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Abstract

We give an efficient method based on minimal deterministic finite automata for computing
the exact distribution of the number of occurrences and coverage of clumps (maximal sets
of overlapping words) of a collection of words. In addition, we compute probabilities
for the number of h-clumps, word groupings where gaps of a maximal length h between
occurrences of words are allowed. The method facilitates the computation of p-values for
testing procedures. A word is allowed to contain other words of the collection, making the
computation more general, but also more difficult. The underlying sequence is assumed
to be Markovian of an arbitrary order.
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1. Introduction

In recent years, methods have been established to compute distributions associated with
increasingly complex patterns, driven by statistical applications in many fields, such as relia-
bility theory, national and computer security, and computational biology. Reviews of some of
the theory on distributions of patterns and its applications are given in [3] and [13].

Depending on the problem at hand, one may be interested in studying distributional properties
of pattern occurrences using various counting techniques. With overlapping counting (see,
e.g. [2] and [11]), all occurrences of words of the pattern are counted. When counting renewals
(see, e.g. [5]), a word occurrence restarts counting for all words in the system. Patterns may
also be counted based on clump counting, the topic of this paper.

Distributions associated with clumping of patterns can be useful for analyzing DNA
sequences. Examples include searching for exceptional patterns in DNA that could have
functional roles, such as transcription binding sites [15], the study of homogeneity across
a sequence [8], disentangling overlapping word occurrences [16], and seeded searches for
similar DNA segments, where the number of successes in success runs of length at least k

(coverage of clumps of

k︷ ︸︸ ︷
111 . . . 11) was used as an initial screening criterion for determining

candidate tandem repeats [4]. Detection of clumping effects can be useful in other fields as
well, for example clumping of anomalous events is used in intrusion detection for information
systems [7].
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We compute distributions of statistics associated with clumps of a collection of words
in a Markovian sequence of an arbitrary order. Words of the collection are allowed to be
completely contained in another word, a feature that greatly increases the complexity of the
computations. We allow such generality because it is hard to anticipate all of the types of
pattern systems for which a researcher may be interested in obtaining probabilistic results.
The computation is carried out by associating a minimal deterministic finite automaton with
the collection of words, and using a transition matrix (and its powers) to hold probabilities
for automaton transitions, keeping track of statistic updates and computing coefficients of a
probability generating function. This paper expands on the fine work of [17], where probability
generating functions were used to compute distributions associated with clumps of a single
word.

The paper is organized as follows. In the next section some notation and formal definitions
are given. In Section 3 we give details and examples of using the computation algorithm.
Section 4 contains an application to computing p-values for the observed number of clumps
and clump coverage of the Chi motif in Haemophilus influenzae. The final section contains a
summary.

2. Definitions and notation

Let X ≡ X1, . . . , Xn be a stationary mth order Markovian sequence, with observed values
denoted by x1, . . . , xn, and each Xj taking values in a finite alphabet �. Let π be the stationary
distribution of the sequence over m-tuples x̃t ≡ (xt−m+1, . . . , xt ) that are embedded into a
first-order Markov chain, so that π also serves as the initial distribution for x̃m, and let T be the
transition probability matrix for m-tuples.

A word is a finite string of symbols from �. A substring of a word is a factor. A factor that
starts at the beginning of a word is its prefix, and a factor that ends at the end of the word is its
suffix (the prefix or suffix is proper if it does not consist of the entire word). A pattern is a subset
of �+, the set of all nonempty words over �. Let the pattern W ≡ {w(1), . . . , w(c)} consist
of words w(j), j = 1, . . . , c, satisfying |w(j)| ≥ 2, where the length of a string s is denoted
by |s|. A word w of length |w| occurs at xt (at sequence location t) if (xt−|w|+1, . . . , xt ) = w.

Let (βj , ej ) denote the beginning and ending sequence locations of word w(j). For words
w(j) and w(k), if βj < βk ≤ ej < ek , the words are said to overlap, whereas if βj ≤ βk <

ek < ej , w(k) is enclosed in w(j). The gap gi,κ between a word w(κ) ∈ W and the previously
occurring word w(i) ∈ W is gi,κ = βκ − ei − 1.

Definition 2.1. An h-clump of W (called an h-gap cluster in [17]) is a string that begins (and
ends) with a word of W and has gaps g ≤ h for any subsequent word occurrences of the clump.
When h = −1, we call the string a clump.

A clump may be composed of only the word w(i) that defines its existence. If other words of
W overlap w(i) and each other on the right, then, by definition, all gaps satisfy g ≤ −1, and the
clump continues. If, on the other hand, w(i) is enclosed in a word w(j) ∈ W , the occurrence of
w(i) signals the occurrence of a clump, and since gi,j ≤ −2, with the occurrence of w(j), the
clump continues. In general, a word of W that has one or more enclosed h-clumps is counted
as a single h-clump. This opens up the possibility that the clump count will actually need to be
reduced if a word that contains two or more enclosed clumps occurs, since the enclosed clumps
have already been counted when the word occurs.

The sequence positions of a clump are said to be covered, so that clump coverage for the
sequence is the total number of sequence positions that lie in a clump. If (η, γ ) or (η(h), γ (h))
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are respectively the number and coverage of clumps (or h-clumps) in X, then we take γ (h) = γ

(not counting gaps in coverage), whereas η(h) ≤ η.
A clump is also characterized by the following theorem.

Theorem 2.1. A clump of W is a string such that all of its two-letter factors are a factor of at
least one word of W that occurs in X.

Proof. Let the string s be a clump of W . If s consists of a word w(i) ∈ W then all of its
two-letter factors are a factor of w(i). Let s consist of w(i) and one or more words of W that
overlap w(i) (and themselves) on the right, and assume that s has a two-letter factor that is not
a factor of at least one occurrence of a word of W . This implies that the gap between word
occurrences is at least 0, a contradiction.

Now assume that, for string s, every two-letter factor lies in at least one occurrence of a
word of W . Assume that there are two consecutive word occurrences that do not overlap and
one is not enclosed in the other. Then, if ej is the ending sequence position of the first word
occurrence then the two-letter factor (ej , ej + 1) is not in an occurrence of a single word of W ,
a contradiction.

Example 2.1. Let � = {a, b} and W = {ab, aba, ba, aaa}. Then aba contains the enclosed
word (clump) ab, but ba is not considered as being enclosed as it ends at the last symbol of aba

and, thus, does not require any special attention. The words ab, aba, and aaa each overlap
aaa, aba, and ba on the right. For the data sequence

x1, . . . , x20 = bb ab︸︷︷︸
clump 1

baaababa︸ ︷︷ ︸
clump 2

abab︸ ︷︷ ︸
clump 3

bb ba︸︷︷︸
clump 4

,

the two-letter string bb always signals that a clump ends at the end of the last occurring word
since bb is not a factor of any word of W . On the other hand, the two-letter factor aa at sequence
positions 12 and 13, though a factor of aaa ∈ W , is not a factor of a word that occurs in the
sequence, and, thus, when aaa does not occur at sequence position 14, we know that the clump
ended at the position of the last occurring word (sequence position 12). The four clumps cover
16 of the 20 sequence positions, all other than the two sets of bb for which neither b is in a
clump. The string x3, . . . , x16 forms a single h-clump for any h ≥ 0, and x3, . . . , x20 is a single
h-clump for any h ≥ 2.

The set defined next is very helpful for determining the number and coverage of clumps.

Definition 2.2. The extension set Wext is defined by Wext ≡ {u | there exist w(i), w(j) ∈ W

with u = αivijωj , αivij = w(i),vijωj = w(j),|αi |, |vij |, |ωj | > 0}.
Definition 2.2 implies that vij is both a proper suffix of w(i) and a proper prefix of w(j). The

string ωj extends w(i) to the overlapping word occurrence w(j). Since an h-clump with h ≥ 0
may also be extended by concatenating a word of W to the right of w(i) with a gap of length no
more than h, we define the extension set for this case as Wh

ext ≡ Wext ∪ (
⋃h

k=0 W�kW), where
�0 = ε, the empty string, and W1W2 denotes the concatenation of patterns W1 and W2. For
W = {ab, aba, ba, aaa},

Wext = {aba, abab, ababa, abaaa, bab, baba, baaa, aaab, aaaba, aaaa, aaaaa},
and

W 0
ext = Wext ∪ {abab, ababa, abba, abaaa, abaab, abaaba, ababa, abaaaa, baab,

baaba, baba, baaaa, aaaab, aaaaba, aaaba, aaaaaa}.
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3. Computation of the distribution of statistics associated with clumps

Deterministic finite automata (DFAs) have the ability to ‘recognize’ words in longer strings,
and have a natural connection to Markov models that make them useful for computing probabil-
ities of various pattern types. This has recently been exploited to develop efficient computation
algorithms using various data structures (see [9], [10], [12], and [14]). We compute distributions
of clump statistics by associating probabilities with automaton transitions along with updating
statistic values on transitions into counting states (words of W or extended words). Our approach
more closely resembles that of [14], the main difference being that we set up an automaton for
extended words. The algorithm is more straightforward when there are no enclosed clumps.

3.1. When there are no enclosed clumps

We begin by setting up an Aho–Corasick automaton [1] for the words of Wext ∪ W ∪ �m

(throughout the discussion, replace Wext with Wh
ext for the case of h-clumps). The automaton

can be considered as a directed graph, with automaton states represented as vertices, and edges
connecting them. In what follows we use path between a starting and ending state in a graph-
theoretic sense: the path is the shortest sequence of vertices between those states such that,
from each vertex, there is a directed edge to the next vertex in the sequence.

The automaton states are partitioned into basic classes (with further restrictions imposed; see
the next paragraph), and the number of states is minimized by finding the coarsest partition [18],
using an algorithm analogous to the Hopcroft algorithm [6] for obtaining a minimal DFA. The
basic classes are Qpre, proper prefixes of words of W ; QW , words of W themselves (and also
all m-tuples ending with a w(j) ∈ W if 2 ≤ |w(j)| < m); Qpath, strings along the path between
strings of QW and Qext that do not have a word of W as a suffix; Qpath,ext, strings along the path
between strings of QW and Qext that have a word of W as a suffix; Qext, strings of Wext that are
not already classified as Qpath,ext; and Qm, strings of �m that do not fall into any of the classes
above. (That a string in Wext can also be along the path between a string of QW and Qext is
borne out by the pattern W = {aaaa}. In that case Wext = {aaaaa, aaaaaa, aaaaaaa}, and
strings aaaaa and aaaaaa also lie on the path between aaaa and aaaaaaa.)

The ‘further restrictions’ imposed on the partitioning of automaton states are: strings of the
basic classes may not be combined if their suffix of length m is not the same, and counting
states may not be combined if they have different updates to clump count or coverage when
they are entered. These restrictions are necessary to be able to carry out the computation with
the reduced state space after forming the coarsest partition.

The minimal automaton is then processed to determine statistic updates to associate with
its edges. The updates are as follows: for (st−1, st ) ∈ (Qpre ∪ Qm) × QW , the clump count
increases by 1 and coverage increases by |w(i)| (w(i) ∈ W is the word that has just occurred);
for (st−1, st ) ∈ [Qpath × (Qext ∪ Qpath,ext)], the clump count remains the same but coverage
increases by |ω(j)| if g < 0, and by |w(j)| if h ≥ g ≥ 0, where g is the gap between the last
two word occurrences; for (st−1, st ) ∈ [QW × (Qext ∪Qpath,ext)]∪ [(Qpath,ext ∪Qext)×Qext],
coverage increases by 1 but the clump count remains the same.

After establishing the updates, any state of Qext is deleted, with the incoming edge (along
with the statistic update information) sent to w(j), the longest word of W that is its suffix. Also,
states of length less than m are deleted since they are never entered for t ≥ m.

The transition probability matrix T for m-tuples is used as input to the algorithm, and
the stationary probability vector π for x̃m is computed using the equation πT = π , with
the additional condition that the entries of π sum to 1. The initial probabilities from π are
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considered as being multiplied by ζ ηx̃m or ξγx̃m , where ηx̃m
and γx̃m

denote the number and
coverage of clumps in x̃m. These initial probability polynomials are stored in a vector π̃ whose
entries are themselves vectors, the coefficients of powers of ζ or ξ (in the end we will obtain
coefficients of probability generating functions ϕη(ζ ) and ϕγ (ξ) for clump count and coverage).
Using an easy modification to our algorithm, we can compute joint probabilities of the number
and coverage of clumps.

A square transition matrix  (of dimension equal to the number of automaton states) is
formed to hold both transition probabilities and statistic updates corresponding to automaton
transitions. Let sτ be the automaton state at time τ , with x̃τ being the suffix of sτ of length m. The
transition probability associated with the transition st−1 → st is exactly the probability from
probability matrix T for the transition x̃t−1 → x̃t . Probabilities for transitions of automaton
states are multiplied by powers of ζ or ξ (the exponent respectively indicating the change to
the clump count or coverage). For example, for (st−1, st ) ∈ (Qpre ∪ Qm) × QW , the edge
probability is multiplied by ζ to indicate that the clump count increases by 1, or by ξ |w(i)| if
the distribution of coverage is sought, to indicate that coverage increases by |w(i)|. However,
instead of storing polynomials (probabilities multiplied by powers of ζ or ξ ) as the entries of ,
we store vectors of the polynomial coefficients.

If 1 denotes a column vector consisting of 1s that is used to sum over automaton states, then
π̃n−m1 gives the probability generating function ϕη(ζ ) or ϕγ (ξ), so that the coefficient of
ζ η, for example, is the probability of clump count η. The computation is carried out by first
determining n−m through successive doubling of  to obtain 2, 4, 8, 16, . . .. These
powers of  are multiplied to obtain n−m, reducing the number of multiplications needed—
the reduction being more dramatic for higher powers. Multiplication of polynomials (the
row/column entries of powers of ) is carried out through convolution of the vectors holding
their coefficients. A MATLAB® program was written to implement the algorithm.

Example 3.1. (W = {aa, ab, ba}.) Consider first clumps of the pattern W = {aa, ab, ba},
with alphabet � = {a, b} and m = 2. The matrix T is defined to have entries

Pr(aa | aa) = Pr(bb | bb) = 3
4 and Pr(ba | ab) = Pr(ab | ba) = 1

2 ,

with the other entries being implied (and with π = (πaa, πab, πba, πbb)= ( 1
3 , 1

6 , 1
6 , 1

3 ) being
the resulting initial distribution for x̃2 so that

π̃ = ( 1
3ζ, 1

6ζ, 1
6ζ, 1

3

)

for the number of clumps and

π̃ = ( 1
3ξ2, 1

6ξ2, 1
6ξ2, 1

3

)

for coverage).
The Aho–Corasick automaton for Wext = {aaa, aba, baa, bab, aab} is shown in Fig-

ure 1(a). The minimization procedure without applying the restriction for m-tuple suffixes
has Qpre = {ε, a, b}, QW = W , Qext = Wext, and Qm = {bb}, and gives a minimal automaton
with eight states ({aaa, aba, baa}, {aab, bab}, and {aa, ba} are single states). However, aba

cannot be combined with aaa or baa since it has a different 2-tuple as its suffix, and aa and ba

may not be combined as well. Actually, since all states of length less than two and all strings
of Wext are deleted, the computation can be run on the four 2-tuples (see Figure 1(b)). The
automaton used in the computation for 0-clumps is shown in Figure 1(c).
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Figure 1: DFAs used to compute statistics of clumps/h-clumps of W = {aa, ab, ba}. (a) Aho–Corasick
DFA for Wext ∪ �2. (b) Final marked DFA for coverage of clumps. (c) Final DFA for 0-clumps, only

showing edges from words of W .
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Figure 2: Distributions of (a) the h-clump count (h = −1, 0) and (b) coverage for the pattern W =
{aa, ab, ba} with n = 500, m = 2, and initial and transition probabilities as given in Example 3.1.

Using the MATLAB program, when n = 5, the resulting probability generating function for
coverage of clumps is

ϕ(ξ) = 9
64 + 3

32ξ2 + 7
48ξ3 + 9

64ξ4 + 23
48ξ5.

The run time was 0.044 358 seconds. Figure 2 contains plots of probabilities for the distributions
of η, η(0), and γ for n = 500. In this case n − m = 498 = 1111100102, indicating that
498 = 2561286432162. Thus, 498 may be obtained using 13 matrix multiplications
(as opposed to 497 sequential multiplications by ), eight to obtain 2, 4, 8, 16, . . . , 256,
another five to multiply the proper matrices. For this value of n, E(η) = 42.1667, var(η) =
18.4772, Pr(η ≤ 30) = 0.002 716, Pr(η ≥ 60) = 1.605 534 × 10−5; E(γ ) = 3.7483 × 102,
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Pr(γ ≤ 300) = 3.447 027 × 10−4, and Pr(γ ≥ 430) = 0.001 518. The combined computer
run time for obtaining probabilities for counts of h-clumps with h = −1, 0 was 0.578 520
seconds; the run time for coverage (when h = −1) was 0.076 945 seconds.

3.2. When there are enclosed h-clumps

In this case, words of W are still classified as QW , whether they are enclosed in another
W word or not. Proper prefixes of words of W (that are not themselves a word of W ) are
subdivided into Qpre,new, prefixes that end in a word of W that indicates a new clump; Qpre,ext,
prefixes that end in a word of W to extend a clump; and Qpre, prefixes that do not end with a
word of W . Strings along the path between a string of QW and Wext that do not fall into any of
the classes above, and that end with a word of W to indicate a new clump, are called Qpath,new;
those that extend a clump are still called Qpath,ext. Strings of Wext that do not fall into one of
the classes above are called Qext, and strings of �m that do not fall into any of the classes above
are called Qm. We impose the same restrictions as for the case when there were no enclosed
words: we do not allow strings to be combined as a single state in the minimization process
unless they have the same updates to clump count and coverage, and the same m-tuple as their
suffix.

For transitions st−1 → st with (st−1, st ) ∈ [(Qm ∪ Qpre) × (Qpre,new ∪ QW)] ∪ (Qpath ×
Qpath,new) ∪ [(Qpre,new ∪ Qpre,ext) × QW ], the edge probability is multiplied by ζ 1−ηw for the
number of clumps, and by ξ |w|−γw for coverage, where w ∈ W is the suffix of st that has just
occurred, and ηw and γw respectively denote the number of clumps and coverage enclosed
within w, i.e. occurring before the last symbol of w. For (st−1, st ) ∈ [(Qpre,new ∪ Qpre,ext) ×
Qpre,ext] ∪ [QW × (Qpre,ext ∪ Qext)] ∪ [(Qpre,ext ∪ Qpath,ext ∪ Qext) × (Qpath,ext ∪ Qext)], a
clump is either formed or extended at time t −1 and extended at time t , and the edge probability
is multiplied by ξ . When no clump is extended at time t − 1 but one is extended at time t with
the occurrence of the word w(j), i.e. for (st−1, st ) ∈ (Qpre × Qpre,ext) ∪ (Qpath × Qpath,ext) ∪
[(Qpre,new ∪Qpre ∪Qpath,new ∪Qpath)×Qext], the edge probability is multiplied by ζ

−ηwj for

the clump count and by ξ
|ωj |−γωj for coverage if g < 0, and by ζ−η

w(j) for the clump count
and by ξ |ω(j)|−γ

ω(j) for coverage if h ≥ g ≥ 0.

Strings of Qext may then be deleted, with their incoming transitions (along with the statistic
update information) mapped instead to the longest suffix of the string that remains in the
automaton. The rest of the computation proceeds as in the case where there were no enclosed
clumps.

Example 3.2. (W = {ab, bc, ba, abca, bcaba}.) Here � = {a, b, c}, and we take m = 1
(ηx1 = γx1 = 0 for all x1). The string abca contains the enclosed clump abc (ηabca = 1,

γabca = 3). Also, ηbcaba = 2 and γbcaba = 4. Thus, when abca occurs, the clump count
remains the same (abc has already been counted) and the coverage is incremented by 1. On the
other hand, when bcaba occurs, the clump count is decreased by 1 (since bcaba is considered
as one clump, but two have already been counted) and coverage is incremented by 1. For
this example, Wext = {abc, aba, bab, babca, abcab, abcabca, abcaba, bcabab, bcababca}.
Whereas the Aho–Corasick automaton for W ∪ Wext ∪ � has 23 states (see Figure 3(a)),
its coarsest partition has 14, with {bab/abcab/bcabab}, {aba/babca/abcaba/abcabca/

bcababca}, and {babc/abcabc/bcababc} being combined as single states. Figure 3(b) depicts
the final automaton that is used for computing the distributions (after deleting states of Qext
and the empty string, which has length less than m).

https://doi.org/10.1239/jap/1324046018 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046018


1056 D. E. K. MARTIN AND D. A. COLEMAN

Qpre Qpre, new Qpre, ext QW

QmQpath, ext Qext
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(b)

babca

bcababcabcababcbcababbcababcab
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b ba bab babc
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abcaba

abcabc abcabca

aba

ab

a abc

ε

a

ab

abc abca

b ba

bc bca

c

bcab bcaba

babc**bab

Figure 3: DFAs used to compute statistics of clumps of W = {ab, bc, ba, abca, bcaba}. (a) Aho–
Corasick DFA for Wext ∪ �m. (b) Final DFA. For the sake of clarity, not all automaton transitions are
shown, and edge labels are omitted. The state bab∗ denotes {bab/abcab/bcabab}, and babc∗ denotes

{babc/abcabc/bcababc}.
The underlying sequence is assumed to be of length n = 500 with transition probability

matrix

T =
⎛
⎝0.5 0.25 0.25

0.3 0.4 0.3
0.3 0.4 0.3

⎞
⎠

(so that the initial distribution is π = (πa, πb, πc)= ( 3
8 , 11

32 , 9
32 )). Figure 4 shows the dis-

tributions of the clump count and coverage. We report the tail probability Pr(η ≥ 150) =
1.112 × 10−12.
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Figure 4: Distributions of (a) the clump count and (b) coverage for the pattern W = {ab, bc, ba,

abca, bcaba} with n = 500 and m = 1. Initial and transition probabilities are as given in the text.

4. Application to the Chi motif

We now compute distributions of clump statistics for the Chi motif of H. influenzae, W =
G�T GGT GG, where � = {A, C, G, T }. This pattern is important because its presence is
needed in processes that prevent a cell from destroying its own DNA each time that it is broken.
The pattern is over-represented in H. influenzae, occurring 223 times in 215 clumps in the
complete genome of 1 830 140 base pairs [8].

For this pattern, Wext = {WT GG, WT GGT GG, W�T GGT GG}. Whereas the Aho–
Corasick automaton has 165 states, many of them are combined in the minimal automaton (one
reason being that any letter from � = {A, C, T } used as the second symbol gives the same
progress into W ), leaving only 31 states in the minimal automaton:

{A, C, T , G, GG, GA, GC, GT, GGT, G�T, G�T G, WT GGT GG, WT GGT G,

WT GGT, G�T GG, G�T GGT, G�T GGT G, W, WG, WT, WA, WC, W�T, WGT,

W�T G, W�T GG, W�T GGT, WT G, W�T GGT G, WT GG, W�T GGT GG}.
We assume that the underlying DNA sequence is Markovian with m = 1. States WT GGT GG

and W�T GGT GG are deleted since they are in Qext. For 0-clumps, W 0
ext = Wext ∪ WW

and the Aho–Corasick automaton has 273 states, whereas its coarsest partition has only 41, of
which only 38 are needed to carry out the computation, an indication of the great savings that
can take place by forming the coarsest partition.

We use the maximum likelihood estimates based on transitions of symbols {A, C, G, T } in
the data (see [15, p. 124]):

T =

⎛
⎜⎜⎝

0.383 0.155 0.164 0.299
0.343 0.187 0.216 0.254
0.269 0.264 0.197 0.269
0.230 0.160 0.220 0.390

⎞
⎟⎟⎠ .

The initial distribution ofx1 is (πA, πC, πG, πT ) = (0.305, 0.184, 0.198, 0.313). The probabil-
ity of observing 215 or more clumps in 1 830 140 base pairs using these parameters
is 1.251 521 1 × 10−11. Figure 5(a) shows the distribution of the number of both clumps
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Figure 5: Distributions of (a) clmp and 0-clump counts and (b) coverage for the pattern W =
G�T GGT GG (� = {A, C, G, T }), with n = 1.830 14 × 106 and m = 1. Initial and transition

probabilities are as given in the text.

and 0-clumps for the sequence, and Figure 5(b) has the distribution of clump coverage. The
combined run time was approximately 26 minutes for the count of h-clumps, h = −1, 0.

5. Summary

In this paper an efficient method is given for computing distributions of the number and
coverage of clumps (overlapping occurrences of a collection of words) and h-clumps (where
gaps of length no more than h are allowed between word occurrences). The underlying sequence
is assumed to be Markovian of a general order. We allow words of the collection to be contained
in other words, thus facilitating very general applications. The method is applied to computing
the statistical significance of observed clump statistics of the Chi motif in a DNA sequence of
nearly two million nucleotides, showing that the algorithm is feasible for large data sets.
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