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ABSTRACT 

The path over a surface with complex topography that 
a snow avalanche will take is usually not known in advance. 
To predict avalanche paths over such terrain, we propose a 
model for the motion of the mass centre of an avalanche 
over an arbitrary surface. The numerical solution for this 
model shows that avalanche paths over complex topography 
are very sensitive to small differences in the avalanche 
velocity. 

INTRODUCTION 

Most avalanches which occur in valleys or mountainous 
regions with complex topography flow in unexpected 
directions. For example, the paths of avalanches in a valley 
with a curved thalweg do not always follow the thalweg 
itself (Fig. lb); indeed, an avalanche may even pass over 
the ridge between two valleys and enter a neighbouring 
valley. Because of its inertia, an avalanche does not take 
the steepest descent path if these lines projected on to a 
horizontal plane are curved. In other words, the difference 
between the travel path and the steepest descent line 
depends on the velocity of the snow avalanche. In addition, 
over a convex surface (Fig. Id) a small difference in the 
initial conditions sometimes yields significant differences in 
the travel path. Much theoretical work on snow-avalanche 
dynamics has been carried out, starting with that of 
Voellmy (1955), but there have been few studies of 
snow-avalanche paths, those existing being principally the 
work of Nohguchi (1983, 1986, 1987a, b). The problem of 
travel path is particularly notable for large-scale avalanches 
with long run-out distances and high speeds. If the length 
of the travel path is much longer than that of the main 
moving mass, we may represent the avalanche motion as 
that of a point mass or mass centre. In this paper, we 
formulate a three-dimensional model for the motion of the 
avalanche and use it to examine the effects of topography 
and velocity on the avalanche travel paths. 

GOVERNING EQUATIONS FOR MASS CENTRE MOTION 

General description 
The first problem is to derive the equations for the 

motion of a point mass for an arbitrary surface. We do this 
using analytical mechanics (Goldstein, 1980). Locating the x 
and y axes in a horizontal plane (Fig. 2), an arbitrary 
surface is represented by the following equation 

z = f(x,y). (I) 

With this geometry, the equations of motion are 
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where V and R are the magnitude of the velocity and 
resistance repectively, and 

g ' (3) 

Ix = al/ ax; Iy = ai/ ay; (4a) 

(4b) 

Equations (2a , b) describe the horizontal components of 
the mass centre motion. The z component of the motion 
can be obtained from Equation (I). Equations (2a, b) can be 
solved by specifying the geometry in Equation (I), 
resistance force, R, and the initial conditions (x,y,x,y) = 

(xo,yo,xo'Yo)' 

Force of restriction and jump condition 
The force due to the restriction condition in Equation 

(I) is equivalent to the normal force on the avalanche mass 
from the ground surface. Let N x' N , and Nz be the x, y, 
and z components of the restriction force. Then we have 

m dx / dt 

m d.v/ dt 

N X - R x / V 

Ny-Ry/ V 

(Sa) 

(5b) 

m dz / dt = Nz - R Z/ V - mg. (5c) 

By comparing Equations (Sa, b, c) with Equations (2a, b) we 
have 

Nx -mfx(l + f~ + f~rlg' 

N y -mlyO + li + I~rlg' 

Nz m(l + li + f~rlg' . 

Thus, the magnitude of the restriction force is 

N = m(l + f~ + l~rl/2 1 g' I· 

(6a) 

(6b) 

(6c) 

(7) 

When either the velocity or ground-surface curvature is 
equal to zero, g' = g, and N = component of gravity 
normal to the surface . 

In real configurations the ground is always below the 
avalanche surface and so Nz must be positive to locate the 
point mass on the surface. The condition constrai ning the 
poin t mass to the surface is then 
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Fig. I . T ypical examples of avalanche travel paths . Thin 
lines are co ntours . 
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Fig. 2. Coordinate system and an arbitrary surface . 
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Fig. 3. Travel paths on parabolic valley shapes. Solid circles 
show position of avalanche mass centre at 2 s intervals . 
(/I. = 0.2; (I) & = 0 .01 m -I, V30 = 17.9 m/ s; (2) & = 
0 .005 m - I , V 30 = 25.3m/ s; (3) & = 0.0025 m-I, V 30 = 

35.8 m/ s; (4) & = 0 .001 m -I, V30 = 56.6 m/ s; (5) & = 0.0; 
V 30 is Ve on a 30

0 

inclined plane slope.) 

2 16 

a nd we so lve Equations (2a, b) subject to this constraint. 

Two particular travel paths 
We consider two distinct types of travel path 

independent of resistance forces. The first case assumes that 
ine rtia is important, so that 

(9a) 

(9b) 

We ca ll this the inertia path . 
The other case assumes that inertia is not important 

and that there fore d x/dt = dYldt = 0, which gives 

dy / dx = Iy/ lx ( 10) 

This path is the line of steepest descent, and for this 
reason we call it the steepest descent path. When the 
steepest d esce nt path is straight, it is equivalent to the 
ine rti a path , and so every travel path is straight; the 
co mplica tion arises when the steepest descent path is 
curved. 

RESISTANCE FORCE 

In order to so lve Equations (2a, b) it is necessary to 
g ive concrete form to the resistance force. The form of this 
force is the major problem related to snow-avalanche 
modelling (Voellmy, 1955; Salm, 1966; Schaerer, 1975; Perla 
and others, 1980; Lang and others, 1985; Salm and Gubler, 
1985; Maeno and Nishimura, 1987; Norem and others, 1987). 
For s implicit y, in this paper we use the classical two
parameter represe ntation 

R = JJ.N + m5V2 (11 ) 

where /LN is the frictional force; /L is the coefficient of 
friction; m&V2 is the turbulence term; & is the constant 
rela ted to Voellmy's parameter ( (& = gl (h, where h is the 
fl ow he ight) or = DI M in Perla's model. With R given by 
Equation (11), Equations (2a, b) include only two 
parameters, /L and 5. 

A one-dimensional equation of motion on a plane slope 
is obtained from Equations (2a, b) and (11) as 

dV/ dt = g(sin 9 - /LCOS 9) - SV2 (12) 

where 9 is the slope angle . Following this , the terminal 
velocit y on the plane slope can be given by 

Ve = ~ (sin 9 - /LCOS 9) / 5 Y (13) 

in terms of /L and 5, and Ve considered as a characteristic 
velocity scale. 

NUMERICAL COMPUT A nONS 

Figure 3 shows the res ults of numerical computations 
on a parabolic valley shape described by the following 
equation 

f(x,y) (14) 

where a represents the "steepness" of the valley, and b the 
inclination of the thalweg. Using Equation (14), lx' 1 y' 

lxx' 1 xy' and 1 yy are given by 

ax; b; fxx a; fxy 0; fyy O. (15) 
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With this geometry, we use a Runge-Kutta technique to 
solve Equations (2a, b). The results show that the travel path 
depends strongly on Ve; in particular, the deviation of 
the trave l path from the steepest descent line increases with 
Ve' Other results have been given by Nohguchi (1983). 

Figure 4 shows the results of numerical computations 
using the topography of a slope in Japan where a large
scale avalanche occurred on 26 January 1986. The path of 
this avalanche was about 2 km in length and curved 
smoothly from the release zone to the run-out zone. In 
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these calculations, f x' f Y' f xx' f xY' and f yy were obtained 
from a contour map of the slope as follows 

fy 

fxx 

f( X + lI, y) - f(x -lI,y) 

2lI 

f( x, y + lI) - f(x,y -lI) 

211 

f(x + t.,y) - 2f(x,y) + f(x -lI,y) 

t.2 

(16a) 

(I6b) 

(16c) 

f(x + lI,,lI + lI) - f(x -lI,y + lI) - f(x + t.,y -lI) + f(x - t.,y - t.) 
fxy = (16d) 

fxy 
f(x,y + t.) 2f(x,y) + f(x,y - t.) 

(16e) 

where, after considering the scale of the avalanche moving 
mass, 50 m was used as a value for lI. The computational 
results show that the avalanche path is dependent on the 
parameters listed in Table I; in particular, the avalanche 
path in run 2 is quite different from that in run 3, even 
though Ve is only slightly different. Note that runs 3 and 4 
are curved along the real avalanche path and extend over 
the cross-hatched region where the disaster occurred . 
Therefore, the real motion of the avalanche was accurately 
s imulated by the motions of these runs . 

Field data of run-out distance are frequently used to 
estimate mode l parameters (Martinelli and others, 1980). We 
have shown that it is also possible to calculated these para
meters and to simulate the avalanche mass-centre motion by 
using the predicted travel path. 

TABLE I. MODEL PARAMETERS FOR EACH 
RUN OVER REAL SURFACES 

Run No. 

I 
2 
3 
4 
5 

0 
0 
0 
0 
0 

CONCLUDING REMARKS 

6 

(m-I) 

0.001 
0.002 
0.0025 
0.007 
0.05 

V30 

(m/s) 

70 
49 
44 
26 
10 

To model the path of snow avalanches over complex 
topograph y, we have formulated equations for the motion of 
an avalanche represe nted as a point mass moving over an 
arbitrary surface . Numerical solutions of these equations for 
ideal and real topographies show that the avalanche path is 
especially dependent on model parameters such as Ve' 
Consequently, we can use our forward modelling technique 
to mode l real avalanches and determine appropriate values 
for the model parameters. 
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