J. Aust. Math. Soc. **97** (2014), 251–256 doi:10.1017/S1446788714000184

ON WEAK-FRAGMENTABILITY OF BANACH SPACES

F. HEYDARI, D. BEHMARDI[™] and F. BEHROOZI

(Received 17 December 2013; accepted 24 March 2014; first published online 11 June 2014)

Communicated by J. Borwein

Abstract

Many characterizations of fragmentability of topological spaces have been investigated. In this paper we deal with some properties of weak-fragmentability of Banach spaces.

2010 *Mathematics subject classification*: primary 46B20; secondary 46B45. *Keywords and phrases*: fragmentability of topological space, Kadec norm, topological game.

1. Introduction

A topological space X is *fragmentable* if there exists a metric d(.,.) on X such that for every $\varepsilon > 0$ and every nonempty set $A \subseteq X$ there exists a nonempty subset $B \subseteq A$ which is relatively open in A and d-diam $(B) = \sup\{d(x, y) : x, y \in B\} < \varepsilon$. In such a case we say that the metric d fragments X.

THEOREM 1.1 [1, Theorem 5.1.10]. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be an injective continuous map. If (Y, τ_2) is fragmentable then (X, τ_1) is fragmentable.

In [3] the following *topological game* was used to characterize the fragmentability of the space X. Two players \mathcal{A} and \mathcal{B} alternately select a subset of X. Player \mathcal{A} starts the game by choosing a nonempty subset A_1 of X, then player \mathcal{B} chooses a nonempty relatively open subset B_1 of A_1 . Then \mathcal{A} again selects an arbitrary nonempty subset $A_2 \subseteq B_1$ and \mathcal{B} responds by choosing a nonempty relatively open subset B_2 of A_2 . Continuing this alternate selection of sets, the two players generate a sequence of sets

$$A_1 \supseteq B_1 \supseteq A_2 \supseteq B_2 \supseteq \cdots$$

which we call a *play* and denote by $p = (A_i, B_i)_{i \ge 1}$. We say that player \mathcal{B} is the *winner* whenever the set $\bigcap_{i \ge 1} A_i = \bigcap_{i \ge 1} B_i$ contains at most one point, otherwise player \mathcal{A} is the winner. A *strategy* w for player \mathcal{B} is a mapping which assigns to each partial play, $A_1 \supseteq B_1 \supseteq A_2 \supseteq B_2 \supseteq \cdots \supseteq A_k$, some nonempty set $B_k = w(A_1, B_1, \dots, A_k)$

^{© 2014} Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

which is a relatively open subset of A_k . We call the play $p = (A_i, B_i)_{i>1}$, a w-play if $B_i = w(A_1, B_1, \ldots, A_i)$ for every $i \ge 1$. The strategy w is a winning strategy for \mathcal{B} if player \mathcal{B} wins every *w*-play. We denote this game by G_f .

THEOREM 1.2 [3]. The topological space X is fragmentable if, and only if, player \mathcal{B} has a winning strategy for G_f .

We can see in [1] and elsewhere many characterizations of fragmentable spaces. In this paper we describe some properties of these spaces.

Let X be a Banach space and Y be a closed subspace of X. A property of Ximplies the same property on X/Y, but weak-fragmentability of X does not imply weak-fragmentability of X/Y. For example (l_{∞} , weak) is fragmentable but it is proved in [7] that $(l_{\infty}/c_0, \text{weak})$ is not even a countable union of fragmentable spaces. Also a property of X^* implies the same property on X, but weak-fragmentability of X^* does not imply weak-fragmentability of X. In the next section we prove this claim. Also we investigate a transfer property of weak-fragmentability by an injective bounded linear map.

Let τ_1, τ_2 be two (not necessarily distinct) topologies on a set X. We say that (X, τ_1) is fragmentable by a metric d which majorizes the topology τ_2 if the topology generated by d is stronger than or equal to the topology τ_2 .

THEOREM 1.3 [4]. Let τ_1, τ_2 be two (not necessarily distinct) topologies on a set X. The space (X, τ_1) is fragmentable by a metric d which majorizes τ_2 if and only if there exists a strategy w for player \mathcal{B} in the game G_f in (X, τ_1) such that, for every w-play $p = (A_i, B_i)_{i \ge 1}$, either $\bigcap_{i \ge 1} A_i = \bigcap_{i \ge 1} B_i = \emptyset$ or $\bigcap_{i \ge 1} B_i = \{x\}$ for some $x \in X$, and for every τ_2 -open set U that contains x, there exists some integer k > 0 with $B_k \subseteq U$.

Let (X, τ) be a topological space and suppose that there exists a strategy w for player \mathcal{B} in the game G in (X, τ) such that, for every w-play $p = (A_i, B_i)_{i \ge 1}$, either $\bigcap_{i\geq 1} A_i = \bigcap_{i\geq 1} B_i = \emptyset$ or there exist k > 0 and $x \in X$ such that $B_i = \{x\}$ for $i \geq k$. By Theorem 1.3 we can say that (X, τ) is fragmentable by a metric d which generates the discrete topology.

In the next section we will prove that if X is a nontrivial normed linear space, then (X, weak) is not fragmentable by a metric which generates the discrete topology.

A topological space (X, τ) is *scattered* if for every nonempty closed subset A of X, there is a relatively open subset U of A which contains exactly one point. The proof of the following theorem is obvious.

THEOREM 1.4. If (X, τ) is scattered then (X, τ) is fragmentable by a metric which generates the discrete topology.

In general, the converse of this theorem is not true. For example, Q is not scattered but we will prove that this space is fragmentable by a metric which generates the discrete topology. However, we will show in the next section that the converse of Theorem 1.4 is true in some particular cases.

252

Let *X* be a Banach space. We say that (*X*, weak) is σ -fragmentable if, given $\epsilon > 0$, there exists a countable family of sets $(X_i)_{i\geq 1}$ such that $X = \bigcup_{i\geq 1} X_i$ and for every $i \geq 1$ and nonempty $A \subseteq X_i$, there is a relatively nonempty open subset $B \subseteq A$ such that norm-diam (*B*) < ϵ .

THEOREM 1.5 [4]. For a Banach space X the following assertions are equivalent:

- (a) (X, weak) is fragmented by a metric d which majorizes the weak topology.
- (b) There exists a strategy w for player \mathcal{B} such that, for every w-play $p = (A_i, B_i)_{i \ge 1}$, either $\bigcap_{i \ge 1} B_i = \emptyset$ or $\lim_{i \to \infty} (\text{norm-diam}(B_i)) = 0$.
- (c) (X, weak) is σ -fragmentable.

Let X be a Banach space. We say that the $\|.\|$ on X is *Kadec* if the norm and weak topologies coincide on the unit sphere S_X .

THEOREM 1.6 [2]. Let X be a Banach space. If X admits an equivalent Kadec norm then (X, weak) is σ -fragmentable.

2. Results

THEOREM 2.1. Let (X, τ_1) and (Y, τ_2) be two topological spaces and $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be a continuous injective map. If (Y, τ_2) is fragmentable by a metric which generates the discrete topology then (X, τ_1) is fragmentable by a metric which generates the discrete topology. In particular, subspaces of Y are fragmentable by a metric which generates the discrete topology.

PROOF. Let *d* be a fragmenting metric on (Y, τ_2) that generates the discrete topology on *Y*. Define ρ on $X \times X$ by, $\rho(x, y) := d(f(x), f(y))$. Since *f* is injective, ρ is a metric on *X*. Since *d* generates the discrete topology, for $x_0 \in X$ there exists r > 0such that $\{y \in Y : d(f(x_0), y) < r\} := \{f(x_0)\}$, then $\{x \in X : \rho(x_0, x) < r\} := \{x_0\}$ which implies that ρ generates the discrete topology. Let *A* be a nonempty subset of *X* and let $\varepsilon > 0$. Then f(A) is a nonempty subset of *Y*. Let *W* be an open subset of (Y, τ_2) such that $\emptyset \neq f(A) \cap W$ and *d*-diam $(f(A) \cap W) < \varepsilon$. Then $f^{-1}(W)$ is an open subset of *X*, $A \cap f^{-1}(W) \neq \emptyset$ and ρ -diam $(A \cap f^{-1}(W)) < \varepsilon$ since $f(A \cap f^{-1}(W)) \subseteq f(A) \cap W$.

THEOREM 2.2. Let X be a countable set and let τ be a T_1 topology on X. Then (X, τ) is fragmented by a metric that generates the discrete topology.

PROOF. If *X* is finite then the result is trivially true, so we shall suppose that *X* is infinite. Let $X = \{x_n\}_{n=1}^{\infty}$. By Theorem 1.3 it is enough to show that there exists a strategy *w* for player \mathcal{B} in the game G_f such that, for every *w*-play $p = (A_i, B_i)_{i \ge 1}$, either $\bigcap_{i \ge 1} A_i = \bigcap_{i \ge 1} B_i = \emptyset$ or there exist $x \in X$ and k > 0 such that $B_n = \{x\}$ for every $n \ge k$. Suppose that \mathcal{A} chooses a nonempty set A_1 as their first move. If A_1 is finite set, let $B_1 := \{x_i : i = \min\{k \in \mathbb{N} : x_k \in A_1\}\}$. If A_1 is an infinite set, let $B_1 := A_1 \setminus \{x_1\}$. In either case B_1 is nonempty set $A_2 \subseteq B_1$. If A_2 is finite let $B_2 := \{x_i : i = \min\{k \in \mathbb{N} : x_k \in A_2\}\}$. If A_2 is infinite, let $B_2 := A_2 \setminus \{x_1, x_2\}$. In either case B_2 is nonempty

relatively open subset of A_2 . Define $w(A_1, B_1, A_2) := B_2$. If we follow this process inductively, then in the *n*th stage we have $B_n := \{x_i : i = \min\{k \in \mathbb{N} : x_k \in A_n\}\}$ if A_n is finite and $B_n := A_n \setminus \{x_1, x_2, ..., x_n\}$ if A_n is infinite. In either case B_n is a nonempty open relatively open subset of A_n and we define $w(A_1, B_1, A_2, B_2, ..., A_n) = B_n$; this completes the definition of w. In the w-play $p = (A_i, B_i)_{i\geq 1}$, if there exists $m \in \mathbb{N}$ such that A_m is finite then there exists $x \in X$ such that $B_m := \{x\}$ and then $B_n := \{x\}$ for every $n \geq m$, otherwise $\bigcap_{i\geq 1} B_i \subseteq X \setminus \{x_n\}_{n=1}^{\infty}$ then $\bigcap_{i\geq 1} A_i = \bigcap_{i\geq 1} B_i = \emptyset$.

THEOREM 2.3. Let (X, τ) be a hereditarily Baire topological space, i.e. every nonempty closed subset of X is a Baire space with respect to the relative topology defined on it. If (X, τ) is fragmented by a metric ρ that generates the discrete topology then (X, τ) is scattered.

PROOF. Let *Y* be a nonempty closed subset of *X*. We show that *Y* has an isolated point. Without loss of generality we may assume that Y = X. Fix $\varepsilon > 0$ and consider the following open subset of *X*:

$$O_{\varepsilon} := \bigcup \{ U \in \tau : \rho \operatorname{-diam} (U) < \varepsilon \}.$$

Let W be a nonempty open subset of X. Since ρ fragments X there exists a nonempty relatively open (and hence open, since W is open) subset U of W such that ρ -diam (U) < ε . Then

$$\emptyset \neq U \subseteq O_{\varepsilon} \cap W$$

Therefore, O_{ε} is dense in (X, τ) . Let $G = \bigcap_{n \in \mathbb{N}} O_{1/n}$. Since (X, τ) is a Baire space, $G \neq \emptyset$. Let $x_0 \in G$. Since ρ generates the discrete topology there exists r > 0 such that $\{x \in X : \rho(x, x_0) < r\} := \{x_0\}$. There exists $m \in \mathbb{N}$ such that 1/m < r. Since $x_0 \in O_{1/m}$ there exists $U \in \tau$ such that $x_0 \in U$ and ρ -diam (U) < 1/m. If $x \in U$ then $\rho(x, x_0) < 1/m < r$, which implies $x = x_0$. Therefore x_0 is an isolated point of X. \Box

The proof is very similar to the proof of Proposition 2.2 in [5].

COROLLARY 2.4. If X is a nontrivial normed linear space then (X, weak) is not fragmented by a metric which generates the discrete topology.

PROOF. Let $x_0 \in X$; then the map $f : \mathbb{R} \to (X, \text{weak})$, defined by $f(r) = rx_0$ for $r \in \mathbb{R}$, is continuous and injective. Therefore by Theorem 2.1, it is enough to show that \mathbb{R} is not fragmented by a metric which generates the discrete topology. We know that \mathbb{R} is hereditarily a Baire space, but is not scattered; then by Theorem 2.3, \mathbb{R} is not fragmented by a metric which generates the discrete topology. \Box

THEOREM 2.5. Let X, Y be Banach spaces and $T : X \to Y$ be an injective bounded linear map:

- (a) *If* (*Y*, weak) *is fragmentable then* (*X*, weak) *is fragmentable.*
- (b) If (Y, weak) is fragmented by a metric which majorizes the weak topology, and T is also an isomorphism, then (X, weak) is fragmented by a metric which majorizes the weak topology.

PROOF. (a) Since *T* is linear and continuous, $T : (X, \text{weak}) \rightarrow (Y, \text{weak})$ is continuous. Therefore by Theorem 1.1 if (Y, weak) is fragmentable then (X, weak) is fragmentable.

(b) Since *T* is an isomorphism, $T : (X, \text{weak}) \rightarrow (Y, \text{weak})$ is a homeomorphism. Therefore if (*Y*, weak) is fragmented by metric *d* which majorizes the weak topology, the metric

$$\rho : X \times X \to [0, \infty)$$
$$\rho(x, y) := d(T(x), T(y))$$

fragments X and majorizes the weak topology.

THEOREM 2.6. There exists a Banach space X in which (X^*, weak) is fragmented by a metric which majorizes the weak topology but (X, weak) is not even a countable union of fragmentable spaces.

PROOF. Let $\beta \mathbb{N}$ be Stone–Cech compactification of \mathbb{N} . Then $C(\beta \mathbb{N})$ is isometrically isomorphic to l_{∞} , so l_{∞}^* is also isometrically isomorphic to $C(\beta \mathbb{N})^*$. If *K* is compact then there exists an isometric isomorphism from $C(K)^*$ to some $L_1(X, \mu)$ where μ is a finite measure [6]. Since the common norm on L_1 is Kadec, by Theorems 1.5 and 1.6, (L_1 , weak) is fragmented by a metric which majorizes the weak topology. By Theorem 2.5, (l_{∞}^* , weak) is fragmented by a metric which majorizes the weak topology. Let $X = l_{\infty}/c_0$; then there exists an isometric isomorphism from X^* to c_0^{\perp} . As c_0^{\perp} is a subspace of l_{∞}^* , (X^* , weak) is fragmented by a metric which majorizes the weak topology, but (X, weak) is not even a countable union of fragmentable spaces.

Acknowledgement

The authors are grateful to the anonymous referee for his/her helpful comments and valuable suggestions which helped them to improve this paper.

References

- M. Fabian, Gateaux Differentiability of Convex Functions and Topology (John Wiley & Sons, New York, 1997).
- I. Jane, J. E. Namioka and C. A. Rogers, 'σ-fragmentable Banach space I', *Mathematica* 39 (1992), 161–188.
- [3] P. S. Kenderov and W. B. Moors, 'Game characterization of fragmentability of topological spaces', Mathem. and Education in Mathem. Proc. of the 25th Spring Conf. Union of Bulg. Mathematicians (Kazanlak, 1996), 8–18.
- [4] P. S. Kenderov and W. B. Moors, 'Fragmentability and sigma-fragmentability of Banach spaces', J. Lond. Math. Soc. (2) 60 (1999), 203–223.
- [5] P. S. Kenderov and W. B. Moors, 'Fragmentability of groups and metric-valued function spaces', *Topology Appl.* 159 (2012), 183–193.
- [6] H. E. Lacy, The Isometric Theory of Classical Banach Space (Springer-Verlag, Berlin, 1974).
- [7] W. B. Moors and S. D. Sciffer, 'Sigma-fragmentable spaces that are not countable unions of fragmentable subspaces', *Topology Appl.* **119** (2002), 279–286.

255

F. HEYDARI, Mathematics Department, Alzahra University, Tehran, Iran e-mail: fatemeh_heydari@alzahra.ac.ir

D. BEHMARDI, Mathematics Department, Alzahra University, Tehran, Iran e-mail: behmardi@alzahra.ac.ir

F. BEHROOZI, Mathematics Department, Alzahra University, Tehran, Iran e-mail: behroozi@alzahra.ac.ir

256