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In [4], Hanson has obtained necessary conditions and sufficient con-
ditions for optimality of a program in stochastic systems. However, in many
cases, especially in a general treatment, a program satisfying these con-
ditions cannot be determined explicitly, so that the question of existence
of an optimal program in such systems is significant. In this paper, we obtain
conditions sufficient for existence of an optimal program by applying the
direct methods of the calculus of variations [9], [6] and the theory of optimal
control [7], [5].

1. Definitions

Consider a probability space (A, S, fi) [3, p. 191]. We shall assume that

(1) the probability measure fi is regular with respect to some topology
on A [3, p. 224].

Let R be a closed set in En, and U a closed convex set in Em. Consider
a fixed measurable mapping r : A —>• R.

We shall call a real function f(r, u) on RxU "linearly bounded below
in u" if

f(r(w), u) S: p(w)-\-u • q{w)

for some integrable function p and bounded integrable function q on A.
Consider any number of real continuous functions g^r, u), h^r, u) on

RxU, each linearly bounded below and convex in u.
Let F be the class of all integrable mappings u : A ->• Em such that

(2) u(w) e U for almost every w e A;

(3) (A) jgi(r{w), u(w))dn ^ 0 for each i;

(4) hi{r{w), u(w)) ^ 0 for almost every w e A, for each /.

Let <f>(r,u) be a real continuous function on RxU. We say that a
program u0 e F is optimal (with respect to </>) in F if

114

https://doi.org/10.1017/S1446788700004651 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004651


[2] An existence theorem for optimal stochastic programming 115

/(«) = (A)j$(r(w),u(w))dft

has a minimum at uQ; that is, I(u0) :Sj I(u) for all u e F. For F nonempty,
we shall prove that an optimal program exists under suitable extra con-
ditions. Our general approach will be to make F closed and compact under
weak convergence in Lx = L^A, S, fi). Lower semicontinuity of I(u) in
that convergence is then sufficient for the existence of an optimal program
in/1.

We obtain the equivalent of Hanson's system if A QEn, r(w) = w,
and [j, = J yidA. for %p a probability density with respect to Lebesgue measure
I on En.

2. Semicontinuity

We shall make repeated use of the following theorem of lower semi-
continuity.

THEOREM 1. Let f(r, u) be a continuous real function on RxU, linearly
bounded below and convex in u. Suppose that

(5) (̂ 4) J \u(w)\dfi is bounded on F.

(Conditions sufficient for this will be discussed in Section 5.) Consider a
sequence of programs une F converging weakly in Lx to an integrable mapping
u such that u(w) e U almost everywhere. Then, for any set E g S,

(E)jf(r{w),u(w))d/t ^liminf (£) j f{r{w), un(w))djt.

Theorem 1 follows immediately from-Theorem 4 and Section 6 of [8].
Note that (E) J (p+un • q)d/i is continuous under weak Lx convergence,
so that the discussion of Section 6 of [8] applies. Our assumption (1) about
the measure fj. is used in the general semicontinuity theorem of [8].

3. Closure

THEOREM 2. Suppose that F satisfies condition (5). Then F is closed
under weak Lx convergence.

PROOF. Consider a sequence of programs un e F, and an integrable
mapping u : A -> Em such that (A) j unvdfi -*• (A) j uvdjj, for each
veL^A.S.n).

The closed convex set U is the intersection of a countable number of
half spaces {u : b+u • c ^ 0}. Let E = {w : w e A, b+u(w) • c > 0}. By
taking v above as the characteristic function of E, we have
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0 ^ (E) j (b+un(w) -c)dfx^ (E) J (b+u{w) • c) dp ^ 0.

Hence (E) j (b+u(w) • c)dp = 0, while b+u(w) • c > 0 on E. Thus
^(5) = 0, and so u(w) e U almost everywhere.

Now (A) jgi(r(w), un{w))dp ^ 0 for each i, and (A) fgt(r(w), un(w))dp
is lower semicontinuous with respect to weak Lx convergence. Hence

so that u satisfies condition (3).
Let Ej = {w.weA, hj(r(w), u{w)) > 0}. Now (Et) jh^r^w), un(w))d/i

is lower semicontinuous with respect to weak Lx convergence. Hence

0 ^ {Ei)^hj(r{w),u{w))dp ^ l iminf (E,) J hj{r{w),un(w))dlj, ^ 0 .

Consequently p(Ej) = 0, so u satisfies condition (4).

4. The existence theorem

THEOREM 3. Let <f>(r, u) be a continuous real function on RxU, linearly
bounded below and convex in u. Suppose that F satisfies condition (5) and

(6) J \u(w)\dp is equi absolutely continuous on F.

(Conditions sufficient for this will be discussed in Section 5.) Then, if F is
not empty,

I(u) = {A)\<f>(r{w),u{w))dn

has a minimum on F.

PROOF. Since we assume that J \u\dp is equi absolutely continuous
and (A) J \u\dp is bounded on F, F is compact in Lx with respect to weak
convergence [2, p. 294]. By Theorem 2, .Tis closed under weak convergence
in Lx. Thus F is compact in itself.

By Theorem 1, I(u) is lower semicontinuous with respect to weak
convergence in Lx. A lower semicontinuous functional on a compact space
has a minimum [1, p. 63]. Hence the result.

5. Equi absolute continuity of J \u\df*

Conditions (5) and (6) play a key part in our existence theorem. We
now study conditions sufficient for equi absolute continuity of J \u\dp and
bounding of (A) j \u\dp on F.

For example, if U and the functions ht are such that some, at most
countable, intersection
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D {u : u e U, hj{r{w), u) ^ 0}

is bounded uniformly on A, then conditions (5) and (6) are satisied im-
mediately.

Alternatively, the following integral condition could be used.

THEOREM 4. Let ip(u) be a real function on U, bounded below and such
that ip(u)/\u\ -> oo as \u\ —> oo on U. If (A) jip(u(w))d/j, is bounded on F,
then j \u{w)\dfi is equi absolutely continuous and {A) J \u(w)\dfi is bounded
on T.

PROOF. Suppose that (A) f f(u(w))dfi ^ c on F; y>(u) Sg b; and, for
any e > 0, (y(w) —b)j\u\ > 1/e for \u\ > m(e), ueU. For any program ueF
and any set M eS, define M+ = M n {w : \u(w)\ > m(e)}, M~ = M—M+.
Then

(M) J \u(w)\dfi ^ e(M+) J (y(M(r»))-

^ e{c-b)+m{e)ix{M)

if /<(M) < e/m(e). Thus J |M(W) |^ is equi absolutely continuous. Similarly,

(A) J \u(w)\dfi < c—b+m(l)

so that (.4) j \u(w)\dft is bounded on F.
For example, a "growth condition" gt(r{w), u) S; y>(u) on some g{ would

be sufficient for the bounding of (A) jip(u(w))dfi on F. Alternatively, the
bounding of (A) j %p{u{w))d/ji, sufficiently for our purpose, would follow
from a similar growth condition on <f>.

THEOREM 5. Suppose that <j>(r[w), u) S: rp(u) where %p has the properties
stated in Theorem 4. Then our existence theorem, Theorem 3, holds witliout
the direct assumption of conditions (5) and (6).

PROOF. If I(u) = oo for all u e F, then the result is trivial. Otherwise,
there exists uxeF with /(Wj) < oo. In considering a minimum for I{u)
on F, we can restrict consideration to the class

Now (A) fy>(u(w))dp is bounded on F1. Theorems 3 and 4 show that
/(«) has a minimum on Fx, which is also a minimum on F.
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