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Skeletal muscle is integral to the metabolism and utilisation of macronutrients; however,
substantial muscle loss and morphological changes occur with ageing. These are associated
with loss of muscle function and accelerate rapidly from the age of 60 years, leading to the
conditions of sarcopenia and frailty. As the relationship between muscle ageing and macro-
nutrient metabolism and utilisation has seen limited research to date, this review focuses on
the interactions between skeletal muscle changes during ageing, metabolism and utilisation
of fat, carbohydrates and overall energy expenditure.

Skeletal muscle contributes less to resting energy expenditure during ageing, potentially
contributing to onset of obesity from middle age. Age-related changes to skeletal muscle
lead to glucose dysregulation, with consequent reduction in glycaemic control, increased
insulin resistance and ultimately onset of type-2 diabetes. Recent studies indicate that
high total fat and SFA intake are detrimental to skeletal muscle, while higher intakes of
PUFA are protective. Age-associated changes in skeletal muscle may also reduce total
fatty acid utilisation.

In conclusion, further research is needed to understand the relationships between macro-
nutrient metabolism and utilisation and age-related changes to skeletal muscle. No dietary
recommendations exist specifically for skeletal muscle health during ageing, but we advise
individuals to follow healthy eating guidelines, by consuming sufficient protein, fruit and
vegetables, and limited SFA and to maintain physically active lifestyles. Clinicians respon-
sible for managing type-2 diabetes need to be aware of growing evidence relating age-related
skeletal muscle changes to diabetes onset and progression.

Skeletal muscle: Sarcopenia: Macronutrients: Dietary fat: Obesity: Diabetes

Maintaining skeletal muscle mass (SMM) and function is
important for health, but loss of both occurs as a natural
consequence of ageing. This loss starts from mid-life, as
early as age 40 years, and progresses more rapidly over
the age of 60 years(1–4). Sarcopenia, the presence of low
skeletal mass and function, is the result of the gradual
decline with age in muscle strength as well as mass. The
most recent definition of sarcopenia focuses on functional
aspects whilst acknowledging that the role of SMM
requires further research(5–7). Sarcopenic obesity is the
presence of sarcopenia, as low lean mass, in combination

with obesity; this condition is also increasingly prevalent
in older populations(1,8–11). Moreover, sarcopenia and
age-related skeletal muscle loss are key contributors to
frailty. Research and clinical interest for sarcopenia have
largely focused on the functional consequences of the
loss of muscle with age, such as reduced mobility and
increased falls and fractures. There has been less focus
on the metabolic and homoeostatic importance of skeletal
muscle and the consequences of this skeletal muscle loss
on nutritional biochemistry and metabolism and utilisa-
tion of macronutrients(1,12–17).
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Skeletal muscle is integral to the metabolism and utilisa-
tion of the macronutrients protein, fat and carbohydrate, as
well as overall energy metabolism. However, the age-related
loss of SMM, changes in skeletal muscle morphology and
the consequent effects and interactions on metabolism of
macronutrients are much less appreciated(12).

The prevalence of sarcopenia is high in residential care
and in the community (14–33 and 29 %, respectively),
and the number of individuals with sarcopenia is pre-
dicted to nearly double in the next 30 years(6,18).
Sarcopenia is also a component of frailty, which has a
prevalence of 25 % in those over the age of 80 years(19).
The age-related losses and changes to morphology of
skeletal muscle also have consequences for carbohydrate
metabolism, as this is used by skeletal muscle as glucose,
released by digestion of carbohydrate. This has implica-
tions for the onset of insulin resistance and type-2 dia-
betes(1,2,13,14,20–23). Loss of skeletal muscle also has
implications for energy expenditure and concomitant
risk of onset of obesity. Given the prevalence of sarcope-
nia, frailty, obesity and type-2 diabetes in adulthood in
Western populations, the overall costs and burden to
health and social care are vast(20,21,24). These costs and
the burden to society will also increase in the future,
given the predicted increase in the prevalence of sarcope-
nia and its associated conditions, and the increasing age
profile of Western populations.

As the nutritional and metabolic consequences of the
loss of skeletal muscle, and changes to skeletal muscle
quality, have received less attention than the functional
consequences, these aspects form the focus of this
review(12). This paper provides an overview of the meta-
bolic consequences of age-related changes and loss of
SMM on the metabolism of macronutrients, particularly
fat and fatty acids, and carbohydrate, and effects on
overall energy expenditure during middle and older
age. Morphological changes to fibre type and muscle
composition in relation to macronutrient metabolism
and utilisation are highlighted(25). The effects of morpho-
logical changes and losses of SMM on resting energy
expenditure (REE), and concomitant risk of onset
of obesity, as well as on insulin resistance, control of
blood glucose, and the contribution to the onset of
type-2 diabetes are described(1,2,13,14,20,21). The relation-
ships between the effects of diabetes on further changes
and loss of skeletal muscle, as well as the potential
impact of certain fatty acids on quantity and morphology
of skeletal muscle, are also covered, and are illustrated in
Fig. 1.

The effects of ageing on skeletal muscle mass and
morphology

Measuring skeletal muscle and terminology

A number of methods are available for measuring total
body composition in vivo, ranging from bioelectrical
impedance to dual-energy X-ray absorptiometry.
Measures of SMM are typically calculated from these
methods. In ‘reference man’ (a traditional term, arising
from early research in this area, that describes the typical

body composition of adult males of an average body
weight) total body mass consists of about 19 % fat
mass and 81 % fat free mass (FFM), 91 % of which is
lean soft tissue mass, with the remainder consisting of
bone(26–32). However, in women the proportion of fat
mass in the body is, in the main, greater than in men
and so is associated with a correspondingly lower pro-
portion of FFM; see also section ‘Loss of skeletal muscle
mass’ for further details. Development of three- and
four-compartment methods for measuring SMM in
populations is relatively recent, and much of the litera-
ture relating to sarcopenia and skeletal muscle refers to
FFM, which has been considered a suitable measure of
SMM, given that contributions from bone are
small(3,26–30,33). Appendicular lean mass or appendicular
skeletal muscle mass is the sum of lean tissue in the arms
and legs(26–30).

Scaling for body size

Since FFM increases with greater body weight and
height, studies in human subjects are scaled for body
size(29,34–36). Scaling can be by height, height2, as a per-
centage of total body weight or by BMI.

Loss of skeletal muscle mass

Skeletal muscle, measured as FFM, accounts for about
70–80 % of body weight in men and 65–75 % in
women of middle and early older age(37). Losses of
SMM are gradual and progressive, ranging from 0·5 to
1 % per year, starting around middle age, with rates
increasing over the age of 60 years(1–3). Men experience
greater rates of loss during older age, although their
FFM, as a proportion of body size, is greater than in
women at all life stages.

Muscle morphology changes during ageing and links to
fat, carbohydrate and energy metabolism

Skeletal muscle is composed of three distinct types of
muscle fibre, categorised by their energy metabolism
and their myosin structures: slow-twitch, oxidative,
type-I fibres; fast-twitch, oxidative-glycolytic, type-IIa
fibres and fast-twitch, glycolytic, type-IIb fibres. Each
category of fibre also shows different capacities for
fatty acid utilisation, with type-I fibres contributing
more to fatty acid oxidation and being more insulin-
sensitive than type-IIb fibres(38). Human muscle shows
multiple fibre types within a single muscle group, with
different proportions of fibre types in each muscle; for
example, the soleus muscle in the calf has mostly type-I
fibres, while the vastus lateralis muscle in the thigh is
largely type II(39). These proportions are flexible, how-
ever, and muscle fibres can remodel their phenotypes to
adapt to different circumstances, including ageing(40).

Ageing is associated with a conversion of muscle fibres
to slow-twitch, oxidative, type-I fibres, and type-II fibres
are seen to atrophy and shrink in diameter, while type-I
fibres are relatively unaffected(41). This may relate to
damage, and ultimately breakage, experienced by muscle
fibres during the ageing process(42). Further, the total
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number of muscle fibres in skeletal muscle decreases with
age(43), along with the cross-sectional area of the muscle,
which has been shown to decrease by 25–35 % in older
men and women(44,45). See Wilkinson, Piasecki and
Atherton for a review of muscle fibre loss and atrophy
with ageing(46). Measures of cross-sectional area under-
estimate losses in muscle contractile tissue, as muscle
ageing is also accompanied by infiltration of fatty and
fibrotic tissue(47), which contributes to the disparity
between mass and strength losses in sarcopenia. Fatty
infiltration (myosteatosis) is related to the higher content
of saturated ceramide and diacylglycerol fatty acids in
older age(48).

Mitochondrial effects during ageing and interaction
with macronutrient metabolism

Mitochondria are also important in the context of ageing.
In the cell, mitochondria are essential to metabolism as
they use oxidative phosphorylation to produce a ready
supply of ATP, a fundamental energy unit for cellular
processes. Mitochondria in skeletal muscle form complex,
anisotropic networks(49) that supply energy to fuel muscle
contraction. There are two distinct subpopulations of
mitochondria; one directly beneath the sarcolemma, and
the other between myofibrils(50). Slow-twitch oxidative
muscle fibres contain many more mitochondria than
fast-twitch glycolytic fibres, and are more resistant to
fatigue due to the large amount of ATP generated by
their mitochondria. The oxidative phosphorylation
efficiency of mitochondria, their capacity to produce
ATP, has been shown to decline with age(51), and is also
influenced by insulin resistance, as discussed later in this
review. Mitochondria also contribute to the ageing

process: dysfunctional mitochondria accumulate with
age, particularly in skeletal muscle(52), and they ultimately
become senescent(53), losing the ability to proliferate.
Dysfunctional mitochondria generate reactive oxygen
species (ROS), and the damage associated with these is
central to some pathologies, as well as ageing(54–56);
these dysfunctional mitochondria produce a vicious
cycle of damage and deterioration in ageing muscle.

The ligand binding nuclear receptors found in skeletal
muscle are transcription factors involved in metabolic
control within skeletal muscle; see Baskin for an elegant
review(57). PPAR are critical regulators of the metabolic
genes in striated muscle(58), with PPARα being involved
in transcription of the genes required for fatty acid
uptake or oxidation. PPARα activation induces fatty
acid utilisation in skeletal muscle(59). Also PPARγ
coactivator 1 α, along with PPARα, coordinates meta-
bolic regulation within skeletal muscle, further regulating
the GLUT4, cAMP response element binding protein
and nuclear respiratory factors to mediate transcription
of genes involved in fatty acid and glucose
metabolism(57).

In summary, the total number and diameter of skeletal
muscle fibres decreases with age, fibre type shifts to
slow-twitch type-I fibres that are more insulin-resistant
and do not utilise glucose. Mitochondria become dys-
functional, or senescent, and generate ROS that further
damage muscle. Further age-related changes in skeletal
muscle morphology include infiltration of non-
contractile material in muscle tissue, denervation, a
reduction in the number of satellite cells, and a weaken-
ing of the connections between muscle and tendons. All
of these have consequences for the functional capacity
of skeletal muscle, as well as its ability to regenerate
when damaged. The loss of SMM and morphological
changes associated with ageing have the potential to
impact directly on oxidation and utilisation of fatty
acids as well as glucose utilisation and energy metabol-
ism, see Table 1.

Protein metabolism and muscle

Skeletal muscle is the main reservoir of amino acids in
the body; these are stored as protein, and are required
for the maintenance of protein synthesis within skeletal
muscle(2,13,14,60–63). This store is activated during deficits
of energy intake, and during periods of increased
demand, to satisfy the energy requirements of the body
through catabolism of protein and gluconeogen-
esis(2,13,14,60–63). Thus, the loss of SMM with age
diminishes reserves of amino acids, stored as protein
with the body. Maintaining the balance between protein
synthesis, anabolism, and protein breakdown, catabol-
ism, is also crucial to conservation of skeletal muscle dur-
ing ageing(2,12,13,61,64). However, several mechanisms of
ageing disrupt this balance, leading to catabolism. Such
mechanisms include ROS, circulation of inflammatory
cytokines, and the insulin resistance that leads to type-2
diabetes(22,65). Therefore, the onset of insulin resistance
and type-2 diabetes disrupts protein synthesis,

Fig. 1. Overview of the relationships between age-related changes
to skeletal muscle macronutrient metabolism and utilisation, and
onset of type-2 diabetes and obesity. Circulating glucose arises
from metabolism of carbohydrate. IR, insulin resistance.
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contributing to changes in SMM and morphology, as
described later.

As the topic of protein in relation to skeletal muscle is
covered in full elsewhere, newer aspects of research relat-
ing to skeletal muscle and its importance to metabolism
of carbohydrate, fat and energy metabolism are covered
in the following sections.

The effects of ageing of skeletal muscle on energy
expenditure and risk of obesity

Components of energy expenditure and balance between
energy intake and energy expenditure

Total daily energy expenditure (TEE) comprises three
main components: (1) REE, also referred to as RMR
or BMR; (2) the thermic effect of food and (3) the energy
expenditure associated with physical activity. See Fig. 2
for an illustration of these. In adults, REE accounts for
60–70 % of total energy requirements in healthy
adults(32,66–69). The proportion of REE attributable to
organ mass ranges from about 5 to 10 %(32,68,69). FFM
is the main predictor of REE, which is determined by
the metabolism of macronutrients protein, carbohydrate,
fat and alcohol. The contribution of the thermic effect of
food to TEE is estimated at about 10 % of TEE. The
contribution of habitual and discretionary physical activ-
ity to TEE is variable, ranging from about 15 % in very
sedentary people to about 50 % in those who are very
physically active. TEE reduces during ageing, partly
due to reductions in habitual and discretionary physical
activity but also due to the loss of metabolically active
FFM, which consists of both skeletal tissue and that
found in the internal organs.

A balance must be maintained between energy
expenditure and energy intake, derived from macronutri-
ents and alcohol, in order to maintain a steady body
weight, as described in Fig. 2. Body weight increases
when excess energy intake is consumed compared with
total energy expended.

Metabolic rate decreases with age in relation to loss of
skeletal muscle mass and in clinical conditions of ageing

In the early 20th century, age-related reductions in BMR
were observed, with Lewis finding that ‘0·664 calories per
hour per square meter per hour’ were lost per decade of
age in men(70). That this was attributable to loss of SMM
with age has been elaborated with further findings during
this century in both men and women. Ravussin’s study in

1986 identified the key determinants of 24-h energy
expenditure in man, finding that FFM explained 81 %
of the variance in energy expenditure in an obese popu-
lation(71). Furthermore, even after accounting for phys-
ical and spontaneous activity and the thermic effect of
food, FFM remained the most important determinant
of energy expenditure(71). Subsequent studies found that
RMR was lower in older than in younger men, and
this was attributable to the lower proportion of FFM
in older men(72). Zurio and colleagues also found that
differences in resting muscle metabolism partly
accounted for the variance in metabolic rate amongst
individuals of normal body weight(73). Overall, findings
were summarised by Weinsier and colleagues in 1992(74).

Recent research also indicates that FFM is a key pre-
dictor of TEE even in highly active younger people(75).
This study measured energy expenditure using the doubly
labelled water technique in military personnel engaged in
intensive operations. Whilst physical activity was a key
predictor of energy expenditure in this group (r 0·9,
P< 0·05) the association of energy expenditure with
FFM was greater than that with total body mass (r 0·32,
P< 0·05; and r 0·28, P< 0·05, respectively) even in this
population with a high physical activity.

Sex-specific differences in the relationship between
total FFM and REE have been explored further(67). In
men and women aged 18–79 years, women experienced
an earlier decline in SMM than men, starting at age 29
years v. 39 years in men. However, SMM, adjusted for
fat mass, remained the main determinant of REE in
both men and women, with R2 0·67 in women and R2

0·66 in men(67). More recent work also suggests that
the proportion of FFM impacts on, and partially deter-
mines, energy intake and expenditure, via its mediating
effect on RMR(76).

During ageing, the contribution of FFM to REE
declines in parallel with the age-related decline in
FFM, explaining 59·7 % of the decrease in REE. This
indicates that the importance of FFM to REE increases
with age(67). This is particularly important in under-
weight older people with low FFM(74,77), and the situ-
ation is exacerbated in nonagenarians(78). Indeed, two
recent studies found that decreased BMR is an objective
marker for sarcopenia and frailty in older adults(78,79).
Thus, in elderly people who are underweight and have
low physical activity, REE represents the greatest part
of TEE(74,77).

Overall, the contribution of FFM to TEE
increases with age as the contribution of physical activity
declines.

Table 1. Age-related changes to morphology and quantity of skeletal muscle and interactions with macronutrient metabolism

Fibre type Ageing effects Nutrients

Type I (slow) −Oxidative
>Mitochondria v. type II
>Insulin sensitivity v. type II

↓Number
↑Proportion

Glucose (↓ with age)
Fatty acids (↓ with age)

Type II (fast) −Oxidative-Glycolytic (IIa)
−Glycolytic (IIb)

↓Number
↓Proportion
Atrophy

Glucose (↓ with age)
Fatty acids (↓ with age)
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The effects of age-related skeletal muscle loss on
metabolic rate and the onset of obesity

In middle and early-older-age the age-related decline in
FFM and SMM may have implications for the onset of
obesity. Obesity arises from the imbalance of energy
intake and expenditure, and so the gradual loss of muscle
mass with age has potential consequences for habitual
energy expenditure and the energy imbalance that leads
to the onset of obesity(2). Discretionary and habitual
physical activity also declines during ageing, contributing
to overall reductions in energy expenditure. Two studies
found that skeletal muscle fibre-type proportion is related
to obesity. The first found that obese men had a higher
proportion of fast-twitch, type-II fibres in the vastus
lateralis muscle(80). The second confirmed these findings
in obese women and found that the effectiveness of a
weight-loss intervention was positively related to the per-
centage of slow-twitch, type-I fibres, which contain a
greater proportion of mitochondria than do fast -twitch
fibres(81), as discussed in the section ‘The effects of ageing
on skeletal muscle mass and morphology’.

Robert Wolfe, in his important paper, calculated that
every 10 kg of lean mass that is lost with age translates to
a decrease in energy expenditure of about 418 kJ/d,
assuming a constant rate of turnover(2). This is equivalent
to an accumulation of about 4·7 kg fat mass per year,
assuming 1 kg fat store represents 32 217 kJ. Clearly,
this difference in energy expenditure would dispropor-
tionately affect older individuals, who tend to have
lower levels of physical activity and thus greater potential
to develop obesity, as well as sarcopenic obesity.

In summary, evidence is now clear that skeletal muscle
contributes a lower proportion of REE to TEE during
ageing, potentially contributing to onset of obesity
from middle-age onwards.

Effects of ageing of skeletal muscle on glucose
metabolism, insulin resistance and risk of type-2 diabetes

Age-related changes in skeletal muscle, in terms of loss of
quantity and morphology, impact on glucose metabolism,
blood glucose control, insulin resistance and onset of
type-2 diabetes, as shown in Fig. 3 with the mechanisms
involved as follows(1,2,20,21,23,82–84). Glucose, which arises
from digestion of carbohydrate, is released into the blood-
stream. Skeletal muscle is the organ responsible for the
greatest insulin-stimulated glucose disposal in the body,
accounting for about 75 % of glucose uptake(85). When
skeletal muscle contractile tissue is lost during ageing,
this leads to lower glucose uptake from the circulation.
This and the increase in fat and ceramide infiltration is a
contributory cause of insulin resistance, which is itself asso-
ciated with reduced skeletal muscle mitochondrial function
in older adults(86); indeed, mitochondrial dysfunction and
insulin resistance appear to reinforce one another in a feed-
back loop(87). See a review by Affourtit for more informa-
tion on the links between mitochondrial function and
insulin resistance(88). These links highlight an association
between the loss of SMM and mitochondrial function
with age with the onset of type-2 diabetes. Therefore,
age-related changes in skeletal muscle have implications
for the onset and treatment of type-2 diabetes(20,82–84,89).

Low skeletal muscle mass, sarcopenia and dynapenia are
associated with or predict incidence of type-2 diabetes

A number of cross-sectional studies have demonstrated
that low SMM is associated with insulin resistance or
type-2 diabetes(20,90–96). Existing sarcopenia or dynape-
nia is also a risk factor for onset of diabetes, as is low
SMM(97–99). An increased hazard risk of 2·05 (95% CI
1·73, 2·43) was associated with onset of type-2 diabetes

Fig. 2. Components of energy expenditure, energy intake and the concept of energy balance in
older adults. Energy is released from metabolism of the macronutrients protein, carbohydrate and
fat as well as alcohol. Energy expenditure comprises: resting energy expenditure (REE) or BMR,
daily activities and discretionary physical activity and the thermic effect of digestion of food.
Greater intake of total energy than total energy expenditure results in gain in body weight.
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over 9 years in those with the lowest muscle mass index
(appendicular lean mass adjusted for weight), compared
with the highest tertile of muscle mass index, who had
double the risk(100). Moreover, this increased risk of
type-2 diabetes was due to relatively small differences
in muscle mass index at baseline of only 5·4 % between
those at the greatest and least risk. Subsequently, main-
tenance of appendicular skeletal muscle mass was also
found to be protective against the development of
type-2 diabetes in men but not women, independent of
obesity(101). However, a further study contradicted this
finding, as women with a higher SMM were at greater
risk of incident type-2 diabetes(102).

Impact of type-2 diabetes on skeletal muscle

Evidence is building that the presence of type-2 diabetes
in older people leads to significant loss of SMM over
time(100,103). One study found that accelerated loss of
SMM occurred in middle-aged and older women with
diabetes(104); this is due to a number of disease processes,
including the poor glycaemic control that is often asso-
ciated with the existence of mild metabolic acid-
osis(95,105,106). That this is the case was confirmed in a
study where treatment of diabetes with insulin attenuated
the decline in muscle mass(107).

In summary, age-related changes to skeletal muscle
lead to glucose dysregulation, with consequent reduction
in glycaemic control, increased insulin resistance and
ultimately onset of type-2 diabetes, as shown in
Fig. 3(20,82–84,89). These age-related changes in skeletal
muscle also have implications for the progression of
type-2 diabetes, with the onset of poor glycaemic control
also accelerating skeletal muscle loss and the morpho-
logical changes that occur with age, leading to a vicious
cycle of damage to muscle, as in Fig. 3.

Role of fat intake and metabolism on age-related
muscle loss

Skeletal muscle is also central to the metabolism of dietary
fat, with the fatty acids derived from fat being the main
source of energy for resting and working muscle(2,108,109).
As discussed earlier, the ligand-binding nuclear receptor
PPARα, when bound to long-chain fatty acids, activates

transcription of genes involved in fatty acid uptake and
oxidation, and robustly induces utilisation of fatty acids
in muscle tissue(57). Likewise, PPARβ and PPARγ are
also involved in regulating fatty acid metabolism in skel-
etal muscle. Thus, reduction in SMM during ageing
may also reduce the capacity for fatty acid metabolism.
Also, recent but limited research in human and animal
studies has identified the relevance of dietary fatty acid
intake to skeletal muscle in ageing(17,110).

Dietary fat intake varies significantly in terms of the
total amount and the proportion of different fatty
acids. Indeed, all sources of fat are mixtures of the differ-
ent classes of fatty acids, including SFA, MUFA and
PUFA. Considering the range of different sources of
fat used in food manufacture and meal preparation, the
profile of different fatty acid intakes for different indivi-
duals within and between populations can be highly
variable(111).

It is important to consider both that dietary fat is
integral to the muscle membrane (the sarcolemma)
and that fatty acids act as the dominant substrate for
the production of ATP during aerobic exercise(108,109).
Long-chain NEFA circulate in the blood, and protein
transporters, including fatty acid binding protein in
the plasma membrane, fatty acid translocase and the
fatty acid transport protein, facilitate their transfer
across the sarcolemma(112). Moreover, the specific
fatty acid profile of the diet is reflected in the fatty
acid composition of the sarcolemma, although this
may also be altered by other physiological process
including exercise stimulation of skeletal muscle(113,114).
The profile of fatty acids is also relevant since fatty acids
have been shown to be oxidised in a specific order of
preference, with oleic and unsaturated fatty acids oxi-
dised in preference to SFA(115).

In terms of the mechanisms behind these associations,
some studies have shown that dietary fat intake can affect
inflammatory status, which may have consequences for
skeletal muscle. Previous observational studies have sug-
gested that both the total fat intake and the proportion of
different fatty acids may be relevant in the mechanisms
leading to skeletal muscle loss and sarcopenia(17,116). In
particular, high total fat and SFA intakes may be detri-
mental to skeletal muscle health, and higher proportions
of PUFA (total, n-3 PUFA, n-6 PUFA), MUFA and the
PUFA:SFA ratio may be beneficial(17,116). However, the

Fig. 3. Relationships between age-related changes to morphology and quantity of skeletal
muscle, glucose metabolism, insulin resistance and type-2 diabetes. The age-related changes in
skeletal muscle lead to reduction in glycaemic control, increased insulin resistance and onset of
type-2 diabetes. That onset of the poor glycaemic control also accelerates skeletal muscle loss
and morphological changes leading to a vicious cycle of age-related muscle changes in those
with type-2 diabetes.
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recent Scientific Advisory Committee on Nutrition
report on SFA and health made no specific comments
on the effects of SFA on skeletal muscle, due to a lack
of research(117). As discussed earlier, inflammation path-
ways are intricately involved in the processes of ageing
and sarcopenia. High intakes of total fat and SFA are
typically viewed as risk factors for inflammation, while
n-3 PUFA are more recognised for their anti-
inflammatory properties and potential for increasing pro-
tein synthesis(17,116,118–120). However, despite this, a
recent systematic review and meta-analysis of rando-
mised controlled trials found little or no association of
n-3, n-6 and total PUFA on skeletal muscle outcomes,
largely due to insufficient evidence of high quality(16).

One inflammatory mediator previously shown to be
found in higher concentrations in older individuals is
IL-6(121). This molecule is produced in skeletal muscle
and is known to affect both glucose and fatty acid metab-
olism in muscle(122). Indeed, it has been hypothesised that
IL-6 is a key factor in insulin resistance, and thus
increased concentrations in the elderly may have import-
ant metabolic consequences.

As described earlier with reference to insulin resistance,
during ageing there is an increase in the lipid infiltration
within skeletal muscle fibres (myosteatosis) and an asso-
ciated reduction in the oxidative capacity of the muscle.
This change in skeletal muscle composition is affected
by dietary fat intake, as shown in animal work where sign-
ificantly higher muscle lipid deposition was seen in mice
fed on a high-fat diet v. those fed a control diet(123).
This lipid deposition may lead to mitochondrial dysfunc-
tion, decreasing ATP production and increasing ROS pro-
duction, and it may also result in insulin resistance. ROS
can act as second messengers for TNF-α in skeletal muscle
tissue and can result in NF-κB activation, causing an
increase in IL-6(124). The resulting increased inflammatory
state may be of further detriment to normal skeletal mus-
cle health. Observational study data have shown frail
adults to have higher levels of intramuscular adipose tissue
than non-frail individuals, and the quantity of intramuscu-
lar adipose tissue is significantly positively associated with
IL-6 expression and protein within the muscle(125). It is not
clear whether the predominant direction of the relation-
ship is that an inflammatory environment in the muscle

exacerbates lipid infiltration, or conversely that an increase
in inflammatory signalling molecules is a result of fat
infiltration, but both may occur. Irrespective of this, the
close proximity of fat to the muscle in the event of inflam-
matory cytokine release is likely to result in more pro-
found effects on skeletal muscle dysfunction than of a
more systemic increase in inflammatory load.

In summary, there is an important role for fatty acids
in skeletal muscle health during ageing through mechan-
isms including fatty acid infiltration and enhanced
inflammatory status, with consequences for metabolism
and further adverse knock-on effects to SMM and func-
tion, see Fig. 4. While total fat intake is relevant, the bal-
ance between different fatty acids in the diet appears to
be particularly important(121,122).

Conclusions

Age-related changes in skeletal muscle in terms of quantity
and morphology have important consequences for the
metabolism and utilisation of macronutrients. Recent
research indicates these age-related changes to skeletal mus-
cle have the potential to impact directly on oxidation and
utilisation of fatty acids as well as glucose utilisation and
energy metabolism. Evidence is now clear that age-related
changes to skeletal muscle contribute to lower REE during
ageing, potentially playing a part in the onset of obesity
from middle-age onwards. The effects of age-related
changes in skeletal muscle that lead to glucose dysregula-
tion, reduction in glycaemic control, increased insulin resist-
ance and onset of type-2 diabetes are beginning to be
recognised. That the onset of the poor glycaemic control
also accelerates skeletal muscle loss and morphological
changes leading to a vicious cycle of age-related muscle
changes in those with type-2 diabetes is also important.
There is also an important role for fatty acids in skeletal
muscle health during ageing, from both total fat intake
and the balance between different fatty acids in the diet,
with metabolic consequences of fatty acid infiltration in
muscle and altered inflammatory status causing negative
effects on SMM and function. Further work is required
to determine whether the role of fatty acids in skeletal mus-
cle differs by sex and by age group.

Fig. 4. Relationships between age-related changes to morphology and quantity of skeletal
muscle and fatty acid metabolism. This figure summarises the relevance of fatty acids to skeletal
muscle changes during ageing, including increased loss of muscle mass, increased ceramide
and fat infiltration and reduced ATP production. High total fat intake may cause some skeletal
muscle changes directly, but may also act via inflammatory pathways (also affected by high SFA:
PUFA dietary ratios). Decreased fatty acid utilisation as a result of skeletal muscle changes may
feedback so the process continues.
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Practical public health messages for people of middle
and older age

There is a need to conserve skeletal muscle during middle
and early older age, particularly for maintaining meta-
bolic response to dietary macronutrients: carbohydrate
(glucose), fat and protein during ageing. Whilst not the
focus of the present paper, there is also growing evidence
that certain vitamins and minerals such as vitamin C,
carotenoids, magnesium and patterns of dietary intake
are likely important for maintenance of skeletal muscle
health, and could have a positive impact on protein syn-
thesis in skeletal muscle(1,12,37,126–131).

To date there are no dietary recommendations specifi-
cally for older people, or for maintaining skeletal muscle
health during ageing, and such recommendations need to
be developed(2). We also do not know whether these
recommendations would need to differ between men
and women of older age. Until recommendations are
made, research evidence suggests that public health prac-
titioners should encourage individuals to follow healthy
eating patterns that meet the current dietary guidelines,
in particular reinforcing the importance of eating five
fruit and vegetables daily, consuming adequate protein
(0·8 g/kg), and limiting SFA and total fat intake.

Physical activity and exercise are clearly important for
maintaining and building skeletal muscle at all ages. So
both individual and population approaches for maintain-
ing physical activity are required(13,132). Older people
should focus on resistance exercise or training, alongside
activities that promote endurance and flexibility, since
resistance training promotes rates of protein synthe-
sis(13,132). This is particularly important for those with
sarcopenic obesity and type-2 diabetes and for maintain-
ing blood glucose control in diabetes(133).

Clinicians and service providers, such as medical doc-
tors, nurses and dietitians responsible for clients in mid-
dle and later life need to be particularly aware of the
metabolic effects of skeletal muscle loss with ageing on
the metabolism of macronutrients and energy expend-
iture. In their practice they should also be aware of
these links to the prevention of obesity and their impact
on the onset and treatment of type-2 diabetes.

Given the clear importance of maintaining SMM and
quality with regard to the metabolism and utilisation of
macronutrients and overall energy expenditure, as well as
links to obesity and type-2 diabetes, more research is needed
on how to preserve healthy skeletal muscle during ageing.
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