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Abstract

Many characterizations of fragmentability of topological spaces have been investigated. In this paper we
deal with some properties of weak-fragmentability of Banach spaces.
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1. Introduction

A topological space X is fragmentable if there exists a metric d(. , .) on X such that for
every ε > 0 and every nonempty set A ⊆ X there exists a nonempty subset B ⊆ A which
is relatively open in A and d-diam (B) = sup{d(x, y) : x, y ∈ B} < ε. In such a case we
say that the metric d fragments X.

Theorem 1.1 [1, Theorem 5.1.10]. Let f : (X, τ1)→ (Y, τ2) be an injective continuous
map. If (Y, τ2) is fragmentable then (X, τ1) is fragmentable.

In [3] the following topological game was used to characterize the fragmentability of
the space X. Two players A and B alternately select a subset of X. Player A starts
the game by choosing a nonempty subset A1 of X, then player B chooses a nonempty
relatively open subset B1 of A1. Then A again selects an arbitrary nonempty subset
A2 ⊆ B1 and B responds by choosing a nonempty relatively open subset B2 of A2.
Continuing this alternate selection of sets, the two players generate a sequence of sets

A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ · · ·

which we call a play and denote by p = (Ai, Bi)i≥1. We say that player B is the
winner whenever the set

⋂
i≥1 Ai =

⋂
i≥1 Bi contains at most one point, otherwise player

A is the winner. A strategy w for player B is a mapping which assigns to each
partial play, A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ · · · ⊇ Ak, some nonempty set Bk = w(A1, B1, . . . , Ak)

c© 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 $16.00

251

https://doi.org/10.1017/S1446788714000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000184


252 F. Heydari, D. Behmardi and F. Behroozi [2]

which is a relatively open subset of Ak. We call the play p = (Ai, Bi)i≥1, a w-play if
Bi = w(A1, B1, . . . , Ai) for every i ≥ 1. The strategy w is a winning strategy for B if
player B wins every w-play. We denote this game by G f .

Theorem 1.2 [3]. The topological space X is fragmentable if, and only if, player B has
a winning strategy for G f .

We can see in [1] and elsewhere many characterizations of fragmentable spaces. In
this paper we describe some properties of these spaces.

Let X be a Banach space and Y be a closed subspace of X. A property of X
implies the same property on X/Y , but weak-fragmentability of X does not imply
weak-fragmentability of X/Y . For example (l∞,weak) is fragmentable but it is proved
in [7] that (l∞/c0,weak) is not even a countable union of fragmentable spaces. Also a
property of X∗ implies the same property on X, but weak-fragmentability of X∗ does
not imply weak-fragmentability of X. In the next section we prove this claim. Also we
investigate a transfer property of weak-fragmentability by an injective bounded linear
map.

Let τ1, τ2 be two (not necessarily distinct) topologies on a set X. We say that
(X, τ1) is fragmentable by a metric d which majorizes the topology τ2 if the topology
generated by d is stronger than or equal to the topology τ2.

Theorem 1.3 [4]. Let τ1, τ2 be two (not necessarily distinct) topologies on a set X.
The space (X, τ1) is fragmentable by a metric d which majorizes τ2 if and only if there
exists a strategy w for player B in the game G f in (X, τ1) such that, for every w-play
p = (Ai, Bi)i≥1, either

⋂
i≥1 Ai =

⋂
i≥1 Bi = ∅ or

⋂
i≥1 Bi = {x} for some x ∈ X, and for

every τ2-open set U that contains x, there exists some integer k > 0 with Bk ⊆ U.

Let (X, τ) be a topological space and suppose that there exists a strategy w for
player B in the game G in (X, τ) such that, for every w-play p = (Ai, Bi)i≥1, either⋂

i≥1 Ai =
⋂

i≥1 Bi = ∅ or there exist k > 0 and x ∈ X such that Bi = {x} for i ≥ k. By
Theorem 1.3 we can say that (X, τ) is fragmentable by a metric d which generates the
discrete topology.

In the next section we will prove that if X is a nontrivial normed linear space, then
(X,weak) is not fragmentable by a metric which generates the discrete topology.

A topological space (X, τ) is scattered if for every nonempty closed subset A of X,
there is a relatively open subset U of A which contains exactly one point. The proof of
the following theorem is obvious.

Theorem 1.4. If (X, τ) is scattered then (X, τ) is fragmentable by a metric which
generates the discrete topology.

In general, the converse of this theorem is not true. For example, Q is not scattered
but we will prove that this space is fragmentable by a metric which generates the
discrete topology. However, we will show in the next section that the converse of
Theorem 1.4 is true in some particular cases.
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Let X be a Banach space. We say that (X,weak) is σ-fragmentable if, given ε > 0,
there exists a countable family of sets (Xi)i≥1 such that X =

⋃
i≥1 Xi and for every i ≥ 1

and nonempty A ⊆ Xi, there is a relatively nonempty open subset B ⊆ A such that
norm-diam (B) < ε.

Theorem 1.5 [4]. For a Banach space X the following assertions are equivalent:

(a) (X,weak) is fragmented by a metric d which majorizes the weak topology.
(b) There exists a strategy w for player B such that, for every w-play p = (Ai, Bi)i≥1,

either
⋂

i≥1 Bi = ∅ or limi→∞(norm-diam (Bi)) = 0.
(c) (X,weak) is σ-fragmentable.

Let X be a Banach space. We say that the ‖.‖ on X is Kadec if the norm and weak
topologies coincide on the unit sphere S X .

Theorem 1.6 [2]. Let X be a Banach space. If X admits an equivalent Kadec norm
then (X,weak) is σ-fragmentable.

2. Results

Theorem 2.1. Let (X, τ1) and (Y, τ2) be two topological spaces and f : (X, τ1)→ (Y, τ2)
be a continuous injective map. If (Y, τ2) is fragmentable by a metric which generates
the discrete topology then (X, τ1) is fragmentable by a metric which generates the
discrete topology. In particular, subspaces of Y are fragmentable by a metric which
generates the discrete topology.

Proof. Let d be a fragmenting metric on (Y, τ2) that generates the discrete topology
on Y . Define ρ on X × X by, ρ(x, y) := d( f (x), f (y)). Since f is injective, ρ is a
metric on X. Since d generates the discrete topology, for x0 ∈ X there exists r > 0
such that {y ∈ Y : d( f (x0), y) < r} := { f (x0)}, then {x ∈ X : ρ(x0, x) < r} := {x0} which
implies that ρ generates the discrete topology. Let A be a nonempty subset of X and let
ε > 0. Then f (A) is a nonempty subset of Y . Let W be an open subset of (Y, τ2) such
that ∅ , f (A) ∩W and d-diam ( f (A) ∩W) < ε. Then f −1(W) is an open subset of X,
A ∩ f −1(W) , ∅ and ρ-diam (A ∩ f −1(W)) < ε since f (A ∩ f −1(W)) ⊆ f (A) ∩W. �

Theorem 2.2. Let X be a countable set and let τ be a T1 topology on X. Then (X, τ) is
fragmented by a metric that generates the discrete topology.

Proof. If X is finite then the result is trivially true, so we shall suppose that X is
infinite. Let X = {xn}

∞
n=1. By Theorem 1.3 it is enough to show that there exists a

strategy w for player B in the game G f such that, for every w-play p = (Ai, Bi)i≥1,
either

⋂
i≥1 Ai =

⋂
i≥1 Bi = ∅ or there exist x ∈ X and k > 0 such that Bn = {x} for every

n ≥ k. Suppose that A chooses a nonempty set A1 as their first move. If A1 is finite
set, let B1 := {xi : i = min{k ∈ N : xk ∈ A1}}. If A1 is an infinite set, let B1 := A1 \ {x1}.
In either case B1 is nonempty open relatively open subset of A1. Define w(A1) = B1.
Let player A choose a nonempty set A2 ⊆ B1. If A2 is finite let B2 := {xi : i = min{k ∈
N : xk ∈ A2}}. If A2 is infinite, let B2 := A2 \ {x1, x2}. In either case B2 is nonempty
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relatively open subset of A2. Define w(A1, B1, A2) := B2. If we follow this process
inductively, then in the nth stage we have Bn := {xi : i = min{k ∈ N : xk ∈ An}} if An is
finite and Bn := An \ {x1, x2, . . . , xn} if An is infinite. In either case Bn is a nonempty
open relatively open subset of An and we define w(A1, B1, A2, B2, . . . , An) = Bn; this
completes the definition of w. In the w-play p = (Ai, Bi)i≥1, if there exists m ∈ N such
that Am is finite then there exists x ∈ X such that Bm := {x} and then Bn := {x} for every
n ≥ m, otherwise

⋂
i≥1 Bi ⊆ X \ {xn}

∞
n=1 then

⋂
i≥1 Ai =

⋂
i≥1 Bi = ∅. �

Theorem 2.3. Let (X, τ) be a hereditarily Baire topological space, i.e. every nonempty
closed subset of X is a Baire space with respect to the relative topology defined on it.
If (X, τ) is fragmented by a metric ρ that generates the discrete topology then (X, τ) is
scattered.

Proof. Let Y be a nonempty closed subset of X. We show that Y has an isolated point.
Without loss of generality we may assume that Y = X. Fix ε > 0 and consider the
following open subset of X:

Oε :=
⋃
{U ∈ τ : ρ-diam (U) < ε}.

Let W be a nonempty open subset of X. Since ρ fragments X there exists a
nonempty relatively open (and hence open, since W is open) subset U of W such that
ρ-diam (U) < ε. Then

∅ , U ⊆ Oε ∩W.

Therefore, Oε is dense in (X, τ). Let G =
⋂

n∈N O1/n. Since (X, τ) is a Baire space,
G , ∅. Let x0 ∈ G. Since ρ generates the discrete topology there exists r > 0 such
that {x ∈ X : ρ(x, x0) < r} := {x0}. There exists m ∈ N such that 1/m < r. Since
x0 ∈ O1/m there exists U ∈ τ such that x0 ∈ U and ρ-diam (U) < 1/m. If x ∈ U then
ρ(x, x0) < 1/m < r, which implies x = x0. Therefore x0 is an isolated point of X. �

The proof is very similar to the proof of Proposition 2.2 in [5].

Corollary 2.4. If X is a nontrivial normed linear space then (X, weak) is not
fragmented by a metric which generates the discrete topology.

Proof. Let x0 ∈ X; then the map f : R→ (X,weak), defined by f (r) = rx0 for r ∈ R,
is continuous and injective. Therefore by Theorem 2.1, it is enough to show that R
is not fragmented by a metric which generates the discrete topology. We know that
R is hereditarily a Baire space, but is not scattered; then by Theorem 2.3, R is not
fragmented by a metric which generates the discrete topology. �

Theorem 2.5. Let X,Y be Banach spaces and T : X→ Y be an injective bounded linear
map:

(a) If (Y,weak) is fragmentable then (X,weak) is fragmentable.
(b) If (Y,weak) is fragmented by a metric which majorizes the weak topology, and

T is also an isomorphism, then (X,weak) is fragmented by a metric which
majorizes the weak topology.
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Proof. (a) Since T is linear and continuous, T : (X,weak)→ (Y,weak) is continuous.
Therefore by Theorem 1.1 if (Y,weak) is fragmentable then (X,weak) is fragmentable.

(b) Since T is an isomorphism, T : (X,weak)→ (Y,weak) is a homeomorphism.
Therefore if (Y,weak) is fragmented by metric d which majorizes the weak topology,
the metric

ρ : X × X → [0,∞)
ρ(x, y) := d(T (x),T (y))

fragments X and majorizes the weak topology. �

Theorem 2.6. There exists a Banach space X in which (X∗,weak) is fragmented by a
metric which majorizes the weak topology but (X,weak) is not even a countable union
of fragmentable spaces.

Proof. Let βN be Stone–Cech compactification of N. Then C(βN) is isometrically
isomorphic to l∞, so l∗∞ is also isometrically isomorphic to C(βN)∗. If K is compact
then there exists an isometric isomorphism from C(K)∗ to some L1(X, µ) where µ
is a finite measure [6]. Since the common norm on L1 is Kadec, by Theorems 1.5
and 1.6, (L1,weak) is fragmented by a metric which majorizes the weak topology. By
Theorem 2.5, (l∗∞,weak) is fragmented by a metric which majorizes the weak topology.
Let X = l∞/c0; then there exists an isometric isomorphism from X∗ to c⊥0 . As c⊥0 is
a subspace of l∗∞, (X∗,weak) is fragmented by a metric which majorizes the weak
topology, but (X,weak) is not even a countable union of fragmentable spaces. �
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