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1. Introduction. In [12], Loy and Miller proved that a locally compact, eudoxian
FR group is algebraically and order-theoretically (and hence, topologically) isomorphic to
a finite product of copies of the real numbers. In [18], Wirth used their result to describe
the subgroup of a locally compact TR group generated by the compact neighbourhoods of
zero. The proof of Loy and Miller relied heavily on a result of Mackey (cf. [10], p. 390)
and either the finite-dimensional case of the Choquet-Kendall Theorem (cf. [15], pp.
9-10) or the representation theory of Kakutani (cf. [11], Appendix). Below we use only
elementary topological results and order-theoretic arguments and a theorem of Conrad
[4] to characterize all non-secular, locally compact TRL groups (Theorem 3). Our proof of
Theorem 3 allows us to deduce algebraically the theorems both of Loy and Miller and of
Wirth, in both cases without appealing to the theorem of Conrad.

As general references, we use Birkhoff [1], Conrad [1], Fuchs [8], and Bourbaki [2].

2. Locally compact, non-secular TRL groups. Let (G, =s) be a po-group, with
positive cone (G,*£)+ = {g e G | g 3= 0} and strictly positive cone (G, =£)* = {g e G | g > 0}. An
element g e G is pseudo-positive [9] if g + (G, O * e ( G , O * and g^(G, =s)+; g is a
pseudo-zero [9] of (G, *s) if both g and - g are pseudo-positive. The order =£ on G is a
tight Riesz order [12] if =£ satisfies the tight Riesz interpolation property [3]: a,b<x,y
implies that there exists g e G with a,b<g<x,y. If =£ is a directed tight Riesz order
without pseudo-zerosr then (G, *£) is a TR group and (G, =s)+, together with the
pseudo-positives of (G, =5), forms the positive cone of another directed partial order, < ,
on G; this order is called the associated order [17,13] on (G, =s), and =£ is called a
compatible tight Riesz order (abbreviated: CTRO) [17] on (G, <). A TR group (G, <, «)
is non-secular [14] if b = 0 whenever beG, 0 < a € G, aAb exists in (G, <), and a A b = 0.
Of paricular interest will be, of course, the TR groups (G, <, *£) for which (G, <) is an

) l-group. These groups are called TRL groups [14].
• In [17], Wirth characterized the CTRO's on a TRL group, and in [16], Reilly noted
j that Wirth's proof remained true for TR groups. Specifically Wirth and Reilly showed that
I a subset P of a directed po-group (G, <) with no pseudo-positives is the strictly positive
[cone of a CTRO on (G, <) if and only if P satisfies
I
!

(a) P is a normal subset of G;
(b) P is a proper dual ideal of (G, <)+ ;
(c) P+P = P;
(d) AP = 0.

tThe author thanks the Australian Research Grants Committee and Professor J. B. Miller for their support
while this research was carried out.
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(By a proper dual ideal of a poset (E, *=), we mean a non-empty set D, strictly contained in
E, such that if x, yeD and zeE are such that x ^ z , then zeD and there exists weD
such that w =£ JC, y.) This characterization provides an easy way of determining what
convex subgroups of (G, < ) are TR groups in the induced orders.

PROPOSITION 1. Let (G, <, =s) be a TR group, and let (H, <) be a convex directed
subgroup of (G, =<). Then the following statements are equivalent:

(i) (H, <, =s) is a non-trivial TR group;
(ii) Hn(G,=s)*^D;
(iii) (G, ss)* is the dual ideal of (G, <)+ generated by (H, *£)*.

Proof. Note that Hn(G, O * = (H, O*. Thus, (iii) implies (ii). That (i) implies (iii)
follows easily from (b) and the convexity of H. If (ii) holds, then by the convexity of H,
(H, «=)* must satisfy (a)-(d) because (G, «£)* does. Thus (ii) implies (i).

On any po-group (G, «s), one may define the open-interval topology, %(G, =£), by
taking as a subbase for the open sets the open intervals (a, b) = {g e G | a < g < b}. On a
TR group (G, =s), %(G, =s) is a Hausdorff group topology whose neighbourhoods of 0 are
generated by {(—a, a) | a>0}[12]. We may thus associate topological notions to any TR
group (G, =s) by applying them to °U(G, *s). In particular, we will be interested in locally
compact TR groups (G, <, =£), i.e. those for which °li.(G, «) is locally compact.

An /-group (L, <) is a lexico-extension [4] of an /-group S if S is an l-ideal (i.e., a
normal subgroup and a convex sublattice) of L and every positive element of L\S exceeds
every element of S. If Tu ..., Tn are non-trivial o-groups, then an /-group (G, <) is a
lexico-sum [4] of the Tt if there exist lexico-extensions Lt of Tf, /-groups Gt, and a
permutation a of { 1 , . . . , n} such that (1) G = Ga(n) (2) Gj = Lo(1), and (3) for 1< k =s n,
Gk is a lexico-extension of La(k)|x| Gk_!, where |x| denotes the cardinal product. A subset
S of an /-group (L, <) is said to be disjoint if S £ (L, <)* and a A b = 0 whenever a and i
are distinct elements of S. An element beL is basic [5] if fo>0 and {ge G|O<g<i)}is
totally ordered; a subset B £ L is a basis [5] of (L, <) if B is a maximal disjoint subset of
L, every element of which is basic. The following result was noted in [6] on p. 101; it is |
essentially the main result of [4]. 1

THEOREM 2. (Conrad). Let n be a positive integer. An l-group is a lexico-sum of n
o-subgroups if and only if it contains a basis with exactly n elements.

The main result of this paper may now be stated.

THEOREM 3. For an l-group (G, <), the following statements are equivalent.
(i) There exists a partial order =£ on G such that (G, <, =s) is a locally compact,

non-secular TRL group.
(ii) There exists a positive integer n such that (G, <) is a lexico-sum of n copies of the

additive real numbers.
(iii) There exists a positive integer m such that there are exactly m distinct CTRO's on

(G, <), all of which are locally compact and exactly one of which is non-secular.
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The proof of Theorem 3 requires Theorem 2, and two elementary topological results
Propositions 4 and 5 below).

Let (G, <,=£) be a TR group. For a,beG, let ([a, bj = {ge G\a <g<b} and for
iAsG, let A" be the closure of A with respect to the open interval topology ^(G, =£). It
is easy to see that for all a,beG, [a, bf~ = \a, b] and if a < b, then (a, by = [a, b}. Let
CotnG be 0 together with all 0 < g e G such that (0, g)~ is compact, and let C(G) be the
subgroup of G generated by ComG. The following is an immediate consequence of [12],
2.14°, and [3], 2.10°.

PROPOSITION 4. For a TR group (G, <, =£), C{G) is a normal convex, directed subgroup
of(G,<) such that (C(G), 0 + = ComG, and (C(G),<) is a complete, and therefore an
archimedean and abelian, l-group.

PROPOSITION 5. For a TR group (G, <, =s), no element 0 < g e C(G) exceeds an infinite
disjoint set, and hence (C(G), <) has a basis.

Proof. Suppose 0 < g e C(G) exceeds an infinite disjoint set {a1,..., an,...} and let
0<f€ C(G) be such that g < t. For each n = 1, 2 , . . . , let kn be a positive integer such that
Kan^t but (kn + l)an^t (such an integer exists by Proposition 4). Let bn = (kn + l)an.
Then for each n,

bn<knan + knan<t+t.

By Proposition 4, [0, f+t] is complete, and hence V K exists in (C(G), <). Since by
Propositions 1 and 4 }\(C(G), =£)* = 0 in (C(G), <), for any 0 < d e C(G), we may choose
0<t(d)eC(G) such that d^t(d). If 0<x<\/bn, then x-t(x)<x<\/bn + f, hence

t)\o<d<bi}].

By Proposition 4 again, [0, t + tj is compact. Hence, since [0, V bA is (topologically)
closed, 10, V bn\ is compact, and thus, there exist d l 5 . . . , dm such that

Pick n so that d^ bn for all i = 1 , . . . , m. Then, since {fy} is disjoint, bn A d{ = 0 for all i,
hence (bn + t(di))/\(di + t(di)) = t(dt) f o r a l l i, a n d t h u s , b y o u r c h o i c e o f t ( d t ) , bn% dt-

': t{di), i.e. bn<£ \Ji(dt - t(dt), V K +1). But also by our original choice of the bn, bn^ t. This is
a contradiction, and hence 0<geC(G) cannot exceed an infinite disjoint set. The usual
argument (e.g. [7], p. 3.31) shows that therefore every 0 < g e C(G) must exceed a basic
element, and this is clearlv equivalent to (C(G), <) possessing a basis.

Proof of Theorem 3. Suppose (i) holds, and let 0 < g e G be such that (0, g)~ is
compact. If {an} is an infinite disjoint subset of (G, <), then {gAaJ is also an infinite

', disjoint set because (G, <, ^ ) is non-secular. But g> gAan for all n, a contradiction of
Proposition 5. Thus, (G, <) contains no infinite disjoint subsets. Again the usual argument

> (e.g. [7], p. 3.31) shows that (G, <) must have a basis, and since a basis is a disjoint set, it
too must be finite. Thus, we may apply Theorem 2 and conclude that (G, <) is a
lexico-sum of n o-groups Sx,..., Sn. Since (G, <, =s) is non-secular, and since each St is a
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convex o-subgroup, Tt = St D C{G) ^ {0} for all i. By Proposition 4, and the definition of
lexico-sum, each Tf is normal in G, and hence (G, =<) is also a lexico-sum of the n
o-groups Tu ..., Tn. By Proposition 4, each (Tf, <) is a complete o-group and hence
isomorphic to either the real numbers or the integers. If (T;, <) is isomorphic to the
integers for some i, then there exists an element t e Tt which covers 0. But there exists
0 < g e G such that g A t < t, i.e., such that g A t = 0. This contradicts the non-secularity of
(G, <, =s), and hence each (Tu <) is isomorphic to the real numbers. Therefore, (ii) holds.

Next, suppose that (ii) holds, and let Rlt..., Rn be the n copies of the real numbers
of which (G, <) is a lexico-sum. Let H be the subgroup of G generated by the Rt. From
the definition of the lexico-sum, it is clear that each Rt is a convex o-subgroup of (G, <)
and that i?; PlR, ={0} if ij=j. From this, it follows easily that H is a convex /-subgroup of
(G, <) which is isomorphic to the cardinal product of the Rt. For l ^ i ^ n , let

M; = {g e G I for some 0 < rt e Rt, g ̂  rt},

and for each non-empty subset S of { 1 , . . . , n}, let Ps = flsM- Clearly, we have denned
m = 2" - 1 distinct subsets Ps of G, and it is straightforward to show that each Ps is the
strictly positive cone of a CTRO on (G, <). It is also clear that the order defined by Ps is
secular if S is strictly contained in { 1 , . . . , n) and non-secular if S = { 1 , . . . , n}. Suppose
that P is the strictly positive cone of a CTRO =s on (G, <). For i = 1 , . . . , n, let pf e ? be
such that p; A r; < »•; for some rt e Rt. Then /\Pi^rj f°r aU / = !>•••. n> a nd hence by
definition of the lexico-sum, A Pie#. Since A Pie(G, =s)*, (H, <, «£) is a TRL group by
Proposition 1. Since (H, <) is the cardinal product of the Rt, we must have (H,**)* =
H(~\PS for some non-empty subset S of { 1 , . . . , n}, and hence by Proposition 1, we must
have P = PS for some non-empty subset S of { 1 , . . . , n}. Thus, (iii) holds.

Clearly, (iii) implies (i), and this proves Theorem 3.
Let R be the additive o-group of real numbers, and for any positive integer n, let

(R", <, =£) denote the TRL group whose underlying group is R", whose lattice-order < is
the cardinal order, and whose CTRO =£ is the strong pointwise order: (r1,...,rn)>
( 0 , . . . , 0) if and only if r; >0 for all i. A po-group (G, =s) is eudoxian [14] if and only if
whenever a, be(G, =£)*, there exists a positive integer n such that na^b.

COROLLARY 6. Let (G, <, O be a TR group such that G=C(G). If (G, <, =£) is
non-secular, then (G, <, =s) is isomorphic to (Rm, <, =s) for some integer m>0.

Proof. Proposition 4 and the proof of Theorem 3 ((i) implies (ii)) show—without
using Theorem 2—that (G, <) is a complete archimedean /-group with a finite basis such
that no element of (G, <)* covers 0. From this, it follows easily that (G, <) is isomorphic
to (Rm, <) for some m>0. As in the proof of Theorem 3 ((ii) implies (iii), it is clear
that =s defined above is the only non-secular CTRO on (Rm, <), and hence (G, <, <)
must be isomorphic to (Rm, <, =s). •

COROLLARY 7 (Loy and Miller [12], Theorem 5.1°). Let (G, <, =£) be a locally
compact TR group and suppose that (G, =s) is eudoxian. Then (G, <, =s) is isomorphic to -,
(Rm, <, =s) for some integer m > 0. :

https://doi.org/10.1017/S0017089500003918 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003918


NON-SECULAR, LOCALLY COMPACT TRL GROUPS 5

Proof. Since (G, =s) is eudoxian, G = C(G), and hence by Corollary 6, it suffices to
show that (G, <, =£) is non-secular. If 0 < g e G and 0 < t e G are such that gAf = 0 in
(G, <), then gAnf = 0 for all positive integers n. But O<g + J and by the eudoxian
property nt > g + t for some n, i.e., (n - l)f > g. This is a contradiction and hence (G, <, =s)
is non-secular. Note that since Corollary 6 did not require Theorem 2, neither does
Corollary 7.

3. Consequences of the characterization. Theorem 3 dealt with non-secular TRL
groups. Dropping the requirement of non-secularity allows a great deal of leeway—in fact,
by Corollary 10 below, any /-group with a convex /-subgroup isomorphic to the real
numbers possesses a locally compact CTRO. However, Propositions 1 and 4 do clearly
imply the following.

PROPOSITION 8. For a TR group (G, <, =£), the following statements are equivalent

(i) °ll(G, =£) is locally compact:
(ii) C(G)^{0};
(iii) (G, «)* is the dual ideal of (G, <)+ generated by (C(G), =s)*.

In view of Proposition 8, it seems reasonable in the general case to turn our attention
to the structure of C(G), and in this spirit, we use Proposition 5 to prove Theorem 11
below.

PROPOSITION 9. Every TRL group (G, <, =£) contains a convex l-subgroup N(G) of
(G,<) satisfying:

(i) (N(G), ^ , =s) is a non-secular TRL group:
(ii) if K is a convex l-subgroup of (G, <) such that (K, <, =s) is a non-secular TRL

group, then K^N(G).

Proof. Let SG be the set of all g e G such that for some 0 < t e G, g A t = 0 in (G, <)
(SG is essentially T~ of [13]), and let N(G) be the set of all y e G such that there exists
0=£/e G such that -f<y<f and, for all geSG, / A g = 0 in (G, <). That N(G) is a convex
I-subgroup of (G, <) follows from the elementary theory of /-groups (see, e.g., [8], p. 70,
B)). By definition, either N(G) = 0 or N(G)fl(G, =s)*^Q Thus, by Proposition 1,
{N{G), <, =£) is a TRL group, and it is clear, again from the definition, that (N(G), <, s=)
is non-secular. If K is as described in (ii), then either K = {0}sN(G) or there exists
0< k e K If K£ N(G), then there exists 0 < s e SG D K. Let 0 < t e G be such that t A S = 0.
Since 0<fc, 0<k.AteK. Then (fcAt)As = 0, which contradicts the non-secularity of
(K,<,O. Thus, KcN(G) .

(The following example shows that it need not be the case that N(G) = {g||g|As = 0
for all s e SG}: Let (G, <) be the cardinal product of a countable number of copies of the
real numbers. Define a CTRO =£ on (G, <) by letting / > 0 if and only if / x > 0 and there
exists m such that /„ > 0 for all n^m. Then SG = {/1 fl = 0 and /„ = 0 for all but a finite
number of n>l}, but N(G) = {0}.)

LEMMA 10. Let (G, <,=s) be a locally compact TR group. If T is an o-subgroup of
{C{G),<) such that f\ (T,<)* = 0, then T^N(C(G)).
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Proof. If T<£N(C{G)), then there exists f s T n S c ( G ) . Let 0<geC(G) be such that
g vf = 0. Since A(T, <)* = 0, it is easy to see that {(x-g, x + g) | 0< x< t} is an open cover
of [0,«] which has no finite subcover. Thus, [0, t^ is not compact. But [0, r] is a closed •
bounded subset of (C(G), <)+, and hence by Proposition 4, [0, fl is compact. This is a
contradiction. Thus, TcN(C(G)).

Let (G, <, =s) be a TRL group, and let Z be the o-group of integers. For any cardinal
X, let ( G x ^ Z , < , « ) be the TRL group whose underlying group is Gx£ K Z, whose
lattice-order < is the cardinal order, and whose CTRO =s is generated by (G, =s)*:
(g,/)>(0, 0) if and only if g > 0 and / > 0 in the cardinal order of £NZ. Note that
%(Gx£NZ, =£) is just the product of <%(G,«) and the discrete topology on £KZ.

The following result, which, with Proposition 8, characterizes (C(G), <, =£) for allTR
groups (G, <, =s), is essentially a theorem of Wirth [18] (cf. §1). Besides the proof, the
main novelty in the theorem below is the introduction of N(C(G)).

THEOREM 11. Let (G, <, =s) be a locally compact TR group. Then there exist a positive
integer n and a cardinal X such that

(1) (N(C(G)), <, =s) is isomorphic to (R", <, =s), and

(2) (C(G) ,< ,O is isomorphic to (N(C(G))x£NZ, <, *£).

Proof. By Propositions 4 and 5, (C(G), <, =s) is a complete archimedean /-group with
a basis, say {ba}. For each a, let Ba be the maximal convex o-subgroup of {CiG),^)
containing ba. Then (C(G), <) is isomorphic to the cardinal sum of the Ba by [5], Theorem
7.2, or the following direct proof.

It is easy to show (cf. [7], p. 3.14) that (B, <), the convex /-subgroup of (G, <)
generated by the Ba, is isomorphic to the cardinal sum of the Ba. Let 0< ge C(G). By
Proposition 5, there exist bu ... ,bne{ba} such that g/\bp>0 if and only if bp = bt for
some i. Since (C(G), <) is archimedean, there exists, for each i, 0<kieBi such that g> kt.
Since fcj<gA(fcj + fcJeBj, gAki <gA(k; +kjXkj, and hence gA(kf + kf)= gAkf. Thus,

Then

and thus, since g > g - g A \ / k i ^ 0 » (g~g A Vkf)A^a = 0 for all a. Since {/>„} is a basis,
g = gA Vk.eB. We conclude that C{G) = B, i.e., that (C(G), <) is isomorphic to the
cardinal product of the Ba.

Therefore, if no Ba is such that /\(Ba, <)* = 0 then for all 0<geC(G), the cardinality
of [0, gj is finite, and hence (C(G), <)+ contains no proper dual ideal whose greatest
lower bound is 0. Thus, at least one Ba satisfies A(Ba, <)* = 0, and hence by Lemma 10,
N(C(G)) + {0}. Since clearly C(N(C(G))) = N(C(G)), Corollary 6 implies that there exists
an integer m > 0 such that (N(C(G)), <, =s) is isomorphic to (Rm, <, ^ ) . (Note that
Theorem 2 was not used to prove Corollary 6). By Lemma 10, every Ba not contained in
N(C(G)) must be isomorphic to Z, and hence by Proposition 1, (C(G), <, =£) must be
isomorphic to (N(C(G)) x £K Z, <, =s), where X is the cardinality of {a | Ba is isomorphic
to Z}.
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COROLLARY 12. A directed po-group (G, <) without pseudo-positives possesses a
partial order =s such that (G, <, «=) is a locally compact TR group if and only if there is a
convex subgroup of (G, <) isomorphic to the additive o-group of real numbers.

Proof. If (G, <) possesses such a subgroup, say H, then the dual ideal of (G, <)+

generated by (H, =<)* is easily seen to be the strictly positive cone of a CTRO =£ on (G, <)
(that is, it obviously satisfies conditions (a)-(d) of §2). Clearly ^(G, *£) is a locally compact
topology. The converse follows from Theorem 11.
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