when char(k) = 2,3 (see also [3, Rmk. 3.6]). If M
ps

g,n is also Q-factorial when

char(k) = 2,3, then all the results of this section extend to char(k) = 2,3.

Remark 5.3. The first two points of Proposition 5.1 remain true for (g,n) = (2,0).

Indeed, part (i) follows from the fact that M
ps

2 is isomorphic to the GIT quotient of
binary sextics (see [36, Thm. 2]), which is isomorphic to the weighted projective space

P(1,2,3,5) (see [32, Prop. 2.2(1)] and the references therein), and hence it has finite

quotient singularities.

On the other hand, part (ii) follows from the fact that Mps

2 is smooth, M
ps

2 has Q-
factorial singularities and the morphism φps : Mps

2 → M
ps

2 is finite in codimension 1 by

Remark 3.13.

Remark 5.4. In the exceptional cases excluded by Proposition 5.1(iii) (and also for

(g,n) = (2,0)), we can apply Hurwitz formula to the morphism φps :Mps

g,n →M
ps

g,n to get

KMps
g,n

= (φps)∗
(
KM

ps
g,n

)
+R=KM

ps
g,n

+R,

where R is (the class of) the effective ramification divisor. Using Mumford’s formula for

KMps
g,n

, we have

KM
ps
g,n

= 13λ−2δ+ψ−R.

Moreover, from the proof of Proposition 5.1(iii), it follows that R is an effective divisor

not contained in the boundary of Mps

g,n.

We now focus on the relation of the coarse moduli space M
ps

g,n of pseudostable curves

with the coarse moduli space Mg,n of stable curves. Note that for (g,n) 
= (1,1),(2,0), the

morphism of stacks Υ̂ :Mg,n →Mps

g,n of Proposition 3.11(i) induces a proper morphism

between their coarse moduli spaces

Υ : Mg,n →M
ps

g,n . (5.1)

Proposition 5.5. Assume (g,n) 
= (1,1),(2,0) and g ≥ 1.

(i) The space M
ps

g,n is isomorphic to the following log canonical model of Mg,n:

M
ps

g,n
∼=Mg,n

(
9

11

)
:= Proj

⊕
m≥0

H0

(
Mg,n ,

⌊
m

(
KMg,n

+ψ+
9

11
(δ−ψ)

)⌋)
.

In particular, M
ps

g,n is a normal projective variety.

(ii) The morphism Υ is the contraction of the extremal ray R≥0 · [Cell] of the Mori cone

NE
(
Mg,n

)
, which negatively intersects KMg,n

, KMg,n
+ψ, KMg,n

and KMg,n
+ψ.

Moreover, Υ is a divisorial contraction and the exceptional locus is the divisor
Δ1,∅.
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(iii) Assume that char(k) 
= 2,3. The pullback map Υ∗ : Pic
(
M

ps

g,n

)
Q
→ Pic

(
Mg,n

)
Q
is

determined by the following relations:⎧⎪⎨⎪⎩
Υ∗(λ) = λ+ δ1,∅,

Υ∗(δirr) = δirr+12δ1,∅,

Υ∗(δi,I) = δi,I for any [i,I] 
= [1,∅].

Proof.Some parts of this theorem are proved for n= 0 in [33] and [37], and some other

parts are proved in [7] under the assumption that char(k) = 0. Let us convince the reader

that those proofs work for any n and over an arbitrary algebraically closed field k. Consider
the Q-line bundle on Mg,n

Lg,n :=KMg,n
+ψ+

9

11
(δ−ψ) =KMg,n

+
9

11
δ+

2

11
ψ.

By [7, Introduction], the line bundle Lg,n is nef and has degree 0 precisely on the curves

that are numerically equivalent to Cell. Moreover, we claim that Lg,n is semiample on
Mg,n. Indeed, when n= 0, Lg,0 is the pullback via Υ of the natural polarisation coming

from the identification of M
ps

g with the GIT quotient of the Chow variety of 4-canonical

curves (see [37, Thm. 7] and [34, Thm. 3.1]). When n > 0, Lg,n is the pullback of Lg+n,0

via the regular morphism Mg,n →Mg+n that attaches a fixed smooth elliptic curve to each

of the marked points of an n-pointed stable curve of genus g (see [15, Lemma (4.38)]).

These facts imply that a sufficiently high multiple of Lg,n induces a regular morphism

π : Mg,n → Proj
⊕
m≥0

H0

(
Mg,n ,

⌊
m

(
KMg,n

+
9

11
δ+

2

11
ψ

)⌋)
which is the contraction of the extremal ray R≥0 ·Cell of NE

(
Mg,n

)
. The codomain

coincides with Mg,n

(
9

11

)
because

H0

(
Mg,n ,

⌊
m

(
KMg,n

+
9

11
δ+

2

11
ψ

)⌋)
=H0

(
Mg,n ,

⌊
m

(
KMg,n

+
9

11
δ+

2

11
ψ

)⌋)
for all m divisible by the cardinality of all inertia groups of Mg,n (see also [33, Prop.

A.13]).

Now observe that by the modular description of Υ, an integral curve of Mg,n lies on a
closed fibre of Υ if and only if its class lies in R≥0 ·Cell. Moreover, Υ is a contraction by the

Zariski main theorem, since it is a proper morphism between irreducible normal algebraic

spaces, which is moreover birational (being an isomorphism when restricted to the dense

open subset of smooth curves). Therefore, using the rigidity lemma (Lemma 2.1), we get
an isomorphism M

ps

g,n
∼=Mg,n

(
9
11

)
under which Υ gets identified to π.

Using Mumford’s formula KMg,n
= 13λ−2δ+ψ and the formulae from [29, Thm. 2.1],

we compute

Cell ·KMg,n
= Cell ·

(
KMg,n

+ψ
)
=−9.
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If (g,n) 
= (1,2),(2,1),(3,0), then we have KMg,n
=KMg,n

− δ1,∅ by [15, Chap. XII, Cor.

7.16], and then, again using the formulae from [29, Thm. 2.1], we compute

Cell ·KMg,n
= Cell ·

(
KMg,n

+ψ
)
=−8.

In these exceptional cases, we have KMg,n
= KMps

g,n
− δ1,∅−R, with R the ramification

divisor of the morphism φ :Mg,n →Mg,n not entirely contained in the boundary of Mg,n.

We can choose the curve Cell (in its numerical equivalence class) in such a way that the

automorphism group of its generic point is generated by the elliptic involution along the

elliptic tail, which implies that Cell is not contained in R. This ensures that Cell intersects
R nonnegatively and hence negatively intersects KM

ps
g,n

and KM
ps
g,n

+ψ.

Finally, the exceptional locus of Υ contains Δ1,∅, since the curves numerically equivalent

to Cell cover Δ1,∅. On the other hand, since δ1,∅ ·Cell = −1 < 0 by [29, Thm. 2.1], any
curve numerically equivalent to Cell is contained in Δ1,∅. Therefore the exceptional locus

of Υ is equal to Δ1,∅, and hence Υ is a divisorial contraction. This concludes the proof

of (i) and (ii).

In order to prove part (iii), observe that since the exceptional locus of Υ is equal to Δ1,∅,

the pullback of a Q-line bundle L on M
ps

g,n is equal to L+α(L)δ1,∅ for some α(L)∈Q. The
rational number α(L) is uniquely determined by imposing Cell ·Υ∗(L) = Υ∗(Cell) ·L = 0

(because Cell is contracted by Υ), and can be computed using [29, Thm. 2.1].

Remark 5.6. Some parts of this proposition are true also for (g,n) = (2,0). More

specifically, Hyeon and Lee construct in [36, Sec. 4] (see also [32, Prop. 4.2]) a contraction

Υ : M2 → M
ps

2 which contracts Δ1,∅ (even though Υ does not come from a morphism

between the corresponding stacks). Moreover, we have the identification M
ps

2
∼=M2

(
9

11

)
,

as it follows by combining [32, Thm. 4.10] and [36, Thm. 4.2]. Finally, the proof of (iii)
extends verbatim to the case where (g,n) = (2,0).

Remark 5.7. In characteristic 0, the morphism Υ admits another description.

Indeed, from the two open embeddings of Fact 3.10, passing to their good moduli spaces

(in char(k) = 0), we get the following proper birational morphisms between normal proper
algebraic spaces (see [8, Thm. 1.1] for αc = 9/11):

Mg,n

j+1 �� Mg,n(9/11) M
ps

g,n =Mg,n(9/11− ε)
j−1�� .

By [9, Thm. 2.2], the morphism j+1 (resp., j−1 ) is defined on geometric points by sending
a stable (resp., pseudostable) curve into the curve which is obtained by replacing each

elliptic tail (resp., cusp) by a cuspidal elliptic tail. Since cusps do not have local moduli,

the map j−1 is bijective on geometric points, and hence, being proper and birational

between normal algebraic spaces, it is an isomorphism by Zariski’s main theorem.
Comparing these descriptions of j+1 and j−1 on geometric points and the description

of Υ contained in Proposition 3.11(i), we deduce that

Υ =
(
j−1
)−1 ◦ j+1 .
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We now study the elliptic bridge curves in M
ps

g,n introduced in Definition 1.1. Let us

first determine their intersections with the Q-line bundles on Mps

g,n (or on M
ps

g,n).

Lemma 5.8. Assume that char(k) 
= 2,3. Given a Q-line bundle L = aλ+ birrδirr +∑
[i,I]∈T∗

g,n−{[1,∅]} bi,Iδi,I in Mps

g,n, we have the intersection formulas{
C(irr) ·L= a+10birr,

C([τ,I],[τ +1,I]) ·L= a+12birr− bτ,I − bτ+1,I .

Proof. We can compute the intersection on the moduli space M
ps

g,n. The curves C(irr)

and C([τ,I],[τ +1,I]) in M
ps

g,n are push-forwards via Υ of irreducible curves C̃(irr) and

C̃([τ,I],[τ +1,I]) in Mg,n that are defined in the same way. Therefore, by the projection
formula, we have {

C(irr) ·L= C̃(irr) ·Υ∗(L),

C([τ,I],[τ +1,I]) ·L= C̃([τ,I],[τ +1,I]) ·Υ∗(L).
(5.2)

Now, Proposition 5.5(iii) gives

Υ∗(L) = aλ+ birrδirr+(a+12birr)δ1,∅+
∑

[i,I]∈T∗
g,n−{[1,∅]}

bi,Iδi,I . (5.3)

Finally, observe that the curve C̃(irr) coincides with the curve of [29, Thm. 2.2(4)] for

(i,I) = (0,∅), while the curve C̃([τ,I],[τ+1,I]) coincides with the curve of [29, Thm. 2.2(5)]
for (i,I) = (τ,I) and (j,J) = (g−1− τ,Ic). Hence, using [29, Thm. 2.1], we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C̃(irr) ·

⎛⎝aλ+ birrδirr+
∑

[i,I]∈Tg,n−{irr}
bi,Iδi,I

⎞⎠=−2birr+ b1,∅,

C̃([τ,I],[τ +1,I]) ·

⎛⎝aλ+ birrδirr+
∑

[i,I]∈Tg,n−{irr}
bi,Iδi,I

⎞⎠=−bτ,I − bτ+1,I + b1,∅.

(5.4)

We conclude by putting together equations (5.2), (5.3) and (5.4).

Now we look at the subcone of the Mori cone NE
(
M

ps

g,n

)
spanned by the elliptic bridge

curves.

Proposition 5.9. Assume that char(k) 
= 2,3.

(i) The elliptic bridge curves are linearly independent in N1

(
M

ps

g,n

)
and they intersect

KMps
g,n

, KMps
g,n

+ψ, KM
ps
g,n

and KM
ps
g,n

+ψ negatively.

(ii) The convex cone spanned by elliptic bridge curves is a face of the Mori cone

NE
(
M

ps

g,n

)
(which we call the elliptic bridge face). In particular, each elliptic bridge

curve generates an extremal ray of the Mori cone of M
ps

g,n.
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(iii) If (g,n) 
= (1,2),(2,0), then a curve B ⊂Mps

g,n is such that its class in N1

(
M

ps

g,n

)
lies in the elliptic bridge face if and only if the only nonisotrivial components of

the corresponding family of pseudostable curves C →B are A1/A1-attached elliptic
bridges.

Note that part (i) implies that the elliptic bridge face is polyhedral and simplicial.
Observe also that part (iii) is false for (g,n) = (1,2) (resp., (2,0)): in these two cases,

dimN1

(
M

ps

g,n

)
Q
= 1 and the elliptic bridge face, which is spanned by C([0,{1}],[0,{2}])

(resp., C(irr)), coincides with the entire Mori cone NE
(
M

ps

g,n

)
and it is therefore a half-

line. Hence, the class of any effective curve on Mg,n lies in the elliptic bridge face, and

there are plenty of effective curves in the projective varieties M
ps

g,n.

Proof. Part (i): the fact that the elliptic bridge curves are linearly independent in

N1

(
M

ps

g,n

)
follows by a close inspection of the intersection formulas in Lemma 5.8 using

the relations among the generators of Pic
(
M

ps

g,n

)
Q
(see Fact 3.28(3.28), Corollary 3.29

and Proposition 5.1(ii)).
The fact that the elliptic bridge curves negatively intersect KMps

g,n
and KMps

g,n
+ψ

follows again from Lemma 5.8 and Mumford’s formula KMps
g,n

= 13λ− 2δ + ψ (see

Fact 3.28(3.28)). This implies the analogous result for KM
ps
g,n

and KM
ps
g,n

+ψ if (g,n) 
=
(1,2),(2,0),(2,1),(3,0), by Proposition 5.1(iii). In the four exceptional cases mentioned,

we have KM
ps
g,n

= KMps
g,n

−R, with R being the ramification divisor of the morphism

φps : Mps

g,n → M
ps

g,n by Remark 5.4. We can choose the elliptic bridge curves (in their

numerical equivalence class) in such a way that their generic point does not have nontrivial
automorphisms, which implies that they are not contained in R. This ensures that the

elliptic bridge curves intersect R nonnegatively, and hence they negatively intersectKM
ps
g,n

and KM
ps
g,n

+ψ.

Let us now prove parts (ii) and (iii). If (g,n) = (1,2) or (2,0), then dimN1

(
M

ps

g,n

)
= 1

and part (ii) is obvious (while part (iii) is clearly false!).

Otherwise, consider the Q-line bundle on M
ps

g,n

Ng,n :=KMps
g,n

+
7

10
δ+

3

10
ψ =

13

10
(10λ− δ+ψ).

By [7, Thm. 1.2(a)] (whose proof works in arbitrary characteristics and can be applied,

since (g,n) 
= (1,2),(2,0)),6 the line bundle Ng,n is nef and as degree 0 precisely on the

curves of Mps

g,n described in part (iii). Note that such curves are numerically equivalent

to a nonnegative linear combination of elliptic bridge curves in Mps

g,n (since M
ps

1,2 has

6Note that in that theorem, not only (g,n) = (2,0) but also (g,n) = (1,2) must be excluded. The
reason is that these are the only two cases where the line bundle KMps

g,n
+ 7

10δ+
3
10ψ, which is

proportional to 10λ− δ+ψ = 10λ− δ̂, is zero on Mps
g,n.
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Picard number 1 by Corollary 3.29 and Proposition 5.1(ii)) and every elliptic bridge

curve intersects Ng,n in 0 by Lemma 5.8.

Moreover, we claim that Ng,n is semiample on M
ps

g,n. Indeed, when n = 0, Ng,0 is the

pullback of the natural polarisation on the GIT quotient M
c

g of the Chow variety of

bicanonical curves of genus g via a regular morphism Ψ : M
ps

g →M
c

g (see [34, Thm. 2.13]

and [34, Thm. 3.1], whose proofs work in arbitrary characteristic). When n > 0, fixing

an integer h≥ 2 we have that Ng,n is the pullback of Ng+nh,0 via the regular morphism
M

ps

g,n →M
ps

g+nh that attaches a fixed smooth irreducible curve of genus h to each of the

marked points of an n-pointed stable curve of genus g (see [15, Lemma (4.38)] and [7,

Sec. 5.4]).
These facts imply that if we denote by η the fibration induced by a sufficiently high

power of Ng,n, the convex cone spanned by the elliptic bridge curves coincides with the

η-relative effective cone NE(η) of curves and is therefore a face of the effective cone

NE
(
M

ps

g,n

)
of curves (see subsection 2.2). Moreover, property (iii) holds.

It remains to show that the convex cone spanned by the elliptic bridge curves is also a

face of the Mori cone NE
(
M

ps

g,n

)
. However, this convex cone, which coincides with NE(η),

is polyhedral (because it is generated by a finite number of curves) and hence closed. Since
the closure of NE(η) is equal to the π-relative Mori cone NE(η) (see subsection 2.2), we

deduce that the convex cone spanned by the elliptic bridge curves is equal to NE(η) and

hence is a face of NE
(
M

ps

g,n

)
.

Remark 5.10. Assume that g ≥ 1 (to avoid trivialities, since for g = 0 there are no
elliptic bridge curves).

The dimension of the elliptic bridge face, which is equal to the number of elliptic bridge

curves, is equal to

dim(elliptic bridge face) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if (g,n) = (2,0),
g−1
2 if n= 0 and g ≥ 3 is odd,

g
2 −1 if n= 0 and g ≥ 4 is even,

g2n−1−1 if g ≥ 1 and n≥ 1.

Comparing it with the Picard number of M
ps

g,n, which can be obtained from

Fact 3.28(3.28), Corollary 3.29 and Proposition 5.1(ii), we get

codim(elliptic bridge face) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if (g,n) = (2,0),

1 if n= 0 and g ≥ 3 is odd,

2 if n= 0 and g ≥ 4 is even,

2n−1+1− δ2,g − (n+1)δ1,g if g ≥ 1 and n≥ 1,

where δ2,g and δ1,g are the Kronecker symbols.

The subfaces of the elliptic bridge face can be described as follows:
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Definition 5.11 (T-faces). For any T ⊆ Tg,n, we denote by FT the cone in N1

(
M

ps

g,n

)
generated by the classes of elliptic bridge curves of type contained in T . We will call FT

the T -face of the Mori cone.

The poset of T -faces is described by the following result, where we use the terminology

of Definition 3.21:

Lemma 5.12. Assume that char(k) 
= 2,3.

(i) For any T ⊆ Tg,n, the cone FT is a simplicial polyhedral face of the Mori cone

NE
(
M

ps

g,n

)
whose dimension is equal to the number of minimal subsets of Tg,n

contained in T . In particular, the extremal rays of the elliptic bridge face are given

by {FT : T is minimal}.
(ii) If (g,n) 
= (1,2),(2,0), then a curve B ⊂Mps

g,n is such that its class in N1

(
M

ps

g,n

)
lies in FT if and only if the only nonisotrivial components of the corresponding
family of pseudostable curves C → B are A1/A1-attached elliptic bridges of type

contained in T .

(iii) We have FT ⊆ FS if and only if T adm ⊆ Sadm. In particular, we have FT = FS if
and only if T adm = Sadm.

Proof. Part (i): the cone FT is a face of the elliptic bridge face of NE
(
M

ps

g,n

)
, which is a

simplicial polyhedral face of the Mori cone NE
(
M

ps

g,n

)
whose extremal rays are generated

by the elliptic bridge curves (by Proposition 5.9). Hence FT is a simplicial polyhedral

face of the Mori cone NE
(
M

ps

g,n

)
whose extremal rays are generated by the elliptic bridge

curves of type contained in T . We conclude because the elliptic bridge curves correspond

to the minimal subsets of Tg,n. Part (ii) follows from Proposition 5.9(iii) and the fact

that FT is a face of the elliptic bridge face. Part (iii): by part (i), we have FT ⊆ FS if
and only if every minimal subset of Tg,n contained in T is also contained in S, and this

is equivalent to the inclusion T adm ⊆ Sadm.

6. The moduli space of T -semistable curves

The aim of this section is to study the geometric properties of the moduli space M
T

g,n

of T -semistable curves and of the morphism fT : M
ps

g,n →M
T

g,n. Throughout this section,

we assume that char(k)� (g,n) (see Definition 4.1), which is needed for the existence of

the good moduli space M
T

g,n. The main result of this section says that, in characteristic

0, the morphism fT is the contraction of the T -face FT (see Definition 5.11) of the Mori

cone NE
(
M

ps

g

)
.

Theorem 6.1. Set T ⊆ Tg,n with (g,n) 
= (2,0). Assume char(k) = 0. The good moduli

space M
T

g,n is projective, and the morphism fT : M
ps

g,n → M
T

g,n is the contraction of the

face FT . Moreover, fT is a KM
ps
g,n

-negative contraction.
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The theorem is trivially true in the following cases:

• If T adm = ∅ (which is always the case for g = 0 or (g,n) = (1,1)), then fT is the
identity by Remark 3.17. On the other hand, FT = (0), and hence γT is also the
identity.

• If (g,n) = (1,2) and T adm 
= ∅ (in which case it must be true that T adm =

{[0,{1}],[1,{1}]}), then fT : M
ps

1,2 → M
T

1,2 = Speck by Remark 4.5. On the other

hand, FT =NE
(
Mps

1,2

)
(see the discussion following Proposition 5.9), so that the

contraction γT of FT is the map to Speck.

Before proving this theorem, we will need a description of the fibres of fT .

Proposition 6.2. Set T ⊆ Tg,n with (g,n) 
= (2,0) and char(k)� (g,n).

(i) The projective morphism fT is a contraction – that is, (fT )∗
(
OM

ps
g,n

)
=O

M
T
g,n

.

(ii) Let B an integral curve inside Mps

g,n with associated family of pseudostable curves

C → B, and let C be the image of B inside M
ps

g,n. Then C is contracted by fT if
and only if the only nonisotrivial components of the family C are A1/A1-attached

elliptic bridges of type contained in T .

(iii) The exceptional locus of fT is the union of the irreducible closed subsets

Ell([τ,I],[τ +1,I]) := {(C,{pi}) ∈M
ps

g,n having an elliptic bridge of type {[τ,I],[τ +1,I]}}

for every {[τ,I],[τ +1,I]} ⊆ T −{[1,∅]} and

Ell(irr) := {(C,{pi}) ∈M
ps

g,n having an elliptic bridge of type {irr}} if irr ∈ T and g ≥ 2.

Moreover, if (g,n) 
= (1,2), then all these closed subsets have codimension 2 except

Ell([0,{i}],[1,{i}]), which coincides with the divisors Δ1,{i} (for any 1≤ i≤ n). In

particular, fT is always birational, and it is small if and only if T does not contain
any subset of the form {[0,{i}],[1,{i}]} for some 1≤ i≤ n.

Note that the closed subsets Ell([τ,I],[τ + 1,I]) (resp., Ell(irr)) are covered by the
elliptic bridge curves C([τ,I],[τ + 1,I]) (resp., C(irr)). Hence part (iii) is a necessary

condition to fT being the contraction of the face FT . When (g,n) = (1,2) and T adm =

{[0,{1}],[1,{1}]}, the morphism fT is the map to a point and its exceptional locus is equal
to Ell([0,{1}],[1,{1}]) = M

ps

1,2.

Proof. Part (i) follows from the Zariski main theorem using the fact that fT is a

proper morphism between irreducible normal algebraic spaces (see Theorem 4.4), which

is moreover birational because it is an isomorphism when restricted to the dense open
subset of smooth curves.

Let us now prove parts (ii) and (iii). By Proposition 3.24(i), the morphism fT sends

a pseudostable curve (C,{pi}) into the T -closed curve fT ((C,{pi})) which is obtained
from (C,{pi}) by replacing each A1/A1-attached elliptic bridge of type contained in T

by an attached rosary of length 2. The type of any A1/A1-attached elliptic bridge of

(C,{pi}) can be equal to {irr} if irr ∈ T and g ≥ 2, or {[τ,I],[τ +1,I]} if {[τ,I],[τ +1,I]} ⊆
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T −{[1,∅]} (because (C,{pi}) does not have elliptic tails). This implies part (ii) and that

the exceptional locus of fT is equal to

ET :=
⋃

{[τ,I],[τ+1,I]}⊆T−{[1,∅]}
Ell([τ,I],[τ +1,I])

⋃
irr∈T
g≥2

Ell(irr).

We conclude by observing that the closed subsets Ell([τ,I],[τ + 1,I]) and Ell(irr) are

irreducible of the stated codimension.

Proof.[Proof of Theorem 6.1] As observed after the statement of the theorem, we can

assume that (g,n) 
= (1,2), for otherwise the theorem is trivially true.

Since FT is a KM
ps
g,n

-negative face of NE
(
M

ps

g

)
and M

ps

g has klt singularities by

Proposition 5.1(i), the cone theorem [42, Thm. 3.7(3)] implies that there is a KM
ps
g,n

-

negative contraction of FT

γT : M
ps

g,n →
(
M

ps

g,n

)
FT

.

Therefore, the theorem will follow from Lemma 2.1 if we show that an integral curve

C ⊂M
ps

g,n is contracted by fT if and only if its class [C] belongs to FT .

In order to prove this, fix an integral curve C ⊂M
ps

g,n and observe that since Mps

g,n has

finite inertia by Proposition 3.11, the curve C admits a finite cover that lifts to Mps

g,n.

Hence we can find an integral curve B ⊂ Mps

g,n, with associated family of pseudostable

curves C →B, whose image in M
ps

g,n is the curve C. Now, Proposition 6.2(ii) says that C

is contracted by fT if and only if the only nonisotrivial components of the family C are

A1/A1-attached elliptic bridges of type contained in T , which is equivalent to the fact
that [C] belongs to FT by Lemma 5.12(ii).

As a corollary of Theorem 6.1 and some facts that are implicit in the proof of the cone

theorem, we can describe the Néron–Severi group of M
T

g,n and its nef/ample cone. We

will need the following definition, where we freely identify the rational Picard groups of

MT

g,n, M
ps

g,n and M
ps

g,n, using Corollary 3.29 and Proposition 5.1(ii):

Definition 6.3. A Q-line bundle L on MT

g,n (or equivalently on M
ps

g,n or on Mps

g,n) is said

to be T -compatible if L intersects to zero all the elliptic bridge curves of type contained

in T .

Explicitly, using Lemma 5.8, a Q-line bundle

L= aλ+ birrδirr+
∑

[i,I]∈Tg,n−{[1,∅], irr}
bi,Iδi,I ∈ Pic

(
MT

g,n

)
Q

is T -compatible if and only if{
a+10birr = 0 if irr ∈ T,

a+12birr− bτ,I − bτ+1,I = 0 for any {[τ,I],[τ +1,I]} ⊂ T.
(6.1)
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Corollary 6.4. Set T ⊆ Tg,n with (g,n) 
= (2,0). Assume that char(k) = 0. Then the

following are true:

(i) The real Néron–Severi vector space N1
(
M

T

g,n

)
R
can be identified, via pullback along

fT , with the annihilator subspace F⊥
T ⊂ N1

(
M

ps

g,n

)
R
. This implies that a Q-line

bundle L on MT

g,n descends to a (necessarily unique) Q-line bundle on M
T

g,n (which
we will denote by LT ) if and only if L is T -compatible.

(ii) The nef (resp., ample) cone of M
T

g,n can be identified, via pullback along fT , with

the dual face F∨
T := F⊥

T ∩Nef
(
M

ps

g,n

)
of FT (resp., the interior of F∨

T ).

In particular, FT and F∨
T are perfect dual faces – that is, codimFT = dimF∨

T – and hence

they are exposed faces (that is, they admit supporting hyperplanes). Moreover, every Q-

line bundle on M
ps

g,n whose class lies in the interior of F∨
T defines a supporting hyperplane

for FT and is semiample with associated contraction equal to fT .

In [20, Prop. 3.13], we will prove that the second assertion of part (i) holds true if
char(k)� (g,n), arguing similarly to Proposition 7.7.

Proof. Since fT is the contraction of the KM
ps
g,n

-negative face FT by Theorem 6.1, it

follows from [42, Thm. 3.7(4)] that F⊥
T is the pullback via fT of N1

(
M

T

g,n

)
R
, which

proves the first statement in (i). The second statement follows from the first one, the left

part of commutative diagram (4.1) and Proposition 5.1(ii).

Next, since FT is a KM
ps
g,n

-negative face of NE
(
M

ps

g,n

)
, it follows from step 6 of the

proof of [42, Thm. 3.15] that FT is an exposed face. Hence any Q-line bundle L which is
in the relative interior of F∨

T is a supporting hyperplane for FT , and conversely. Moreover,

it follows from the base-point-free theorem (see step 7 of the proof of [42, Thm. 3.15])

that any Q-line bundle L which is a supporting hyperplane for FT is semiample, and the

morphism associated to |mL| (for m� 0) is fT . In particular, it follows that the relative

interior of F∨
T is the pullback via fT of the ample cone of M

T

g,n, and by taking the closures,

we get that F∨
T is the pullback via fT of the nef cone of M

T

g,n, which proves (ii).

Finally, the last part of Corollary 6.4 follows from what has already been proven and

the equalities

codimFT = dimN1
(
M

T

g,n

)
R
= dimF∨

T ,

where we have used [24, Rmk. 7.40] for the first equality and the fact that the nef cone
is a full-dimensional cone in the real Néron–Severi vector space for the second one.

Note that the characteristic 0 assumption is used in the proof of Theorem 6.1 only to

establish the projectivity of M
T

g,n. There is a special case, however, where we can prove

the projectivity in arbitrary characteristic (provided that it is large enough so that M
T

g,n

exists).
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Example 6.5. If T = Tg,n (and (g,n) 
= (2,0)), then Theorem 6.1 is true for char(k)�
(g,n) and can be proved as it follows. From the proof of Proposition 5.9, it follows that

the Q-line bundle on M
ps

g,n

Ng,n :=KMps
g,n

+
7

10
δ+

3

10
ψ =

13

10
(10λ− δ+ψ)

is semiample and its dual face in NE
(
Mps

g,n

)
is the elliptic bridge face (note that this is

true also for (g,n) = (1,2), in which case N1,2 = 0 and the elliptic bridge face coincides

with the entire effective cone of curves of M
ps

1,2). Hence a sufficiently high multiple of Ng,n

induces a morphism

ψ : M
ps

g,n → Proj
⊕
m≥0

H0
(
M

ps

g,n , �mNg,n�
)
,

which is the contraction of the elliptic bridge face and whose codomain coincides with

Mg,n

(
7

10

)
by [7, Prop. 7.2]. Since the fTg,n

-relative effective cone NE
(
fTg,n

)
of curves

is equal to the elliptic bridge face (see Proposition 6.2(ii)), Lemma 2.1 implies that we
have an isomorphism

M
Tg,n

g,n
∼=Mg,n(7/10), (6.2)

under which fTg,n
gets identified with ψ. Note that formula (6.2) is a special case (if

char(k) = 0) of [7, Thm. 1.1], and it was previously proved by Hassett and Hyeon [34] for

n= 0.

From the foregoing discussion and Remark 5.10, we can compute the Picard number

of M
Tg,n

g,n
∼= Mg,n(

7
10 ) and the relative Picard number of fTg,n

(assuming that g ≥ 1, for

otherwise we have that M0,n(
7
10 ) =M0,n):

(1) The Picard number of Mg,n(
7
10 ) is equal to

dimQPic

(
Mg,n

(
7

10

))
Q

=

⎧⎪⎨⎪⎩
1 if n= 0 and g ≥ 3 is odd,

2 if n= 0 and g ≥ 4 is even,

2n−1+1− δ2,g − (n+1)δ1,g if g ≥ 1 and n≥ 1.

(2) The relative Picard number of fTg,n
is equal to

ρ
(
fTg,n

)
=

⎧⎪⎨⎪⎩
g−1
2 if n= 0 and g ≥ 3 is odd,

g
2 −1 if n= 0 and g ≥ 4 is even,

g2n−1−1 if g ≥ 1 and n≥ 1.

In [20], we study several geometric properties of the space M
T

g,n and the morphism fT .
For completeness, we mention those results here. We will need the following definition:
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Definition 6.6. Given a subset T ⊆ Tg,n, we define the divisorial part of T as the
(possibly empty) subset T div ⊂ T defined by

T div :=

{
∅ if (g,n) = (1,1) or (2,1),

{{[0,{i}],[1,{i}]} : {[0,{i}],[1,{i}]} ⊂ T} otherwise.

It is easily checked that T div is admissible in the sense of Definition 3.21.

Proposition 6.7. [[20, Prop. 3.16, 3.17]] Assume (g,n) 
= (2,0), char(k) � (g,n) and

T ⊆ Tg,n.

(1) The following conditions are equivalent:

(a) M
T

g,n is Q-factorial.

(b) M
T

g,n is Q-Gorenstein.

(c) T adm = T div.

(2) The morphism fT : M
ps

g,n →M
T

g,n can be factorised as

fT : M
ps

g,n

f
Tdiv−−−→M

Tdiv

g,n
σT−−→M

T

g,n (6.3)

in such a way that the following are true:

(a) The morphism fTdiv is a composition of 1
2

∣∣T div
∣∣ divisorial contractions, each

having the relative Mori cone generated by a K-negative extremal ray.

(b) The algebraic space M
Tdiv

g,n is Q-factorial and, if char(k) = 0, klt.

(c) The morphism σT is a small contraction.

(d) The relative Mori cone of σT is a K
M

Tdiv

g,n

-negative face if and only if T does

not contain subsets of the form {[0,{j}],[1,{j}],[2,{j}]} for some j ∈ [n] or
(g,n) = (3,1),(3,2),(2,2).

Note that if char(k) = 0, then all the spaces appearing in formula (6.3) are projective

varieties, and hence fTdiv is the composition of divisorial contractions of K-negative rays,

while σT is a small contraction of a K-negative face if and only if the condition on T
appearing in (d) is satisfied.

7. The moduli space of T+-semistable curves

The aim of this section (throughout which we assume that char(k) � (g,n); see

Definition 4.1) is to describe the map f+
T : M

T+

g,n →M
T

g,n in terms of the minimal model
program. In particular, we will describe f+

T as the flip of fT with respect to suitable Q-line

bundles.

7.1. Preliminary definitions and results about flips

Definition 7.1. Let f :X → Y be a proper morphism between normal algebraic spaces

of finite type over k and let D be an f -antiample Q-Cartier Q-divisor on X. A D-flip of
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f is a proper morphism f+
D : X+

D → Y of algebraic spaces fitting into the commutative

diagram

X
η ���������

f ���
��

��
��

� X+
D

f+
D����

��
��
��

Y ,

(7.1)

where η is a rational map and such that:

(i) the algebraic space X+
D (which is automatically of finite type over k) is normal;

(ii) the morphism f+
D is a small contraction – that is, it is a contraction whose

exceptional locus Exc
(
f+
D

)
has codimension at least 2;

(iii) the Q-divisor D+ := η∗(D) is Q-Cartier and f+
D -ample.

A D-flip is called elementary if f has relative Picard number 1.

The difference between Definition 7.1 and the classical definition of a flip is that we do
not require the map f to be small.

Remark 7.2. Assume that f is birational. Then, since f+
D is small, we have that η−1 does

not contract any divisor – that is, in the terminology of [18, Page 424] it is a birational
contraction. Moreover, the map η is D-nonpositive in the sense of [18, Def. 3.6.1] and so

η is the ample model of D over Y (see [18, Def. 3.6.5]).

In [14, Definition 11], a diagram analogous to diagram 7.1 is called an MMP-step.

We discuss the existence and uniqueness of flips in the following result. The proof is

standard; we include it for completeness.

Lemma 7.3. Let f :X → Y be a proper morphism of normal algebraic spaces of finite
type over k and let D be an f -antiample Q-Cartier Q-divisor on X.

(i) If the D-flip of f exists, then it is given by

f+
D :X+

D = Proj
⊕
m≥0

OY (�mf∗(D)�)→ Y. (7.2)

In particular, the D-flip of f is unique.

Moreover, the D-flip depends only on the Q-line bundle L=OX(D) associated to
D, and hence it will be denoted by fL :X+

L → Y and called the L-flip of f .

(ii) If char(k) = 0, X is klt and KX is f -antiample, then the coherent sheaf⊕
m≥0OY (�mf∗(D)�) of OY -algebras is finitely generated, and hence the D-flip of

f exists.

Proof. Part (i): suppose that the D-flip f+
D :X+

D → Y exists. Since D+ is Q-Cartier and

f+
D -ample, we have

X+
D = ProjY

⊕
m≥0

(
f+
D

)
∗
(⌊
mD+
⌋)

.
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Since X+
D is normal and the morphism f+

D is a small contraction, arguing as in the proof

of [42, Lemma 6.2] and using the fact that
(
f+
D

)
∗ (D

+) =
(
f+
D

)
∗ (ν∗(D)) = f∗(D) because

of the commutativity of diagram (7.1), we have the equality of OY -algebras:⊕
m≥0

(
f+
D

)
∗
(⌊
mD+
⌋)

=
⊕
m≥0

OY

(⌊
m
(
f+
D

)
∗
(
D+
)⌋)

=
⊕
m≥0

OY (�mf∗(D)�) .

This concludes the proof of the first part of part (i). The second part follows from the

fact that the push-forward of divisors respects the linear equivalence of divisors.
Part (ii): by [28, Corollary 4.5] there exists an effective Q-divisor Δ on Y such that

(Y ,Δ) is klt. Hence we conclude by applying [41, Thm. 92], which is a consequence of

[18] and says that the coherent sheaf
⊕

m≥0OY (�mf∗(D)�) of OY -algebras is finitely
generated.

7.2. Main results about f+
T and M

T+

g,n

The following theorem, which is the main result of this section, describes the morphism
f+
T as the flip of fT with respect to suitable Q-line bundles:

Theorem 7.4. Assume (g,n) 
= (2,0),(1,2), char(k) � (g,n) and T ⊆ Tg,n. Let L ∈
Pic
(
M

ps

g,n

)
Q
=Pic
(
Mps

g,n

)
Q
. Then f+

T is the L-flip of fT if and only if L is fT -antiample

and the restriction of L to MT+

g,n is T+-compatible (see Definition 7.5).

The special cases (g,n) = (1,2) and (2,0) are discussed in Remark 4.5.

The proof of this theorem will be the outcome of several propositions that are interesting

in their own. We first describe the rational Picard group of M
T+

g,n. Recall the description

of the rational Picard group of MT+

g,n given in Corollary 3.29.

Definition 7.5. A Q-line bundle on MT+

g,n

L= aλ+ birrδirr+
∑

[i,I]∈Tg,n−{[1,∅],⋃j [1,{j}], irr}
bi,Iδi,I (7.3)

is said to be T+-compatible if bτ,I = bτ+2,I for any pair {[τ,I],[τ +2,I]} ⊂ Tg,n such that

{[τ,I],[τ +1,I],[τ +2,I]} ⊂ T and [τ,I],[τ +2,I] 
∈

⎧⎨⎩[1,∅],⋃
j

[1,{j}]

⎫⎬⎭ . (7.4)

Remark 7.6. If a Q-line bundle on MT

g,n is T -compatible (see Definition 6.3), then

its restriction to MT+

g,n is T+-compatible. This can be proven by direct inspection.

Alternatively, it follows from the fact that T -compatible Q-line bundles are exactly Q-line

bundles on M
T

g,n by Corollary 6.4(i), while T+ compatible Q-line bundles are exactly the

Q-line bundles on M
T+

g,n by Proposition 7.7, and we can pull back line bundles via the

map f+
T : M

T

g,n →M
T+

g,n.
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Proposition 7.7. Assume (g,n) 
= (2,0),(1,2) and char(k) � (g,n). A Q-line bundle L

on MT+

g,n descends to a (necessarily unique) Q-line bundle on M
T+

g,n (which we will denote

by LT+) if and only if L is T+-compatible.

Proof.Up to passisng to a multiple, it is enough to prove the statement for a line bundle

on MT+

g,n. Given such a line bundle L on MT,+

g,n and any one-parameter subgroup ρ :

Gm → Aut(C,{pi}) for some k-point (C,{pi}) ∈ MT+

g,n(k), the group Gm will act via ρ

onto the fibre L(C,{pi}) of the line bundle over (C,{pi}) and we will denote by 〈L,ρ〉 ∈ Z
the weight of this action. According to [4, Theorem 10.3] applied to the good moduli

space φT,+ :MT+

g,n →M
T+

g,n, the line bundle L descends to a Q-line bundle on M
T+

g,n if and

only if 〈L,ρ〉 = 0 for any one-parameter subgroup ρ : Gm → Aut(C,{pi}) of any closed

k-point (C,{pi}) ∈ MT+

g,n(k). We will now show that this is the case if and only if L is
T+-compatible.

To prove the ‘if’ implication, assume that L is T+-compatible and fix a closed k-

point (C,{pi}) of MT+

g,n(k). By Proposition 3.27, either (C,{pi}) is a closed rosary,
and in this case the result follows from Lemma 7.8(ii), or it admits a T+-canonical

decomposition C =K ∪
(
R1,q

1
1,q

1
2

)
∪ ·· ·∪ (Rr,q

r
1,q

r
2), where Ri is a rosary of length 3. In

the second case, the connected component of the identity of Aut(C,{pi}) is isomorphic to
Πr

i=1Aut
(
Ri,q

i
1,q

i
2

)∼=Gm
×r, and hence it is enough to show that 〈L,ρi〉=0 for i=1, . . . ,r,

where ρi is an isomorphism between Gm and Aut
(
Ri,q

i
1,q

i
2

)
. The result now follows from

Lemma 7.8(i).

To prove the converse direction, note that for each triple as in formula (7.4), there exists
a T+-closed curve with an attached rosary of length 3 and type {[τ,I],[τ +1,I],[τ +2,I]};
denote by ρ the one-parameter subgroup associated to this rosary. The necessary condition

〈L,ρ〉= 0 implies, because of Lemma 7.8(i), that bτ,I = bτ+2,I .

Lemma 7.8. Assume that char(k) 
= 2. Consider a line bundle L on MT+

g,n written as in
equation (7.3).

(i) Let (C,{pi}) be a k-point of MT+

g,n(k) that has an attached rosary (R,q1,q2) of

length 3 and consider the one-parameter subgroup ρR : Gm

∼=−→ Aut((R,q1,q2))
o ⊂

Aut((C,{pi})) normalised so that wtρR
(Tq1(R)) = 1. Then we have

〈L,ρR〉=
{
0 if type(R,q1,q2) = {irr},
−bτ,I + bτ+2,I if type(R,q1,q2) = {[τ,I],[τ +1,I],[τ +2,I]}.

(ii) Let R ∈ MT+

r+1,0(k) be a closed rosary of even length r (which can occur only if

irr ∈ T ) and consider the one-parameter subgroup ρR : Gm

∼=−→ Aut(R)o. Then we
have

〈L,ρR〉= 0.
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Proof.Let us first prove part (i). Since the weight is linear in L, the result will follow

from the following identities:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈λ,ρR〉= 0,

〈δirr,ρR〉= 0,

〈δi,I,ρR〉=

⎧⎪⎨⎪⎩
−1 if type(R,q1,q2) = {[i,I],[i+1,I],[i+2,I]},
1 if type(R,q1,q2) = {[i−2,I],[i−1,I],[i,I]},
0 otherwise.

(7.5)

These identities can be proved by adapting the computations in [6], as we now explain.

To compute the weights of the ψ classes, recall that the fibre of ψi over a pointed

curve (C,{pi}) is canonically isomorphic to the cotangent vector space Tpi
(C)∨. Hence,

〈ψi,ρR〉 is the weight of the action of Gm, via the one-parameter subgroup ρR, on the

1-dimensional k-vector space Tpi
(C)∨. This is not trivial if and only if pi is either q1 or

q2, and it is computed in Remark 3.4.
To compute the other weights, we first make the following key remark. The Gm-action

on (R,q1,q2), which is explicitly described in Remark 3.4, is such that the weights of Gm

on the coordinates (x1,y1) that define the first tacnode t1 :=
{
y21 −x4

1 = 0
}
are opposite

to the weights of Gm on the coordinates (x2,y2) that define the second tacnode t2 :={
y22 −x4

2 = 0
}
. This implies that the contributions that come from the two tacnodes cancel

out.

In order to compute the other contributions, consider the formally smooth morphism

Φ : Def(C,{pi})−→Def
(
ÔC,t1

)
×Def

(
ÔC,t2

)
×
∏

qi node

Def
(
ÔC,qi

)
into the product of the (formal) semiuniversal deformation spaces of the two tacnodes a1
and a2 of R, and of nodes belonging to {q1,q2}. The group Aut(R,q1,q2)

o ∼= Gm acts on

these deformation spaces in such a way that the morphism Φ is equivariant.
Let us now write down explicitly the deformation spaces of the singularities mentioned,

together with the action of Gm, using the equation given in Remark 3.4. The semiuniversal

deformation space of qi (for i = 1,2), whenever it is a node, is equal to Spf k[bi] and the

semiuniversal deformation family is nizi = bi, where zi is a local coordinate on the branch
of the node qi not belonging to R. The action of Gm is given by t · (bi) = (tbi). The locus

of singular deformations of the node qi is cut out by the equation {bi = 0}, which has

Gm-weight 1.
On the other hand, the semiuniversal deformation space of the tacnode ti is equal

to Def
(
ÔC,p

)
∼= Spf k[a2,a1,a0] and the semiuniversal deformation family is given by

y2 = x4 + a2x
2 + a1x+ a0. This forces the action of Gm to be given by t · (a2,a1,a0) =(

t−2a2,t
−3a1,t

−4a0
)
. The locus of singular deformations of p is cut out in Def

(
ÔC,p

)
by the equation {Δ= 0}, where Δ := Δ(a2,a1,a0) is the discriminant of the polynomial

x4+a2x
2+a1x+a0. Since the discriminant is a homogeneous polynomial of degree 12 in

the roots of this polynomial and Gm acts on the roots with weight −1 (the same weight
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as x), it follows that Gm acts on the discriminant associated to t1 with weights −12, and

+12 on the discriminant associated to t2.

If both points qi are nodes, it follows from this discussion that the only boundary

divisor of MT

g,n that can have a nonzero weight against ρR is the one whose equation

on Def(C,{pi}) is given by Φ∗(b1b2) = 0. This divisor is 2δirr if type(R,q1,q2) = irr and

δi,I +δg−2−i,Ic if type(R,q1,q2) = {[i,I],[i+1,I],[i+2,I]}. The result now follows from [6,
Lemma 3.11] and Remark 3.4. If one of the qis is a node and the other is a marked point,

the result follows by combining the foregoing discussion with argument about ψ-classes.

When (g,n) = (2,2), it could be that both qis are marked points, in which the argument
about ψ-classes is enough.

To compute the weight of λ, by combining [6, Cor. 3.3] and the computations in [6,

Sec. 3.1.3] for A3, we deduce that 〈λ,ρR〉 = 0, as we get +1 from one tacnode and −1
from the other tacnode.

Part (ii) can be proven in a similar way – the key remark is that since the length of the

rosary is even, all contributions cancel out.

As a corollary, we can now determine when M
T+

g,n is Q-factorial or Q-Gorenstein.

Corollary 7.9. Assume (g,n) 
= (2,0),(1,2), char(k) � (g,n) and T ⊆ Tg,n. Then the

following are true:

(i) If (g,n) 
= (2,1) or (3,0), then the pullback of the (Weil) divisor K
M

T+
g,n

via the

morphism φT+ :MT+

g,n →M
T+

g,n is equal to(
φT+
)∗(

K
M

T+
g,n

)
=KMT+

g,n
= 13λ−2δ+ψ. (7.6)

(ii) M
T+

g,n is Q-factorial if and only if T does not contain subsets of the form {[τ,I],[τ+
1,I],[τ +2,I]} with [τ,I],[τ +2,I] 
∈

{
[1,∅],
⋃

j [1,{j}]
}

and [τ,I] 
= [τ +2,I].

(iii) M
T+

g,n is Q-Gorenstein if and only if T does not contain subsets of the form
{[0,{j}],[1,{j}],[2,{j}]} for some j ∈ [n], or (g,n) = (3,1),(3,2),(2,2).

Note the following special cases:

• If T adm is minimal (in the sense of Definition 3.21) or T adm = T div (see

Definition 6.6), then M
T+

g,n is Q-factorial.

• If g = 1, then M
T+

g,n is Q-factorial for any T ⊆ T1,n.

• If n= 0, then M
T+

g,n is Q-Gorenstein for any T ⊆ Tg,0.

Proof.Part (i): under the assumptions on the pair (g,n), the morphism φT+ : MT+

g,n →
M

T+

g,n is an isomorphism in codimension 1 when restricted to the open substack Mg,n

of smooth curves (see [15, Chap. XII, Prop. 2.15]). Moreover, the generic point in each

boundary divisor of MT+

g,n does not have any nontrivial automorphisms and is T+-closed

(see Definition 3.26), and hence it is a closed point of the stackMT+

g,n. This implies that the
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morphism φT+ is an isomorphism in codimension 1, which implies that
(
φT+
)∗(

K
M

T+
g,n

)
=

KMT+
g,n

. We now conclude using Mumford’s formula (see Fact 3.28(3.28)).

Part (ii): by the foregoing discussion, the morphism φT+ : MT+

g,n → M
T+

g,n is an

isomorphism in codimension 1. Hence the pullback map via the morphism φT+ induces
an isomorphism on the divisor class groups

(
φT+
)∗

: Cl
(
M

T+

g,n

)
Q

∼=−→ Cl
(
MT+

g,n

)
Q
= Pic
(
MT

g,n

)
Q
,

where in the last equality we used the fact that MT

g,n is a smooth stack. Hence,

Proposition 7.7 implies that M
T+

g,n is Q-factorial – that is, Pic
(
M

T+

g,n

)
Q
=Cl
(
M

T+

g,n

)
Q
– if

and only if any Q-line bundle on MT+

g,n is T+-compatible. An inspection of Definition 7.5

gives the result.
Part (iii): first of all, in the special cases (g,n) = (2,1) or (3,0), it is easy to check,

using part (ii), that MT

g,n is Q-factorial for any T . Hence we can assume that (g,n) 
=
(2,1) or (3,0), which implies that equation (7.6) for

(
φT+
)∗(

K
M

T+
g,n

)
holds true. By

Proposition 7.7, M
T+

g,n is Q-Gorenstein if and only if

13λ−2δ+ψ = 13λ−2δirr−2
∑

[i,I] �∈{[1,∅],⋃j [1,{j}],
⋃

j [0,{j}]}
δi,I −

n∑
j=1

δ0,{j}

is T+-compatible. An inspection of Definition 7.5 gives the result.

Remark 7.10. It follows from Corollary 7.9 that the algebraic space M
Tg,n+

g,n is

• Q-factorial if and only if g ≤ 1, or (g,n) = (2,1),(3,0),(3,1),(3,2),(4,0),(5,0),(6,0);
• Q-Gorenstein if and only if g ≤ 1 or n= 0 or (g,n) = (2,1),(2,2),(3,1),(3,2).

In particular, we recover the result of Alper and Hyeon [12, Sec. 6]: M
Tg+

g (which coincides

with Mg

(
7
10 − ε
)
if char(k) = 0; see Remark 7.14) is Q-factorial if and only if g ≤ 6.

Note that when M
Tg,n+

g,n is not Q-factorial, it cannot be reached via a sequence of

elementary steps (that is, relative Picard number 1 steps) of an MMP of Mg,n. This
shows that there is a difference between flipping the elliptic bridge face in a single step

and trying to flip each extremal ray one by one.

Another corollary of Proposition 7.7 is the computation of the Picard number of M
Tg,n+

g,n

(which coincides with Mg,n

(
7
10 − ε
)
if char(k) = 0; see Remark 7.14) and the relative

Picard number of the morphism f+
Tg,n

(using Remark 6.5). We assume that g ≥ 1, for

otherwise we have M
T0,n+

0,n =M0,n.
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Corollary 7.11. Assume g ≥ 1, char(k)� (g,n) and (g,n) 
= (2,0),(1,2).

(i) The Picard number of M
Tg,n+

g,n is equal to

dimQPic
(
M

Tg,n+

g,n

)
Q
=

⎧⎪⎨⎪⎩
3− δ3,g if n= 0 and g ≥ 3 is odd,

4− δ4,g if n= 0 and g ≥ 4 is even,

2n+2− (n+2)δ2,g − (2n+2)δ1,g if g ≥ 1 and n≥ 1.

(ii) The relative Picard number of f+
Tg,n

is equal to

ρ
(
f+
Tg,n

)
=

⎧⎪⎨⎪⎩
2− δ3,g if n= 0 and g ≥ 3 is odd,

2− δ4,g if n= 0 and g ≥ 4 is even,

2n−1+1− (n+1)δ2,g − (n+1)δ1,g if g ≥ 1 and n≥ 1.

We now show that f+
T is projective by producing an f+

T - ample line bundle on M
T+

g,n.

Proposition 7.12. Assume (g,n) 
= (2,0),(1,2) and char(k) � (g,n). The line bundle

−δ̂ =−(δ−ψ) on MT,+

g,n descends to an f+
T -ample Q-line bundle

(
−δ̂
)T+

on M
T,+

g,n .

In particular, the morphism f+
T is projective.

Proof.The fact that −δ̂ ∈ Pic
(
MT+

g,n

)
descends to a Q-line bundle

(
−δ̂
)T+

on M
T+

g,n

follows from Proposition 7.7. The fact that
(
−δ̂
)T+

is f+
T -ample follows from the same

argument of [7, Prop. 7.4] using the fact that the open embeddings

Mps

g,n ↪→MT

g,n ←↩MT+

g,n

arise from local VGIT with respect to the line bundle δ̂ on MT

g,n by Proposition 4.6.

Corollary 7.13. Assume (g,n) 
= (2,0),(1,2) and char(k) = 0. Then M
T+

g,n is projective.

Proof.M
T

g,n is projective if char(k) = 0, by Theorem 6.1; the corollary now follows from

the projectivity of f+
T proven in Proposition 7.12.

Remark 7.14. If T = Tg,n (and (g,n) 
= (2,0),(1,2)), then the projectivity of M
Tg,n+

g,n

follows from Remark 6.5 and Proposition 7.12. Furthermore, if char(k) = 0 then it follows

from [7, Thm. 1.1] that M
Tg,n+

g,n is identified with a log canonical model of Mg,n:

M
Tg,n+

g,n
∼=Mg,n(7/10−ε) :=Proj

⊕
m≥0

H0

(
Mg,n ,

⌊
m

(
KMg,n

+ψ+

(
7

10
− ε

)
(δ−ψ)

)⌋)
,

(7.7)

extending the previous result of Hassett and Hyeon [34] for n= 0.

Next, we study the fibres and the exceptional loci of the morphism f+
T .
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Proposition 7.15. Assume (g,n) 
= (2,0),(1,2), and char(k)� (g,n).

(i) The morphism f+
T is a contraction – that is,

(
f+
T

)
∗

(
O

M
T+
g,n

)
=O

M
T
g,n

.

(ii) The exceptional locus of f+
T is the union of the irreducible closed subsets

Tac([τ,I],[τ +1,I])

:=
{
(C,{pi}) ∈M

T+

g,n : (C,{pi}) has a tacnode of type {[τ,I],[τ +1,I]}
}

for every {[τ,I],[τ +1,I]} ⊆ T −{[1,∅]} which is not of the form {[0,{i}],[1,{i}]} for

some 1≤ i≤ n, and

Tac(irr)

:=
{
(C,{pi}) ∈M

T+

g,n : (C,{pi}) has a tacnode of type {irr}
}

if irr ∈ Tand g ≥ 2.

All these closed subsets have codimension 3, so that the morphism f+
T is small.

Proof. Part (i) follows from the Zariski main theorem using the fact that f+
T is a

proper morphism between irreducible normal algebraic spaces (see Theorem 4.4), which
is moreover birational because it is an isomorphism when restricted to the dense open

subset of smooth curves.

Part (ii): first of all, the closed subsets in the statement are irreducible and have

codimension 3, since the semiuniversal deformation space of a tacnode has dimension
3 (since char(k) 
= 2). By Proposition 3.24, the morphism f+

T sends a T+-closed curve

(C,{pi}) into the T -closed curve f+
T ((C,{pi})), which is the stabilisation of the n-pointed

curve obtained from (C,{pi}) by replacing each tacnode (necessarily of type contained in
T −{[1,∅]}, since (C,{pi}) cannot have A3-attached elliptic tails) by an attached rosary

of length 2. Now observe that a tacnode has local moduli isomorphic to Gm, because

it is constructed from the normalisation by gluing together the two tangent spaces at
the two smooth branches (see [33, Sec. 4.1] for details). Since ωC (

∑
pi) is ample, these

local moduli do not give rise to global moduli if and only if one of the two branches of

the tacnode belongs to a rational curve with only one other marked point (which always

happen if the type of the tacnode is equal to {[0,{i}],[1,{i}]} for some 1≤ i≤ n), in which
case the automorphism group of the 2-pointed rational curve cancels out the local moduli.

The curve f+
T ((C,{pi})) does not depend on the global moduli given by the tacnodes of

(C,{pi}). By putting everything together, we deduce that the exceptional locus of f+
T is

equal to the union of the closed subsets described in the statement.

As a corollary of this proposition, we can determine when f+
T is an isomorphism.

Corollary 7.16. Assume (g,n) 
=(2,0),(1,2) and char(k)� (g,n). Then f+
T :M

T+

g,n →M
T

g,n

is an isomorphism if and only if T adm = T div.

Proof. Proposition 7.15(i) implies that the exceptional locus of f+
T is empty – that is,

f+
T is an isomorphism – if and only T adm = T div.
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The final ingredient we need is a description of the relative Mori cone of the morphism
f+
T . With this in mind, we introduce the following curves, which were already considered

in [34, Propositions 4.1 and 4.2]:

Definition 7.17 (Tacnodal curves, see Figure 9). Let (g,n) 
= (2,0),(1,2) be a hyperbolic

pair. Consider the following irreducible curves (well defined up to numerical equivalence)

in MT+

g,n, which we call tacnodal curves :

1. If irr ∈ T and g ≥ 2, then let D(irr)o ∼=Gm be the curve in MT+

g,n which parametrises

T+-semistable curves obtained from a fixed smooth irreducible curve E of genus g−2

with n+2 marked points by gluing the last two marked points, which we call a and

b, to form a tacnode of type irr using the identification of TaE and TbE provided by

the elements of Gm. We denote by D(irr) the closure of D(irr)o in MT+

g,n. The curve

D(irr) is isomorphic to P1; the two points on the closure parametrise the two curves

formed by gluing a and b with a P1 which is attached nodally at a and tacnodally
at b (or the other way around).

2. For any pair {[τ,I],[τ +1,I]} = {[τ,I],[g− 1− τ,Ic]} ⊂ T −
{
[1,∅],
⋃

j [1,{j}], irr
}
, we

let D([τ,I],[τ +1,I])o ∼=Gm be the curve in MT+

g,n which parametrises T+-semistable
curves obtained from two fixed irreducible curves A and B, the first of genus τ with

I ∪{a} marked points and the second one of genus g− 1− τ with Ic ∪{b} marked

points, by gluing the points a and b to form a tacnode of type {[τ,I],[τ +1,I]}, using
the identification of TaA and TbB provided by the elements of Gm. We denote by

D([τ,I],[τ +1,I]) the closure of D([τ,I],[τ +1,I])o in MT+

g,n. The curve D([τ,I],[τ +

1,I]) is isomorphic to P1; the two points on the closure parametrise the two curves
formed by gluing a and b with a P1 which is attached nodally at a and tacnodally

at b (or the other way around).

The type of a tacnodal curve is defined as follows: D(irr) has type {irr} ⊂ Tg,n, while
D([τ,I],[τ +1,I]) has type equal to {[τ,I],[τ +1,I]} ⊂ Tg,n. It is straightforward to see

that the tacnodal curves parametrises T+-closed points of MT+

g,n (see Definition 3.26);

hence they descend to integral curves (which we will continue to call tacnodal curves and

denote with the same notation) in the good moduli space M
T+

g,n by Proposition 3.27(ii).

Remark 7.18. Notice that we have not defined the tacnodal curves D([0,{i}],[1,{i}])
and D([1,{i}],[2,{i}]) for 1≤ i≤ n. This is for the following reasons:

• If we define D([0,{i}],[1,{i}])o as in Definition 7.17, then D([0,{i}],[1,{i}])o is a

point and not a curve inside MT+

g,n , since the continuous automorphism group of
the curve A of genus and with two marked points kills the gluing data that are
needed to construct the tacnode.

• The curve D([1,{i}],[2,{i}]), defined as the closure of the curve D([1,{i}],[2,{i}])o

defined as before, is contracted when mapped into M
T+

g,n via the morphism φT+,
since its generic point is not T+-closed (because it contains an A1/A3-attached
elliptic bridge of type {[1,{i}],[2,{i}]} ⊆ T ; see Proposition 3.27(i)).
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Figure 9. The tacnodal curve D([τ,I],[τ +1,I]) with two limit points, where I = {1, . . . ,k}.

F
ig
.
9
-
B
/
W

o
n
li
n
e
,
B
/
W

in
p
ri
n
t

Proposition 7.19. Assume (g,n) 
= (2,0),(1,2) and char(k)� (g,n).

(i) The relative Mori cone of the morphism f+
T is the subcone of NE

(
M

T+

g,n

)
spanned

by the tacnodal curves of type contained in T .

(ii) Given a Q-line bundle

L= aλ+ birrδirr+
∑

[i,I]∈T∗
g,n−{[1,∅],⋃j [1,{j}]}

bi,Iδi,I

on MT+

g,n, we have the following intersection formulas:

{
D([τ,I],[τ +1,I]) ·L=−a−12birr+ bτ,I + bτ+1,I,

D(irr) ·L=−a−10birr.

Proof. Part (i): let D be an integral curve inside M
T+

g,n that is contracted by the morphism

f+
T . By Proposition 3.24(i), the geometric generic point of D parametrises a T+-closed

curve C (by Proposition 3.27(ii)) with a tacnode t of type contained in T and having
some nontrivial global gluing data, which happens if and only if type(t) is not equal to

{[0,{i}],[1,{i}]} for some 1≤ i≤ n. Moreover, since C is T+-closed curve, type(t) cannot

be equal to {[1,∅],[2,∅]} (otherwise C would contain an A3-attached elliptic tail) or to

{[1,{i}],[2,{i}]} for some 1≤ i≤ n (otherwise C would contain an A1/A3-attached elliptic
bridge of type contained in T ). From this discussion, it follows that D is numerically

equivalent to a tacnodal curve of type contained in T , and part (i) follows.

Part (ii): letD∼=P1 ⊂MT+

g,n be a tacnodal curve and let π :X →D be the associated (flat

and projective) family of n-pointed T+-semistable curves of genus g. The family X →D
has a tacnodal section τ (which is also the only singularity of each fibre over Gm ⊂ P1)

and two nodes over 0 and ∞ that are of type [τ,I] and [τ +1,I] if D =D([τ,I],[τ +1,I])

or both of type {irr} if D = D(irr). This implies that the only boundary divisor that
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contains D is δirr and that for any [i,J ] ∈ Tg,n−{irr}, we have⎧⎪⎨⎪⎩
δi,J ·D(irr) = 0,

δi,J ·D([τ,I],[τ +1,I]) =

{
1 if [i,J ] = [τ,I] or [τ +1,I],

0 otherwise.

(7.8)

Consider now the normalisation π̃ :Y →D of the family X →D along the tacnodal section

τ . The (flat and projective) family Y →D has n+2 sections, the first n of which are the

pullback of the n sections of the family X →D, and the last two of which, call them σa

and σb, are the inverse image of the tacnodal section τ along the normalisation morphism
Y →X . We can apply [7, Prop.6.1] in order to get⎧⎨⎩λ ·D = degD(λY/D)− degD(ψa+ψb)

2
,

δ ·D = degD(δY/D)−6degD(ψa+ψb),

(7.9)

where δY/D is the total boundary of the family π̃ : Y →D, λY/D := det π̃∗(ωY/D), ψa =

σ∗
a(ωY/D) and ψb = σ∗

b (ωY/D). By the definition of the tacnodal curve D, it follows that
the family Y → D ∼= P1 together with the two sections σa and σb are obtained from a

constant family F ×P1 → P1 (where, using the notations of Definition 7.17, F = E if

D =D(irr) or F = A
∐

B if D =D([τ,I],[τ +1,I])), together with two constant sections
{a}×P1 and {b}×P1, by blowing up the points {a}×{0} and {b}×{∞} and taking the

strict transform of the two constant sections. Therefore, the family π̃ : Y → D has two

singular fibres, namely π̃−1(0) and π̃−1(∞), which are formed by F and the exceptional
divisors E0 and E∞, respectively, meeting in one node; hence we have

degD(δY/D) = 2. (7.10)

Moreover, since there is no variation of moduli in the fibres of the family π̃ : Y →D, we

have

degD(λY/D) = 0. (7.11)

Finally, since σ∗
a(ωY/D) = σ∗

a(OY(− Im(σa))), we have degD(ψa) = −(Imσa)
2. Since the

pullback of the constant section {a}×P1 to the blowup family π̃ : Y → D is equal to

E0+Imσa, we get

0 = (E0+Imσa)
2 = E2

0 +2E0 · Imσa+(Imσa)
2 =−1+2+(Imσa)

2 ⇒ degD(ψa)

=−(Imσa)
2 = 1. (7.12)

Similarly, we have

degD(ψb) = 1. (7.13)

Substituting equations (7.10)–(7.13) into equation (7.9), we get

λ ·D =−1 and δ ·D =−10. (7.14)

By combining equations (7.8) and (7.14), we conclude the proof of part (ii).

We are now ready, by combining these propositions, to give a proof of Theorem 7.4.
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Proof.[Proof of Theorem 7.4] Note that the algebraic space M
T+

g,n is normal by
Theorem 4.4 and the morphism f+

T is a small contraction by Proposition 7.15. Hence

the first two conditions of Definition 7.1 are always satisfied. Moreover, in order for f+
T

to be the L-flip of fT , we need the fact that L is fT -antiample (see Definition 7.1).
It remains to check the last condition of Definition 7.1 with respect to the rational

morphism

η :=
(
f+
T

)−1 ◦fT : M
T

g,n ���MT+

g,n

and any Q-Cartier Q-divisor D on M
T

g,n whose associated Q-line bundle is L. If the

restriction of L toMT+

g,n (which we denote again by L) is T+-compatible, it will descend to

a Q-line bundle LT+ on M
T+

g,n by Proposition 7.7. By the commutativity of diagram (4.1),

we have that the linear equivalence class of the Q-divisor η∗(D) is LT+, which implies
that η∗(D) is Q-Cartier. Conversely, if η∗(D) is Q-Cartier, then its linear equivalence

class is a Q-line bundle on M
T+

g,n whose pullback to MT+

g,n is the restriction of L to MT+

g,n,

and this again implies that L is T+-compatible, by Proposition 7.7.

It remains to show that if L is fT -antiample, then LT+ is f+
T -ample. Since f+

T is
projective by Proposition 7.12 and the relative Mori cone of f+

T is generated by the

tacnodal curves of type contained in T by Proposition 7.19(i), it is enough to show, by

the relative Kleiman ampleness criterion [42, Thm. 1.44], that L negatively intersects

these curves. By combining Proposition 7.19(ii) with Lemma 5.8 and using the fact that
the intersection of L with all the elliptic bridge curves of type contained in T is negative

because L is fT -antiample, we get{
D(irr) ·L=−C(irr) ·L > 0 if irr ∈ T,

D([τ,I],[τ +1,I]) ·L=−C([τ,I],[τ +1,I]) ·L > 0

for any {[τ,I],[τ +1,I]} ⊂ T −
{
[1,∅],
⋃

j [1,{j}]
}
, and this concludes the proof.

We now describe two important special cases of Theorem 7.4.

Corollary 7.20. Assume (g,n) 
= (2,0),(1,2) and char(k)� (g,n).

(i) The morphism f+
T : M

T,+

g,n →M
T

g,n is the
(
KMps

g,n
+ψ
)
-flip of fT .

(ii) The morphism f+
T : M

T,+

g,n → M
T

g,n is the KM
ps
g,n

-flip of fT if and only if M
T,+

g,n

is Q-Gorenstein – that is, if and only if T does not contain subsets of the form

{[0,{j}],[1,{j}],[2,{j}]} for some j ∈ [n] or (g,n) = (3,1),(3,2),(2,2).

Proof.Since the relative Mori cone of fT is generated by the elliptic bridge curves of type
contained in T , by Proposition 6.2(ii), and the elliptic bridge curves are both KM

ps
g,n

- and(
KMps

g,n
+ψ
)
-negative, by Proposition 5.9(i), the relative Kleiman ampleness criterion

(which can be applied, since f+
T is projective by Proposition 7.12) implies that KM

ps
g,n

and
(
KMps

g,n
+ψ
)
are fT -antiample. By Mumford’s formula (see Fact 3.28(3.28)), we have
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that KMps
g,n

+ψ = 13λ−2δ̂ and the restriction of 13λ−2δ̂ to MT+

g,n is T+-compatible (see

Definition 7.5). Hence we conclude that f+
T is the

(
KMps

g,n
+ψ
)
-flip of fT , by Theorem 7.4.

In order to prove part (ii), observe first that((
f+
T

)−1 ◦fT
)
∗

(
KM

ps
g,n

)
=K

M
T+
g,n

. (7.15)

Therefore, if f+
T is the KM

ps
g,n

-flip of fT , then K
M

T+
g,n

is Q-Cartier – that is, M
T+

g,n is

Q-Gorenstein, which happens if and only if T does not contain subsets of the form

{[0,{j}],[1,{j}],[2,{j}]} for some j ∈ [n] or (g,n) = (3,1),(3,2),(2,2), by Corollary 7.9(iii).

Conversely, if K
M

T+
g,n

is Q-Cartier, then by diagram (4.1) we deduce that the restriction

of the Q-line bundle KM
ps
g,n

(seen as a Q-line bundle on MT

g,n by Corollary 3.29 and

Proposition 5.1(ii)) to MT+

g,n descends to the Q-line bundle K
M

T+
g,n

and hence is T+-

compatible. Hence, we conclude that f+
T is the KM

ps
g,n

-flip of fT by Theorem 7.4.

Theorem 7.4 implies that when M
T+

g,n is Q-factorial (comopare Corollary 7.9(ii)), the

morphism f+
T is the L-flip of fT with respect to any Q-line bundle L on M

ps

g,n which is fT -

antiample. Under these assumptions, and assuming furthermore that fT is small (compare
Proposition 6.7(6.7)), we will now prove that f+

T is the composition of elementary L-flips.

Corollary 7.21. Assume (g,n) 
= (2,0),(1,2) and char(k) = 0. Let T ⊂ Tg,n be such that

fT : M
ps

g,n → M
T

g,n is small and M
T,+

g,n is Q-factorial (compare Proposition 6.7(6.7) and

Corollary 7.9(ii)). Let L be a Q-line bundle on M
ps

g,n which is fT -antiample.

Then the rational map
(
f+
T

)−1 ◦ fT : M
ps

g,n ��� M
T,+

g,n can be decomposed (up to
isomorphism) as a sequence of elementary L-flips.

Proof. The morphism fT : M
ps

g,n → M
T

g,n is a relative Mori dream space because it is

KM
ps
g,n

-negative (by Theorem 6.1) and M
ps

g,n is klt and Q-factorial (by Proposition 5.1)

with a discrete Picard group (by Corollary 3.29 and Proposition 5.1(i)). Hence, we can

run an MMP for L over M
T

g,n and obtain a relative minimal model

M
ps

g,n

η ����������

fT ���
��

��
��

�
X

g����
��
��
��

M
T

g,n .

(7.16)

Since fT is small, g is also small and η is a composition of flips. Moreover, since M
T,+

g,n is

the ample model of L over M
T

g,n, there is a birational morphism X →M
T,+

g,n over M
T

g,n,

which is again small. Since both spaces are Q-factorial, we conclude that the morphism

X →M
T,+

g,n is an isomorphism, as wanted.
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