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Extreme propensity scores arise in observational studies when treated and control
units have very different characteristics. This is commonly referred to as limited
overlap. In this paper, we propose a formal statistical test that helps assess the degree
of limited overlap. Rejecting the null hypothesis in our test indicates either no or very
mild degree of limited overlap and hence reassures that standard treatment effect
estimators will be well behaved. One distinguishing feature of our test is that it only
requires the use of a few extreme propensity scores, which is in stark contrast to
other methods that require consistent estimates of some tail index. Without the need
to extrapolate using observations far away from the tail, our procedure is expected
to exhibit excellent size properties, a result that is also borne out in our simulation
study.

1. INTRODUCTION

Treatment take-up is usually heterogeneous in observational studies, as the deci-
sion to participate in a program may depend on the unit’s demographic or
socioeconomic characteristics. The presence of treatment heterogeneity renders
standard procedures such as mean comparison invalid for estimating causal effects.
Following the seminal work by Rubin (1974, 1997), Rosenbaum and Rubin (1983),
and Rosenbaum (1989), there is extensive literature on causal effect estimation
using inverse probability weighting, where each unit is inversely weighted by its
probability of receiving treatment (a.k.a. the propensity score). A key assumption
for estimating the average treatment effect is the strong overlap, which requires
that the propensity score is bounded away from zero and one. In some applications,
however, one may observe extreme propensity scores.

Limited overlap can be detrimental to commonly used statistical procedures, as
they may converge at a slower rate (Khan and Tamer, 2010; Hong, Leung, and Li,
2020) and their limiting distributions may not be Gaussian (Ma and Wang, 2020).
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2 XINWEI MA ET AL.

A common empirical strategy is to restrict the target population by trimming
observations in the region of poor overlap, so that the subpopulation obtained after
trimming only exhibits a mild level of treatment heterogeneity and the overlap
assumption is satisfied (Crump et al., 2009; Chaudhuri and Hill, 2014; Ma and
Wang, 2020; Sasaki and Ura, 2022).

To assess the degree of limited overlap and to decide if trimming is needed,
visual diagnosis, such as plotting a histogram or a nonparametric density
curve of the estimated propensity score, is commonly used in applied studies
(Cattaneo, Jansson, and Ma, 2020, 2024). It is also a common practice to report
summary statistics (of key covariates) separately for the treatment group and the
control group as an illustration of treatment heterogeneity. To the best of our
knowledge, however, the existing literature lacks a formal method to test the
overlap assumption. We fill this gap by proposing a novel statistical test of limited
overlap. In addition, our procedure accounts for the fact that the propensity score
needs to be estimated in the first step. With this new device, researchers may,
for instance, (i) test whether the assumption of overlap holds for estimating the
average treatment effect (Hirano, Imbens, and Ridder, 2003; Cattaneo, 2010;
Farrell, 2015; Belloni et al., 2018; Farrell, Liang, and Misra, 2021) and (ii) test
whether a subpopulation obtained after trimming satisfies the overlap condition
for estimating subpopulation average treatment effects.

2. OVERVIEW

We first present an overview of the proposed statistical test. Assume that there
is a random sample of size n consisting of (Xi,Di), i = 1,2, . . . ,n, where Xi ∈ R

p

collects all covariates of the ith individual, and Di ∈ {0,1} is a binary indicator (say,
of treatment status). The propensity score is defined as the probability of receiv-
ing treatment conditional on an individual’s covariates, that is, P[Di = 1|Xi] =
e(Xi) =: ei. If treated and control units have quite different characteristics, the
propensity score may take extreme values (i.e., being close to zero or one).

To test, for example, the presence of small propensity scores, our procedure
concerns the following competing hypotheses:

H0 : E [1/ei] = ∞ against H1 : E [1/ei] < ∞. (2.1)

One distinguishing feature of our test is that rejecting the null indicates either no or
a very mild degree of limited overlap.1 In turn, this suggests that standard treatment
effect estimators—such as inverse probability weighting—are expected to perform
well and that inference based on root-n Gaussian approximations should remain
valid.

1In the literature, limited overlap refers to the scenario where the propensity score can be arbitrarily close to 0 or 1 (in
contrast, strong overlap requires the propensity score to be bounded away from 0 and 1). However, limited overlap
does not necessarily lead to an infinite expectation of the inverse propensity score, as long as the tail is thin enough.
Thus, the alternative hypothesis in (2.1) also allows for a mild degree of limited overlap.
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TESTING LIMITED OVERLAP 3

To better illustrate the connection between our hypotheses in (2.1) and
the overlap issue, we consider the inverse probability weighting estimator,
n−1∑n

i=1 DiYi/ei. Here, Yi is some outcome variable of interest, and we denote
the potential outcome by Yi(1), meaning that DiYi = DiYi(1). Asymptotic
Gaussianity requires that the ratio, DiYi/ei, to have a finite second moment, which
is equivalent to

E

[∣∣∣DiYi

ei

∣∣∣2] = E

[ 1

ei
E
[|Yi(1)|2∣∣Xi

]]
< ∞.

This should explain why we set our null and alternative hypotheses as the finiteness
of the expectation of the inverse propensity score.

Testing the hypotheses in (2.1) boils down to investigating the tail properties of
the propensity score. Specifically, suppose that the distribution of the propensity
score has a regularly varying tail at zero with tail index ξ .2 In this case, the
hypotheses in (2.1) can be rewritten as3

H0 : ξ ∈ [1,ξ̄ ] against H1 : ξ ∈ (0,1) . (2.2)

To test H0, we employ the following self-normalized statistic:

T = 1

e−1
(1) − e−1

(k)

(
e−1
(1) − e−1

(k), e−1
(2) − e−1

(k), e−1
(3) − e−1

(k), . . . ,e−1
(k−1) − e−1

(k), 0
)′

, (2.3)

where e(1) ≤ e(2) ≤ ·· · ≤ e(k) correspond to the k smallest propensity scores. The
limiting distribution of these statistics is solely characterized by ξ , which measures
the tail heaviness of the distribution of e−1

i . In particular, the null hypothesis in
(2.1) corresponds to that ξ ≥ 1. This elegant feature allows us to distinguish the
two competing scenarios in (2.1) by using a generalized likelihood ratio approach:

reject H0 if
(∫ 1

0
fξ (T)dW1(ξ)

)/(∫ ξ̄

1
fξ (T)dW0(ξ)

)
> cvα, (2.4)

where fξ (·) is the limiting (as n → ∞ with fixed k) joint density of T parameterized
by the tail index ξ of the propensity score distribution, and cvα is the critical
value which can be easily obtained via simulation. The weights W1 and W0,
respectively, transform the composite alternative and null hypotheses into simple
ones by resorting to the weighted average power (Andrews and Ploberger, 1995)
and the approximate least favorable distribution (Elliott, Müller, and Watson,
2015). Alternatively, it is possible to construct the test statistic by taking the

2Loosely speaking, this requires that the distribution of the propensity score admits a “polynomial tail”: P[ei ≤ t] ∝
t1/ξ as t → 0 (up to additional slowly varying factors). Accordingly, the density fe−1 of e−1

i satisfies that fe−1 (t) ∝
t−1−1/ξ as t → ∞ and hence E[1/er

i ] = ∞ for r ≥ 1/ξ . See Assumption 1 in Section 3 for a formal definition.
3In the above, ξ̄ denotes the upper bound of the null space that collects all values of ξ on which we will require size
control. It can be ∞ in principle, but for numerical practice, we use a large but finite value, say ξ̄ = 2 in simulations.
It turns out that our procedure is not sensitive to the choice of ξ̄ , as our numerical experiments suggest that ξ = 1 is
the “least favorable” model in the null space. See Section 3 for more detailed discussions.
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4 XINWEI MA ET AL.

maximum over ξ ∈ (0,1) (the alternative space) and ξ ≥ 1 (the null space) in the
numerator and the denominator, respectively. Numerical evidence (not reported
here) suggests that this strategy yields similar size and power properties across our
simulation designs.

While we leave further details to Section 3, it is worth mentioning that our
procedure does not require k to diverge to infinity, which is in stark contrast to
other methods that require consistent estimates of some tail index (e.g., Hill, 1975).
Precisely, we characterize ahead in (3.1) the limiting density fξ (·) for any fixed k,
and hence the generalized likelihood ratio approach in (2.4) will remain valid even
if k is small relative to the sample size. Allowing for a small k is crucial in samples
of moderate size, as researchers can focus on a few extreme propensity scores in
their analysis, avoiding any extrapolation using observations far away from the
tail. In other words, our procedure is expected to be more robust with respect
to the choice of k and will exhibit better size properties. This type of robustness
benefiting from a fixed k has been similarly explored in Müller and Wang (2017)
for inference about extreme quantiles and tail conditional expectations,4 and in
Sasaki and Wang (2023) for testing the bounded moment conditions in extremum
estimation and generalized method of moments.

To operationalize the generalized likelihood approach in (2.3) and (2.4), one
usually needs to estimate the propensity score in the first step. As we will
demonstrate below, estimating the propensity score will not affect the asymptotic
properties of the test, provided that the estimated propensity score, denoted by êi,
satisfies a uniform consistency requirement: max1≤i≤n |ei/êi −1| → 0 in probabil-
ity (Assumption 2 below). Given that this is a nonstandard assumption (i.e., it is not
implied by extremum estimation results, such as those in Newey and McFadden,
1994), we provide primitive sufficient conditions in Section 4. In particular, we first
consider two widely adopted parametric propensity score specifications, Logit and
Probit, and show that the strong uniform consistency requirement holds as long as
the covariates have a few finite moments. Of course, a parametric model can be
restrictive, and hence we also propose a semiparametric propensity score estimator
following Bierens (2014). Together with our generalized likelihood approach,
this paper offers a comprehensive toolkit for propensity score estimation and the
assessment of limited overlap.

3. MAIN RESULTS

Recall that the propensity score is defined as the conditional probability of
receiving treatment, that is, P[Di = 1|Xi] = e(Xi) =: ei. The statistical decision of
rejecting the null hypothesis in (2.1) depends solely on the left-tail (close-to-zero)
heaviness of the propensity score. To proceed, we assume that the distribution of
the propensity score has a regularly varying tail at zero.

4Müller and Wang (2017) require observing the extreme values, which are not available in our setup since the
propensity scores are estimated. See Assumption 2 ahead for more details.
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TESTING LIMITED OVERLAP 5

Assumption 1. The distribution of ei satisfies

lim
t↓0

P[ei ≤ tu]

P[ei ≤ t]
= u

1
ξ ∀u > 0

for some tail index ξ .

We make two remarks. First, the condition that ei is regularly varying at 0 is
equivalent to that 1/ei is regularly varying at infinity:

u− 1
ξ = lim

t↓0

P
[
ei ≤ tu−1

]
P [ei ≤ t]

= lim
t↑∞

1−Fe(X)−1(tu)

1−Fe(X)−1(t)
,

where Fe(X)−1(·) denotes the distribution function of the inverse propensity score.
Then, it follows that E [1/e(Xi)] is finite/infinite if ξ is below/above 1, and hence
the hypotheses in (2.1) can be rewritten as (2.2) under Assumption 1. The boundary
case with ξ = 1 corresponds to the Cauchy distribution whose density decays at
the polynomial rate t−1−1/ξ with ξ = 1. See the discussion in Footnote 2. Second,
the regular variation assumption on the propensity score distribution is mild and
is satisfied by many commonly used distributions, such as the Pareto, Student-t,
Beta, and F-distributions. In addition, it allows for slowly varying components in
the tail (see equations (8.5) and (8.6) in Feller, 1991 for additional discussions).

We also note that Assumption 1 will relate to tail restrictions on the covariates
through functional form specifications on the propensity score model. Consider
the standard logit model for example. A regularly varying tail with ξ > 0 for the
propensity score is equivalent to an exponential-type tail for some index X′

iβ0.
When Xi has a thinner tail, such as sub-Gaussian, or when Xi has a bounded support,
simulation evidence suggests that our test rejects the null hypothesis with nontrivial
power, which is informative and provides statistical evidence suggesting either no
or very mild degree of limited overlap.

To test the hypotheses in (2.2), one possibility is to estimate the tail index (e.g.,
Hill, 1975). This approach, however, requires using k smallest propensity scores
with k → ∞ at a certain rate. The choice of k is often delicate, as employing a large
k corresponds to an extrapolation based on observations that are far away from the
tail. Therefore, instead of relying on some consistent estimate of the tail index,
we directly consider the large-sample distribution of the k smallest propensity
scores, and hence our approach is valid for any fixed k.

For ease of exposition, we first assume that the true propensity scores are
observed and later discuss the impact of estimating the propensity score. Consider
the k smallest propensity scores, e(1) ≤ e(2) ≤ ·· · ≤ e(k). By the extreme value
theory (e.g., de Haan and Ferreira, 2007, Chap. 1), Assumption 1 implies that there
exist sequences of constants an and bn such that5

T̃ = 1

an

(
e−1
(1) −bn, e−1

(2) −bn, . . . ,e−1
(k) −bn

)′ ⇒ V,

5In the example with the standard Pareto distribution, an is nξ and bn is zero.
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6 XINWEI MA ET AL.

where V has the following density:

fV|ξ (v1,...,vk) = Gξ (vk)

k∏
i=1

gξ (vi)/Gξ (vi) on vk ≤ vk−1 ≤ ·· · ≤ v1

with Gξ (v) = exp(−(1+ ξv)−1/ξ ) and gξ (v) = dGξ (v)/dv. If the scaling and cen-
tering sequences, an and bn, were known, the above distributional approximation
can be used for testing our hypotheses in (2.1) and (2.2). Unfortunately, an and bn

depend on the distribution Fe(X)−1(·) and are usually difficult to estimate.

To avoid estimating the centering and scaling in T̃, we consider the self-
normalized statistic in (2.3). Specifically, let

T = T̃− T̃k

T̃1 − T̃k

,

where T̃1 and T̃k are the first and last elements in T̃. It is easy to establish that T is
maximal invariant with respect to the group of location and scale transformations
(e.g., Lehmann and Romano, 2005, Chap. 6). In other words, the test statistic as
a function of T remains unchanged if the data are shifted and multiplied by any
nonzero constant. Such invariance property is desirable for our purposes as tail
features should preserve no matter how the data are linearly transformed.

It follows from the continuous mapping theorem that

T ⇒
(

1,
V2 −Vk

V1 −Vk
,

V3 −Vk

V1 −Vk
, . . . , 0

)′
,

whose density function becomes

fξ (t) = �(k)
∫ ∞

0
uk−2 exp

(
−(1+1/ξ)

(
k−1∑
i=2

log(1+ ξ tiu)+ log(1+ ξu)

))
du,

(3.1)

where �(·) is the gamma function. (Recall that the first and the last elements of T
are, respectively, one and zero by construction.)

Given a random draw T from the density (3.1), the hypotheses in (2.1) and (2.2)
can be tested by the generalized likelihood ratio statistic in (2.4). We now give
more details about the weights W1(·) and W0(·). First, W1(·) is a weighting function
specified by the analyst, which reflects the importance allocated to different values
of ξ in the alternative space. It affects the rejection probability with data generated
from different values of ξ under the alternative hypothesis. Typical choices in
the existing literature are the exponential weight and the uniform weight (e.g.,
Andrews and Ploberger, 1994). We employ the uniform weight in our simulation
study and the empirical applications, which can be easily modified. See Figures 1
and 2 and the discussion thereof on the power of our test.

In contrast, the weight, W0(·), cannot be arbitrarily chosen and instead needs
to be defined so as to guarantee size control. Since the null space is compact and
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TESTING LIMITED OVERLAP 7

Figure 1. Asymptotic power curves of the test in (2.4). The curves are constructed numerically based
on 10,000 simulation draws from (3.1) with ξ ∈ (0,2].

the density is continuous, we can naively set W0 to be a point mass at any ξ ∈ H0

and adjust the critical value accordingly. A more sophisticated method is to use the
least favorable distribution. In particular, given W1 and k, W0 can be understood as
the least favorable distribution (e.g., Lehmann and Romano, 2005, Chap. 3), which
are defined on the null space

[
1,ξ̄

]
to maintain the asymptotic size control that

lim
n→∞ P[Reject H0] ≤ α (3.2)

for any fixed ξ ∈ [
1,ξ̄

]
. However, the least favorable distribution does not neces-

sarily exist. We instead resort to Elliott, Müller, and Watson (2015) who propose
an approximate least favorable distribution (ALFD) that always exists, and provide
a numerical algorithm to construct ALFD. We adopt their algorithm to our setup
and determine W0(·) and the critical value cvα . See also Müller and Wang (2017).
The output of this numerical algorithm is defined as W0, which turns out to be
the point mass allocated solely on ξ = 1 in our simulations, and the critical value,
which is the 95% quantile of the simulated test statistics. Across various values of
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8 XINWEI MA ET AL.

Figure 2. Asymptotic power curves and envelopes of the test in (2.4). The curves are constructed
numerically based on 10,000 simulation draws from (3.1) with ξ ∈ (0,1]. The lines labelled with “env”
depict the rejection probabilities of the infeasible likelihood ratio test based on (2.4) that allocates all
weights of W0 on ξ = 1 and all weights of W1 on one particular value of ξ in the alternative space.

k and α, W0(·) and cvα only need to be computed once. We provide the MATLAB

algorithms and tabulate the simulated values of cvα in Table C1.
Figure 1 presents the theoretical asymptotic (as n → ∞ for fixed k) power curves

of the test (2.4) based on (3.1) for each of k = 10, 20, 50, 80, and 100. Since there
is no analytic expression for the theoretical power, we numerically construct these
curves.6 The figure is plotted in the reverse order of ξ so that ξ ∈ [1,2] corresponds
to the null hypothesis. For any k, the test controls size for any ξ under the null
hypothesis and obtains a monotonically increasing power as ξ decreases to zero.
We also observe that the power of the test increases with k.

Figure 2 compares the asymptotic power of the test (2.4) with the power
envelope. To be more clear, the lines labeled with “env” depict the rejection
probabilities of the infeasible likelihood ratio test based on (2.4) that allocates all
weights of W0 to ξ = 1 and all weights of W1 to one particular value of ξ in the
alternative space. We present the results with k = 10 and 50. The power of our test

6The numerical construction is based on 10,000 random draws simulated from (3.1) with ξ ∈ [0.01,2] for each k.
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TESTING LIMITED OVERLAP 9

is quite close to the envelope (the difference is less than 0.1), suggesting that the
choice of W1 (and ξ̄ ) does not make a substantial difference.

Unfortunately, a theoretically optimal choice of k is very challenging to obtain,
if possible at all. This is also the reason we adopt the fixed k asymptotics so that
our test controls size for any predetermined k as long as n is sufficiently large. We
recommend practitioners to report results with a variety of k as sensitivity analysis,
as we will do in Section 7. Additional discussions and a rule-of-thumb choice are
given in Section 5 to conserve space.

The only remaining challenge is to obtain some feasible analog of T, as the
propensity score is usually unknown in practice. To this end, we first construct
some consistent estimator ê(Xi) =: êi of the propensity score e(Xi). Then we take
the smallest k estimated propensity scores ê(1) ≤ ê(2) ≤ ·· · ≤ ê(k) and construct
the self-normalized statistic T̂ similarly to (2.3). Fortunately, T̂ will have the same
asymptotic distribution as T under the following high-level uniform consistency
assumption.

Assumption 2.

max
1≤i≤n

∣∣∣∣ei

êi
−1

∣∣∣∣ = op(1).

Assumption 2 requires that the estimation error of the propensity score is
asymptotically dominated in magnitude by the true large order statistics of 1/ei.
We are unaware of generic high-level conditions that can be employed to verify
this assumption, and we therefore discuss two commonly used propensity score
models, the Logit and the Probit. Encouragingly, as we will show in Section 4,
Assumption 2 will hold under mild conditions (such as finite moments of the
covariates) for Logit and Probit propensity score models.

Under Assumptions 1 and 2, the following theorem presents the main result of
this article.

Theorem 1. Suppose that (Di,Xi) is i.i.d. and that Assumptions 1 and 2 are
satisfied. Then (3.2) holds for any fixed k.

We close this section by discussing some features of the test in (2.4). First,
our testing procedure controls size over all values of ξ under the null hypothesis.
This feature can be appealing because a practitioner may not know ex ante the tail
heaviness ξ for data in use.

Second, our fixed-k asymptotic framework differs from the literature where it is
typically assumed that k = kn → ∞ and kn/n → 0. As a result, our test controls size
for any pre-determined k, while the methods based on an increasing kn inevitably
involve the delicate balance between the two restrictions on how fast kn can grow.
Such delicacy may lead to a poor finite-sample performance when the sample size
is only moderate (Müller and Wang, 2017).
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10 XINWEI MA ET AL.

Third, while we present our test for the left tail of the propensity score, the same
technique applies to the right tail by employing order statistics of 1 − êi. This is
useful, for example, when the goal is to estimate the treatment effect on the treated
where limited overlap arises if the propensity scores can be close to 1. As another
example, it is possible to simultaneously test the presence of both small and large
propensity scores by considering the hypotheses H0 : E[1/(ei(1−ei))] = ∞ versus
H1 : E[1/(ei(1− ei))] < ∞. This problem is essentially identical to jointly testing
that at least one of E[1/ei] and E[1/(1 − ei)] is infinite—see Lemma A.1 in
Appendix A for a formal result and more discussion. The test statistic will then
employ the smallest k1 order statistics of êi and the smallest k2 order statistics of
1− êi for some fixed k1 and k2. They are asymptotically independent, and therefore
the joint density of the self-normalized statistics T for both the left and the right
tails is simply the product of their marginal densities (e.g., Arnold et al., 2008,
Chap. 8).

Fourth, as another extension of our test, it is possible to consider a procedure
that employs the treated sample only, that is, one can construct the test statistic, T,
using the smallest k order statistics of êi from the Di = 1 subgroup. Such a test can
be appealing if the researcher believes that the propensity score is more reliably
estimated for the treated group. To see how the hypotheses change, we note that
the conditional distribution of the propensity score still admits a regularly varying
tail. More precisely, Assumption 1 implies that (e.g., Ma and Wang, 2020, Lem. 1)

lim
t↓0

P [ei ≤ tu|Di = 1]

P [ei ≤ t|Di = 1]
= u

1
ς , ς = ξ

1+ ξ
.

Therefore, we may test the null hypothesis H0 : ς ∈ [0.5,ς̄ ] versus the alternative
H1 : ς ∈ (0,0.5), where ς̄ denotes the upper bound of the parameter space. As
before, rejection of the null hypothesis will imply either no or a very mild degree
of limited overlap and hence can be taken as the statistical evidence that standard
inference methods based on Gaussian approximations are expected to perform
well.

Finally, although we focus on the fixed-k design for the above practical and
theoretical advantages, it is also possible to consider a diverging k = kn and derive
the consistency of the test. In particular, one can construct some root-k consistent
estimator of ξ (e.g., Hill, 1975) and the corresponding confidence interval. For
completeness, we conduct such an analysis in Appendix D.

4. ESTIMATION OF THE PROPENSITY SCORE

This section justifies Assumption 2 in several commonly used models for propen-
sity score estimation. Section 4.1 presents the case of parametric propensity scores,
covering the Logit and Probit models as special cases. Section 4.2 postulates a
more flexible semiparametric setup.
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4.1. Parametric Estimation of the Propensity Score

Practitioners employing the inverse probability weighting approach routinely esti-
mate the propensity score with parametric models. To start, consider the following
specification:

e(Xi) = G(X′
iβ0), (4.1)

where G(·) is a known link function, and hence the propensity score is parame-
terized by a finite-dimensional vector β0. Depending on the specific form of the
link function, various estimation methods are available, such as the maximum
likelihood and the nonlinear least squares. In this subsection, we focus on the
maximum likelihood approach, where an estimate of β0 can be obtained by solving

β̂ = argmax
β

∑
i

Di ln
(
G(X′

iβ)
)+ (1−Di) ln

(
1−G(X′

iβ)
)
, (4.2)

which means that the estimated propensity score is ê(Xi) = G(X′
i β̂). Although

standard large-sample techniques (see Newey and McFadden, 1994 and references
therein) can be invoked to prove the consistency of the estimated propensity score
(say, ‖β̂ −β0‖ = op(1)), such a result generally does not imply Assumption 2.

To show that not only the estimated propensity score is consistent, but also the
estimation error is negligible with respect to the tails of the propensity score, we
employ the following high-level assumption, and primitive sufficient conditions
which will be discussed ahead for the Logit and Probit models in Remarks 1 and 2,
respectively.

Assumption 3. Let β0 and β̂ be given by (4.1) and (4.2), respectively.
(i) ‖β̂ −β0‖ = Op(1/

√
n).

(ii) G(·) is continuously differentiable. There exists a vanishing sequence cn

such that, for all ε > 0,

max
1≤i≤n

sup
‖β−β0‖≤ ε√

n

∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥ = Op
(√

ncn
)

.

Part (i) requires that the estimated parameter converges at the usual
√

n-rate.
This high-level condition is standard, and can be easily verified using extremum
estimation theories. In Remarks 1 and 2, we provide further discussions on this
assumption for two widely used parametric propensity score specifications: the
Logit and Probit models. Part (ii) is the key regularity condition that we need to
establish Assumption 2 (which, in turn, allows one to use estimated propensity
scores in our testing procedure). This condition, partially motivated by Ma and
Wang (2020), bridges the gap between the estimation error in β̂ and the tail behav-
ior of the link function G(·). In particular, the faster cn tends to zero, the easier it is
to bound the discrepancy |e(Xi)/ê(Xi)−1| (Theorem 2 below). Although Assump-
tion 3(ii) seems complicated, we show in the remarks below that it holds in both
Logit and Probit models under very mild moment conditions on the covariates.
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12 XINWEI MA ET AL.

Theorem 2. Let the true and estimated propensity score be given by (4.1) and
(4.2), respectively. Assume that Assumption 3 holds. Then Assumption 2 holds with

max
1≤i≤n

∣∣∣∣e(Xi)

ê(Xi)
−1

∣∣∣∣ = Op(cn) = op(1).

Theorem 2 not only provides a formal justification for Assumption 2 for
parametrically estimated propensity scores but also establishes an order at which
the difference |e(Xi)/ê(Xi) − 1| shrinks uniformly. At this level of generality,
however, it seems quite difficult to make the order cn explicit. We thus consider
the Logit and Probit models.

Remark 1. Assume that the Logit propensity score model, that is, G(X′
iβ) =

eX′
iβ/(1 + eX′

iβ), and that the following primitive assumptions hold: (i) the popu-
lation moment condition E[Di ln

(
G(X′

iβ)
)+ (1−Di) ln

(
1−G(X′

iβ)
)
] is uniquely

maximized at β0, which is in the interior of a compact parameter space B; (ii)
E[‖Xi‖2+ε] < ∞ for some ε > 0. Then, Assumption 3 holds with cn = n−ε/(4+2ε).

Remark 2. Assume the Probit propensity score model, that is, G(·) is the
standard normal distribution function, and that the following primitive assump-
tions hold: (i) the population moment condition E[Di ln

(
G(X′

iβ)
) + (1 − Di)

ln
(
1−G(X′

iβ)
)
] is uniquely maximized at β0, which is in the interior of a compact

parameter spaceB; (ii)E[‖Xi‖6+ε] < ∞ for some ε > 0. Then, Assumption 3 holds
with cn = n−ε/(12+2ε).

4.2. Semiparametric Estimation of the Propensity Score

We next consider a more flexible semiparametric propensity score model

e(Xi) = F0(X
′
iβ0),

where the link function F0 is unknown and is allowed to be nonparametric.
Let G be the logistic link function. Suppose that the unknown nonparametric link

function F0 can be written as F0 = H0 ◦ G, where H0 is an unknown distribution
function on [0,1]. By Bierens (2014, Thm. 3.1), H0 can be written in terms of the
Fourier representation

H0(u) = H(u;δ0) := u+ ϒ(u;δ0)

1+∑∞
j=1 δ2

0j

,

where

ϒ(u;δ) = 2
√

2
∞∑

j=1

δj
sin(jπu)

jπ
+

∞∑
j=1

δ2
j

sin(2jπu)

2jπ

+2
∞∑

j=2

j−1∑
m=1

δjδm
sin((j+m)πu)

(j+m)π
+2

∞∑
j=2

j−1∑
m=1

δjδm
sin((j−m)πu)

(j−m)π
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TESTING LIMITED OVERLAP 13

with δ0j and δj denoting the jth element of δ0 and δ, respectively. With this
representation, the propensity score model can be summarized by the sieve param-
eter ψ0 = (β ′

0,δ
′
0)

′. However, this representation is overparameterized and ψ cannot
be identified without further restrictions, such as the two-quantile restrictions

H0(u1) = u1 and H0(u2) = u2

for u1,u2 ∈ (0,1) with u1 �= u2 (cf. Bierens, 2014, Sect. 2.2). For example, we let
u1 = 0.25 and u2 = 0.75. We impose this assumption formally as Assumption 4(iv)
ahead. Define the parameter space by

 =
{
ψ = (β ′,δ′)′

∣∣∣ p∑
j=1

|βj|+
∞∑

j=1

j2|δj| ≤ M
}
,

for some M. We consider both the metric d on  defined by d(ψ1,ψ2) = ‖ψ1 −
ψ2‖1 +‖ψ1 −ψ2‖2 and the metric d(2) induced by the norm ‖ψ‖(2) =∑∞

j=1 j2|ψj|.
For the estimation of ψ0, we consider the sieve space

n = {
��nψ | ψ ∈ 

}
,

where ��n denotes the projection on the first �n > p coordinates. Define the
penalized log-likelihood

g(D,X;ψ) = D ln(H(G(X′β);δ))+ (1−D) ln(1−H(G(X′β);δ))−�(δ),

where � denotes a penalty function defined by

�(δ) = (u1 −H(u1;δ))4 + (u2 −H(u2;δ))4.

We define the constrained maximum likelihood sieve estimator ψ̂ of ψ0 by

ψ̂ = arg max
ψ∈n

Q̂(ψ),

where Q̂(ψ) = n−1∑n
i=1 g(Di,Xi;ψ). We also define its population counterpart by

Q(ψ) = E [g(D,X;ψ)]. With the sieve estimator ψ̂ = (β̂ ′,δ̂′)′, we in turn estimate
the propensity score e(Xi) by

ê(Xi) = H(G(X′β̂);δ̂).
We now collect some primitive assumptions in Assumption 4. For the convenience
of writing those tailored conditions, we introduce some notation. Let ∂ψj denote
the partial derivative with respect to the jth coordinate ψj of ψ . For any j,� ∈N, let

Bj,�(ψ0) =
⎛
⎜⎝

E[∂ψ1∂ψ1 g(Di,Xi;ψ0)] · · · E[∂ψ1∂ψ�
g(Di,Xi;ψ0)]

...
. . .

...
E[∂ψj∂ψ1g(Di,Xi;ψ0)] · · · E[∂ψj∂ψ�

g(Di,Xi;ψ0)]

⎞
⎟⎠ .
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14 XINWEI MA ET AL.

Let Kj,�(ψ0) and Lj,�(ψ0) denote a j × � orthogonal matrix and an � × �

lower-triangular matrix, respectively, such that diag(2−1,2−2,...,2−j)Bj,�(ψ0) =
Kj,�(ψ0)L�(ψ0) obtained by the Gram–Schmidt orthogonalization procedure. We
remark that these definitions implicitly require j ≥ �. Let L(j,�)

m (ψ0) be the upper-
left m×m block of Lj,�(ψ0) from this decomposition.

Assumption 4.
(i) (Di,Xi) is i.i.d.
(ii) E[‖Xi‖2+ε] < ∞ for some ε > 0.
(iii) If p = 1, then the distribution of X has support R and β0 �= 0. If p ≥ 2, then

there exists j such that the conditional distribution of Xj given X−j has support R,
βj �= 0 and Var(Xi) is nonsingular.

(iv) H0 > 0 on (0,1). H0 is three-times differentiable with uniformly con-
tinuous derivatives h0, h′

0 and h′′
0 on [0,1]. h0 is uniformly bounded. h0 > 0

on [0,1]. H0(u1) = u1 and H0(u2) = u2 for u1,u2 ∈ (0,1) with u1 �= u2. x �→
H(G(x′β0);δ0)/G(x′β0) is bounded away from zero.

(v) ψ0,n = ��nψ0 ∈ int() with respect to d(2). limn→∞
√

n
∑∞

j=�n+1 j2|ψ0j| = 0.∑∞
j=1

∑∞
�=1(j�)

−2−τ
E[|∂ψj∂ψ�

g(Di,Xi;ψ0)|] < ∞ for some τ ≥ 0.
limε↓0

∑∞
j=1

∑∞
�=1(j�)

−2−τ
E[sup‖ψ−ψ0‖(2)≤ε |∂ψj∂ψ�

g(Di,Xi;ψ) − ∂ψj∂ψ�
g(Di,Xi;

ψ0)|] = 0.
E[∂ψj∂ψ�

g(Di,Xi;ψ0)] �= 0 for at least one pair j,� ∈ N. rank(Bj,j) = j for each

j ≥ p. liminfj→∞ lim�→∞ det(L(j,�)
m (ψ0)) > 0.

Part (i) requires random sampling. Parts (ii) and (iii) impose very mild restric-
tions on the distribution of Xi. Part (iv) specifies regularity conditions of the
unknown function H0. Part (v) imposes restrictions on the true parameter ψ0 and
the rate of the sieve dimension. Among others, it is worth discussing the condition
in part (iv) that x �→ H(G(x′β0);δ0)/G(x′β0) is bounded away from zero. It requires
that the true link function F0 behaves similarly to the logistic link function G near
the tails, although F0 can be arbitrarily nonparametric and distant from G in the
middle range. Under this set of conditions, we have the property as stated in the
following theorem, which provides a formal justification for Assumption 2.

Theorem 3. If Assumption 4 is satisfied, then Assumption 2 holds.

Finally, we remark that other non/semiparametric propensity score estimators
can be considered for our test on limited overlap, provided that Assumption 2
is satisfied. The primary challenge lies in satisfying the uniform consistency
assumption, which necessitates precise estimation of the propensity scores, even
in the tail region. Our preliminary theoretical work (not reported here to conserve
space) suggests that the sieve Logit model could serve as a viable alternative. The
logistic link function in this model helps constrain the tail behavior of the estimated
propensity scores. On the contrary, it would be considerably more challenging to
theoretically justify the use of nonparametric estimators based on local smoothing,
as they may exhibit volatile behavior in tail regions where observations are scarce.
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5. CHOICE OF K

The optimal choice of k has been a challenging question in the literature on extreme
value theory. It is more difficult in our setup as the propensity scores are estimated.
In particular, Assumption 1 only characterizes the first-order approximation of
the largest/smallest order statistics while a data-driven choice of k requires the
knowledge of the higher-order approximation (cf. Müller and Wang, 2017). (As an
analogy, the optimal choice of bandwidth in kernel regressions typically requires
higher-order derivatives either by assumption or additional estimation.)

The choice of k faces a bias-variance trade-off. On the one hand, a large k means
that we treat a larger proportion of data as stemming from the tail, which leads to
more bias. On the other hand, the estimated tail index may not be very precise if
only a few extreme values are used (i.e., when k is small). Such trade-off typically
incurs a delicate choice of k in finite samples, especially when the sample size
is only moderate. Our test is built on the fixed-k framework, which essentially
chooses a small k that is even negligible as n → ∞. Such a choice eliminates
the bias but also rules out consistent estimation of ξ . We, therefore, treat ξ as a
nuisance parameter and design our test to be size-controlling for all values of ξ

of empirical relevance. In practice, we would recommend practitioners report our
testing results with a range of plausible values of k for sensitivity analysis.

Next, we provide some rule-of-thumb guide for choosing a starting candidate
of k under additional second-order conditions. We focus on the left tail of the
propensity score distribution (i.e., small propensity scores) as an illustration. The
right tail of the propensity score can be studied by using 1/(1− e(Xi)).

Researchers have developed several data-driven choices of k for estimating the
tail index ξ (e.g., Drees and Kaufmann, 1998; Danielsson et al., 2001; Gomes
and Oliveira, 2001; Guillou and Hall, 2001). See also Scarrott and MacDonald
(2012) for a review of more methods. We follow Guillou and Hall (2001) to use
the following algorithm.

Again denote Yi = 1/e(Xi). Given a random sample {Y1,Y2, . . . ,Yn}, we first sort
them in descending order and denote the order statistics by Y(1) ≥ Y(2) ≥ ·· · ≥ Y(n).
Define Zi = i log(Y(i)/Y(i+1)) for i = 1, . . . ,n−1. For each k = 1, . . . ,n−1, construct

Tk ≡
(

k∑
i=1

w2
i

)−1/2

ξ̂−1
k Uk,

where wi = sgn(k −2i+1) |k −2i+1|, Uk ≡ ∑k
i=1 wiZi, and ξ̂k denotes the Hill

estimator

ξ̂k = 1

k

k∑
i=1

(
logY(i) − logY(k+1)

)
.

When the distribution of Yi (the inverse propensity score) is well approximated by
the Pareto distribution, Tk should have its mean close to zero and variance close
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16 XINWEI MA ET AL.

to one. Accordingly, we can minimize the following criteria based on a moving
average of T 2

k :

Ck =
⎛
⎝(2�k/2�+1)−1

�k/2�∑
j=−�k/2�

T 2
k+j

⎞
⎠

1/2

.

Denote C̃k = mint≥k Ct. The optimal value k∗ of k is

k∗ = min
1≤k≤n̄

{k : C̃k > 1.5}, (5.1)

where we set n̄ = �0.05n� so that we treat at most top 5% extreme values as
stemming from the Pareto tail.

Note that this choice of k relies on additional assumptions that are stronger than
our Assumption 1. Therefore, the optimal choice in (5.1) serves only as a heuristic
starting point, and we still recommend using a range of k for robustness checks.
We implement such procedures in our empirical applications.

We close this section by summarizing the empirical strategy in the following
steps.

Step 1 Choose a propensity score model, such as the Logit or the semiparametric
method. This should be the same specification used by the practitioner for
subsequent analyses, say, treatment effect estimation.

Step 2 Sort the estimated propensity scores and use the above data-driven method
to select the initial k.

Step 3 Choose a range of k around the initial choice and for each value of k in the
range, apply the proposed test as in (2.4).

6. SIMULATIONS

This section evaluates the finite-sample performance of the test (2.4) with both
the Logit and the semiparametric propensity score estimators. To be precise,
we generate the propensity score according to e(Xi) = H(G(X′

iβ0);δ0), where
β0 = (1,0, −1)′, and we consider various designs for δ0 as follows:

Design 1: δ0 = (0, · · ·)′;

Design 2: δ0 =
(

0.1
12.5 ,

0.1
22.5 ,

0.1
32.5 , 0, · · ·

)′
;

Design 3: δ0 =
(

0.1
12.5 ,

0.1
22.5 ,

0.1
32.5 ,

0.1
42.5 ,

0.1
52.5 ,

0.1
62.5 ,0, · · ·

)′
.

Note that Design 1 corresponds to the parametric Logit model. We generate
a random sample {Xi}n

i=1 by the mixture of (Xi1,Xi2,Xi3) = (Vi1,Vi2,Vi1 + Vi3)

with probability 0.5 and (Xi1,Xi2,Xi3) = −(Vi1,Vi2,Vi1 +Vi3) with probability 0.5,
where Vi1 ∼ N(0,1), Vi2 ∼ N(0,1), and Vi3 ∼ Exp(1/ξ) independently. We vary
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Table 1. Simulated averages of ‖β̂ − β0‖2 and maxi
∣∣ei/êi −1

∣∣, and rejection
frequency. The results are based on 2,000 Monte Carlo repetitions.

Frequency of rejecting H0

ξ δ0 n ‖β̂ −β0‖2 maxi

∣∣∣ ei
êi

−1
∣∣∣ k = 5 25 50 75 100

2.0 Design 1 2,000 0.042 7.973 0.022 0.002 0.001 0.000 0.000

4,000 0.021 2.756 0.014 0.003 0.000 0.000 0.000

8,000 0.010 1.557 0.017 0.001 0.000 0.000 0.000

2 2,000 0.031 5.539 0.022 0.002 0.001 0.000 0.000

4,000 0.015 2.025 0.015 0.003 0.000 0.000 0.000

8,000 0.007 1.321 0.017 0.001 0.000 0.000 0.000

3 2,000 0.032 5.247 0.022 0.002 0.001 0.000 0.000

4,000 0.015 1.856 0.016 0.003 0.000 0.000 0.000

8,000 0.008 1.197 0.017 0.001 0.000 0.000 0.000

1.0 Design 1 2,000 0.059 1.651 0.043 0.055 0.066 0.077 0.090

4,000 0.034 1.173 0.039 0.044 0.059 0.069 0.073

8,000 0.018 0.810 0.042 0.048 0.043 0.054 0.055

2 2,000 0.042 1.450 0.044 0.057 0.062 0.078 0.088

4,000 0.021 1.070 0.041 0.045 0.058 0.068 0.069

8,000 0.011 0.781 0.042 0.048 0.046 0.053 0.055

3 2,000 0.042 1.392 0.045 0.058 0.064 0.083 0.090

4,000 0.021 1.020 0.041 0.045 0.062 0.071 0.073

8,000 0.011 0.740 0.042 0.050 0.046 0.056 0.058

0.67 Design 1 2,000 0.083 1.243 0.059 0.156 0.281 0.397 0.496

4,000 0.052 0.937 0.055 0.145 0.266 0.408 0.494

8,000 0.030 0.699 0.058 0.146 0.257 0.397 0.507

2 2,000 0.058 1.124 0.055 0.162 0.289 0.429 0.510

4,000 0.030 0.841 0.061 0.157 0.282 0.426 0.523

8,000 0.016 0.644 0.061 0.153 0.260 0.423 0.540

3 2,000 0.057 1.108 0.056 0.168 0.293 0.435 0.519

4,000 0.030 0.821 0.061 0.161 0.286 0.433 0.535

8,000 0.016 0.621 0.061 0.155 0.267 0.429 0.550

ξ across simulations. Notice that P
[
X′

iβ0 < −x
] = 0.5exp(−x/ξ) under this data

generating design, and thus ξ ≥ 1 (resp. < 1) implies the null (resp. alternative)
hypothesis.

Table 1 collects simulation results. Displayed are the simulated average of
‖β̂ − β0‖, simulated average of max1≤i≤n

∣∣ei/êi −1
∣∣, and simulated frequency

of rejecting H0. For each design, the simulated average of ‖β̂ − β0‖2 decreases
proportionally to n−1, which is consistent with the root-n consistency of β̂ for β0.
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18 XINWEI MA ET AL.

Furthermore, the simulated average of max1≤i≤n

∣∣ei/êi −1
∣∣ is decreasing with the

sample size n, which is consistent with our result that the estimated propensity
scores are uniformly consistent in the sense of Assumption 2. These patterns are
borne out across all the simulation designs.

In the following, we summarize the findings in our simulation study regarding
the rejection frequency of the test (2.4). First, our proposed test controls size very
well under the null hypothesis, which corresponds to the cases with ξ = 2 and
ξ = 1. However, we do note that, when the number of propensity scores used (i.e.,
k) is large, the extreme value approximation becomes less accurate. Again, this is
because with a large k one is effectively extrapolating using observations far away
from the tail. Even in this case, however, we note that the size distortion is only
moderate. Second, the rejection probability of the test increases for a smaller ξ .
To be very precise, a small ξ < 1 corresponds to an alternative that is easier to
distinguish from the null hypothesis. Overall, our testing procedure performs very
well both in terms of size control and statistical power.

7. APPLICATIONS

To illustrate the empirical applicability of our method, we revisit two datasets that
might be prone to the limited overlap issue. It turns out that we reject the null
hypothesis in one of these two applications, suggesting either no or only a mild
degree of limited overlap in this case. For the other application, however, we fail
to reject the null hypothesis.

Our first illustration employs a dataset from the National Supported Work
(NSW) program, which was implemented in the 1970s with the aim of providing
work experience to economically disadvantaged workers lacking job skills. Since
LaLonde (1986), this dataset has been analyzed by many studies (Dehejia and
Wahba, 1999, 2002; Smith and Todd, 2005). We consider one particular subsample
from Dehejia and Wahba (1999), which consists of 185 treated individuals in the
NSW experimental group (Di = 1), and a nonexperimental comparison group
of 2,490 individuals from the Panel Study of Income Dynamics (Di = 0). As
a baseline specification, the propensity score is estimated parametrically using
a Logit model and the following covariates: educ (years of education) and its
square, age and its square, earn74 and earn75 (earnings in 1974 and 1975)
and their squares, indicators for married, black, and hispanic, and the
interaction term black×u74, where u74 indicates unemployed in 1974. We
refer interested readers to the aforementioned studies for detailed information on
the variable definition, sample inclusion, and other specifications of the propensity
score. We also estimate the propensity score using the semiparametric method with
sieve dimensions of δ = 3 and 6. Histograms of the estimated propensity scores
are depicted in Figure 3.

To conduct a formal diagnosis, we implement our proposed test (2.4) with
various choices of k to both the left tail and the right tail of the distribution of
the estimated propensity score. We implement the algorithm in Section 5 for the
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Figure 3. Histograms of estimated propensity scores in the NSW illustration. The case δ = 0
corresponds to our baseline parametric estimate with a Logit specification.

Table 2. P-values of the fixed-k test in the NSW illustration. Left tail: testing if
E[1/e(Xi)] = ∞; Right tail: testing if E[1/(1 − e(Xi))] = ∞. Rows with δ = 0
correspond to our baseline parametric estimate with a Logit specification.

δ k = 25 k = 50 k = 75 k = 100 k = 125 k = 150

Left tail 0 0.96 1.00 1.00 1.00 1.00 1.00

3 0.71 0.52 0.64 0.89 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00

Right tail 0 0.40 0.30 0.00 0.00 0.00 0.00

3 0.04 0.00 0.00 0.00 0.00 0.00

6 0.03 0.00 0.00 0.00 0.00 0.00

initial choice of k. The selected k ranges from 27 to 133, depending on δ. For
robustness, we report the p-values for k ranging from 25 to 150. In particular,
the left tail entails testing if E[1/e(Xi)] = ∞, and the right tail entails testing if
E[1/(1 − e(Xi))] = ∞. The p-values of the tests are presented in Table 2. The
results are coherent with the histograms. In particular, we reject the infinite mean in
the right tail, but we fail to do so in the left tail. Such a heavy left tail may jeopardize
the root-n asymptotic normality of the classical average treatment effect estimator.
Consequently, researchers may resort to alternative methods that are robust to a
heavy tail (Ma and Wang, 2020; Sasaki and Ura, 2022)7 or change the parameter
of interest (say, employ a trimming strategy or instead estimate the treatment effect
on the treated).

Our second application examines the Right Heart Catheterization (RHC) dataset
studied by Connors et al. (1996) and subsequently by Hirano and Imbens (2001)

7These methods produce debiased estimates for treatment effects with valid standard errors under their assumptions,
which we do not further discuss in this paper.
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Figure 4. Histograms of estimated propensity scores in the RHC illustration. The case δ = 0
corresponds to our baseline parametric estimate with a Logit specification.

and Crump et al. (2009). The goal is to analyze the effectiveness of RHC using
data from the Study to Understand Prognoses and Preferences for Outcomes and
Risks of Treatments (SUPPORT) with the propensity score weighting method. As
reported in these studies, the estimated propensity score almost spans the entire
interval (0,1). Crump et al. (2009) thus propose to trim observations near the tails
when conducting inverse propensity score weighting.

Our data consist of 5,735 observations, among which individuals fall into
the treatment group if RHC was applied within 24 hours of admission. In the
baseline Logit specification of the propensity score, 72 covariates are included,
covering demographic, medical, and clinical attributes. Summary statistics of the
72 covariates can be found in Connors et al. (1996) and Hirano and Imbens (2001).
In addition to the parametric specification (denoted by δ = 0), we also estimate
using the semiparametric approach with sieve dimensions of δ = 3 and 6. Figure 4
collects the histograms of the estimated propensity scores.

We implement our proposed test (2.4) with various choices of k. The choice
based on the algorithm in Section 5 yields k ranging from 123 to 286. The p-values
are reported in Table 3. Since the results with large k are all zeros, we present the
results up to 150 as in Table 2. Except for the case with k = 50 and δ = 3 and 6, the
test always rejects the null hypothesis of heavy tails, and therefore we expect that
the root-n asymptotic Gaussian approximation of the classical average treatment
effect estimator is reliable for this application.

8. CONCLUDING REMARKS

We proposed a formal statistical test that can help assess the degree of limited
overlap and hence treatment heterogeneity. This test takes the largest/smallest esti-
mated propensity scores as input, and controls size over a large range of underlying
propensity score tail distributions. Rejecting the null hypothesis indicates either
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Table 3. P-values of the fixed-k test in the RHC illustration. Left tail: testing
if E[1/e(X)] = ∞; Right tail: testing if E[1/(1 − e(X))] = ∞. Rows with δ = 0
correspond to our baseline parametric estimate with a Logit specification.

δ k = 25 k = 50 k = 75 k = 100 k = 125 k = 150

Left tail 0 0.27 0.00 0.00 0.00 0.00 0.00

3 0.32 0.16 0.00 0.00 0.00 0.00

6 0.35 0.16 0.00 0.00 0.00 0.00

Right tail 0 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00

no or a very mild degree of limited overlap. We illustrated our method both in a
simulation study and by revisiting two datasets widely studied in the literature.

A. APPENDIX A: Additional Details on Testing Both Small and Large
Propensity Scores

In Section 3, we mention that our test can be extended for the hypotheses H0 : E[1/(ei(1−
ei))] = ∞ versus H1 : E[1/(ei(1 − ei))] < ∞. The following lemma establishes the
equivalence between these hypotheses and those for testing whether at least one of E[1/ei]
and E[1/(1− ei)] is infinite.

Lemma A.1. The following equivalence holds:

E [1/(ei (1− ei))] = ∞ ⇔ E [1/ei] = ∞ and/or E [1/(1− ei)] = ∞.

A proof of this lemma is found in the following appendix. Given this result and the
assumption that both right tails of 1/ei and 1/(1−ei) are regularly varying with tail indices,
say ξ1 and ξ2, respectively, the hypotheses can be reformulated as

H0 : ξ1 ∈ [1,ξ̄ ] and/or ξ2 ∈ [1,ξ̄ ] versus H1 : ξ1 ∈ (0,1) and ξ2 ∈ (0,1) . (A.1)

To test (A.1), we take the smallest k1 order statistics of êi and the smallest k2 order statistics
of 1 − êi for some fixed k1 and k2. Since they are asymptotically independent, the joint
density of the self-normalized statistics T for both the left and the right tails is simply the
product of their marginal densities, respectively, characterized by ξ1 and ξ2 (e.g., Arnold
et al., 2008, Chap. 8). Therefore, we can construct the likelihood ratio statistic in a similar
fashion to (2.4), where the integrals are taken with respect to both ξ1 and ξ2.

B. APPENDIX B: Proofs

B.1. Proof of Lemma A.1

For the “only if” part, note that
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E

[ 1

ei (1− ei)

]
= E

[ 1

ei (1− ei)
1(ei ≤ 0.5)

]
+E

[ 1

ei (1− ei)
1(ei > 0.5)

]
.

So that if E [1/(ei (1− ei))] = ∞, then at least one of the terms on the right-hand side is
also infinite. Say it is the first one. Then

∞ = E

[ 1

ei (1− ei)
1(ei ≤ 0.5)

]
≤ 2E

[ 1

ei
1(ei ≤ 0.5)

]
≤ 2E

[ 1

ei

]
.

Therefore, E [1/ei] is ∞.
For the “if” part, note that

E [1/(ei (1− ei))] ≥ E [1/ei] and E [1/(ei (1− ei))] ≥ E [1/(1− ei)] .

Therefore, E [1/(ei (1− ei))] is infinite as long as one of E [1/ei] and E [1/(1− ei)] is ∞.

B.2. Proof of Theorem 1

To simplify the presentation, we define Yi =: e(Xi)
−1 and Ŷi =: ê(Xi)

−1. Accordingly, we
denote the jth largest order statistic of {Yi} as Y(j) and similarly for {Ŷi}.

To start, Assumption 1 and the standard extreme value theory imply that there exist
sequences of constants an and bn such that

(Y(1),Y(2), . . . ,Y(k))
′ −bn

an
⇒ V, (B.1)

where V has the following density:

fV|ξ (v1,...,vk) = Gξ (vk)

k∏
i=1

gξ (vi)/Gξ (vi) on vk ≤ vk−1 ≤ ·· · ≤ v1

with Gξ (v) = exp(−(1 + ξv)−1/ξ ) and gξ (v) = dGξ (v)/dv. Besides, Theorem 1.2.1 in de
Haan and Ferreira (2007) implies that an = O(nξ ) and bn = O(1). Therefore, Y(j) = Op(an)

for j ∈ {1,...,k}. Let I = (I1, . . . ,Ik) ∈ {1, . . . ,n}k be the k random indices such that Y(j) = YIj ,

j = 1, . . . ,k, and let Î be the corresponding indices such that Ŷ(j) = ŶÎj
. Then the convergence

of Ŷ(j) follows from (B.1) once we establish |ŶÎj
−YIj | = op(an) for j = 1, . . . ,k. We consider

k = 1 for simplicity and the argument for a general k is very similar. Define ηi = Ŷi − Yi.
Assumption 2 implies that

max
i

|ηi| = max
i

∣∣∣Ŷi −Yi

∣∣∣ ≤ Y(1) max
i

∣∣∣ Ŷi

Yi
−1

∣∣∣ = op(an).

Given this, we have that, on the one hand, ŶÎ = maxi{Yi + ηi} ≤ YI + maxi |ηi| = YI +
op(an), and on the other hand, ŶÎ = maxi{Yi +ηi} ≥ maxi{Yi +mini{ηi}} ≥ YI +mini{ηi} ≥
YI − supi |ηi| = ZI −op(an). Therefore, |ŶÎ −YI | ≤ op(1) = op(an) as desired.

Then by the continuous mapping theorem, we have

T ⇒ V∗ =:
V−Vk

V1 −Vk
.
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The rest of the proof follows from the construction of the weights W0 and cvα . See
Appendix C ahead. In particular, denote our test (2.4) as ϕ(·). Since the null space is compact
and the density of V∗ is continuous, for any positive measure W0 on [1,ξ̄ ], one can select
a large enough cvα so that supξ∈[1,ξ̄ ]P[ϕ(V∗) = 1] ≤ α under the null hypothesis. The
continuous mapping theorem and (B.1) imply that limn→∞P[ϕ(T) = 1] ≤ α under the null
hypothesis.

B.3. Proof of Theorem 2

We start with the high-level assumption that ‖β̂ − β0‖ = Op(1/
√

n). Using a Taylor
expansion, we have

G(X′
iβ0)

G(X′
i β̂)

−1 =
∣∣∣G(X′

iβ0)

G(X′
i β̃)2

∂G(X′
i β̃)

∂β
(β̂ −β0)

∣∣∣,
where β̃ lies on the line segment between β0 and β̂. Letting c1 be some constant, we further
decompose the above based on two events

G(X′
iβ0)

G(X′
i β̂)

−1

=
∣∣∣G(X′

iβ0)

G(X′
i β̃)2

∂G(X′
i β̃)

∂β
(β̂ −β0)

∣∣∣1‖β̂−β0‖≤ c1√
n
+
∣∣∣G(X′

iβ0)

G(X′
i β̃)2

∂G(X′
i β̃)

∂β
(β̂ −β0)

∣∣∣1‖β̂−β0‖> c1√
n

≤ c1√
n

sup
‖β−β0‖≤ c1√

n

∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥1‖β̂−β0‖≤ c1√
n

+
∣∣∣∣∣G(X′

iβ0)

G(X′
i β̃)2

∂G(X′
i β̃)

∂β
(β̂ −β0)

∣∣∣∣∣1‖β̂−β0‖> c1√
n
.

Now let c2 be another constant. The goal is to find some sequence cn, such that

lim
c2↑∞ limsup

n→∞
P

[
max

1≤i≤n

∣∣∣G(X′
iβ0)

G(X′
i β̂)

−1
∣∣∣ ≥ c2cn

]
= 0.

The above probability is bounded by

P

[
‖β̂ −β0‖ >

c1√
n

]
+P

[ c1√
n

max
1≤i≤n

sup
‖β−β0‖≤ c1√

n

∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥ ≥ c2cn

]
.

Because the first probability above does not depend on c2, and can be made arbitrarily small
with suitable choices of c1, it suffices to select cn such that

max
1≤i≤n

sup
‖β−β0‖≤ c√

n

∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ = Op
(√

ncn
)

holds for all c.
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B.4. Omitted Details of Remark 1

Part 1. As the population moment condition is uniquely maximized at β0, we know that,
for example, E[Di ln

(
G(X′

iβ0)
)
] > −∞. To show that β̂ is consistent for β0, it suffices to

provide an integrable envelop function (Lemma 2.4 in Newey and McFadden, 1994). Take

an arbitrary β in the parameter space B, then G(X′
iβ) ≥ eX′

iβ up to a multiplicative constant.
This implies, again up to some constants that do not depend on β, E[Di ln

(
G(X′

iβ)
)
] ≥

E[X′
iβ] ≥ E[−‖Xi‖]. This last expectation will be finite since the parameter space is

compact and that Xi has a finite 2 + ε moment. The argument used to bound E[(1 −
Di) ln

(
1− (G(X′

iβ0)
)
)] is completely analogous.

Next, we consider the score

si(β) =
[ Di

G(X′
iβ)

− 1−Di

1−G(X′
iβ)

]
G(1)(X′

iβ)Xi.

To bound its second moment (at the true parameter β0), it suffices to consider, for example,

E

[ Di

G(X′
iβ0)2

G(1)(X′
iβ0)2‖Xi‖2

]
= E

[(
1−G(X′

iβ0)
)
‖Xi‖2

]
,

which is finite given our assumption on Xi. To characterize the
√

n-consistency and
asymptotic normality of β̂, what remains is to show the convergence to the Hessian matrix.
To make it precise, let

Hi(β) =
[

Di

G(2)(X′
iβ)−G(X′

iβ)
(

1−G(X′
iβ)

)2

G(X′
iβ)

− (1−Di)
G(2)(X′

iβ)+G(X′
iβ)2

(
1−G(X′

iβ)
)

1−G(X′
iβ)

]
XiX

′
i,

and we would like to show E[sup‖β−β0‖≤ ε√
n
‖Hi(β)‖] < ∞ for all ε > 0. This is particu-

larly easy due to the Logit model we consider. To be precise, one has |G(2)(X′
iβ)| ≤ G(X′

iβ)

and |G(2)(X′
iβ)| ≤ 1−G(X′

iβ). As a result, ‖Hi(β)‖ ≤ ‖Xi‖2 up to a multiplicative constant

which does not depend on β. This concludes our proof that ‖β̂ −β0‖ = Op(1/
√

n).
Part 2. Now we prove Assumption 3(ii) with an explicit order cn. To start, note that∥∥∥∥∥G(X′

iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ ≤ eX′
iβ0

1+ eX′
iβ0

1

eX′
iβ

(1+‖Xi‖) ≤ eX′
i(β0−β)(1+‖Xi‖),

which implies that

sup
‖β−β0‖≤ c√

n

∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ ≤ (1+‖Xi‖)e
c√
n
(1+‖Xi‖).

As a result,

max
1≤i≤n

sup
‖β−β0‖≤ c√

n

∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ ≤ (1+ max
1≤i≤n

‖Xi‖)e
c√
n
(1+max1≤i≤n ‖Xi‖).
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As long as ‖Xi‖ has a finite 2 + ε moment for some ε > 0, it will be true that

max1≤i≤n ‖Xi‖ = Op(n
1

2+ε ) = op(
√

n), and hence

max
1≤i≤n

sup
‖β−β0‖≤ c√

n

∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ = Op

(
n

1
2+ε

)
,

which means we can set cn = n
1

2+ε
− 1

2 = n− ε
2(2+ε) = o(1).

B.5. Omitted Details of Remark 2

Part 1. To show the consistency of β̂, we again need to find an integrable envelop function.
Take an arbitrary β in the parameter space B, then we consider the expectation

E[Di ln
(
G(X′

iβ)
)
] = E[Di ln

(
G(X′

iβ)
)
1(X′

iβ≤−c)]+E[Di ln
(
G(X′

iβ)
)
1(X′

iβ>−c)],

for some c positive and large enough. Note that the second term is bounded from below by
a finite constant which does not explicitly depend on the choice of β. As for the first term,
we further employ a well-known bound on the normal tail probability (Proposition 2.1.2 in
Vershynin, 2018)

E[Di ln
(
G(X′

iβ)
)
1(X′

iβ≤−c)] ≥ −E

[
Di ln(2X′

iβ)1(X′
iβ≥c)

]
−E

[
Di|X′

iβ|21(X′
iβ≥c)

]
,

where g(·) = G(1)(·) is the standard normal density function. The calculation for the other
term, E[(1−Di) ln

(
1−G(X′

iβ)
)
], is analogous. From the above, it is clear that one can find

an integrable envelop function as the parameter space is compact.
Next, we consider the score

si(β) =
[ Di

G(X′
iβ)

− 1−Di

1−G(X′
iβ)

]
g(X′

iβ)Xi.

To bound its second moment (at the true parameter β0), it suffices to consider, for example,

E

[ Di

G(X′
iβ0)2

g(X′
iβ0)2‖Xi‖2

]

= E

[ 1

G(X′
iβ0)

g(X′
iβ0)2‖Xi‖21(X′

iβ0≤−c)

]
+E

[ 1

G(X′
iβ0)

g(X′
iβ0)2‖Xi‖21(X′

iβ0>−c)

]
.

Up to a multiplicative constant, the second term is finite provided that Xi has a finite
variance. The first term can be bounded by

E

[ 1

G(X′
iβ0)

g(X′
iβ0)2‖Xi‖21(X′

iβ0≤−c)

]
≤ E

[ 2|X′
iβ0|

g(X′
iβ0)

g(X′
iβ0)2‖Xi‖21(X′

iβ0≤−c)

]
,

which is finite if Xi has a finite third moment.
To characterize the

√
n-consistency and asymptotic normality of β̂, what remains is to

show the convergence to the Hessian matrix. To be precise, let
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Hi(β) =
[

Di
G(X′

iβ)G(2)(X′
iβ)−G(1)(X′

iβ)2

G(X′
iβ)2

− (1−Di)

(
1−G(X′

iβ)
)

G(2)(X′
iβ)+G(1)(X′

iβ)2

(
1−G(X′

iβ)
)2

]
XiX

′
i,

and we would like to show E[sup‖β−β0‖≤ ε√
n
‖Hi(β)‖] < ∞ for all ε > 0. Consider, for

example, the first half of the expectation:

E

[
sup

‖β−β0‖≤ ε√
n

Di

∣∣∣G(X′
iβ)G(2)(X′

iβ)−G(1)(X′
iβ)2

G(X′
iβ)2

∣∣∣|Xi|2
]
.

Again, it suffices to restrict to the case where X′
iβ is sufficiently small. Then we can bound

the denominator by G(X′
iβ) ≥ g(X′

iβ)/(2|X′
iβ|). As a result, finiteness of the previous

follows from a finite fourth moment of Xi. This concludes our proof of the
√

n-consistency
and asymptotic normality of β̂.

Part 2. Now we prove Assumption 3(ii) with an explicit order cn. To start, observe∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ ≤ 1(X′
iβ≥−2)G(−2)2G(X′

iβ0)g(X′
iβ)(1+‖Xi‖)

+1(X′
iβ<−2)

g(X′
iβ0)

g(X′
iβ)

( |X′
iβ|3

|X′
iβ|2 −1

)2

(1+‖Xi‖).

The first term above is easily bounded by

1(X′
iβ≥−2)G(−2)2G(X′

iβ0)g(X′
iβ)(1+‖Xi‖) ≤ G(−2)2g(0)(1+‖Xi‖),

and the second term can be bounded by

1(X′
iβ<−2)

g(X′
iβ0)

g(X′
iβ)

(
|X′

iβ|3
|X′

iβ|2 −1

)2

(1+‖Xi‖) ≤ 16

9
e

1
2 (1+‖Xi‖)2‖β−β0‖‖β+β0‖(1+‖Xi‖)3.

Now assume ‖Xi‖ has a finite 6 + ε moment for some ε > 0. Then max1≤i≤n ‖Xi‖ =
Op(n

1
6+ε ), which implies that

max
1≤i≤n

sup
‖β−β0‖≤ c√

n

∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ = Op(n
3

6+ε ).

Hence, we can set cn = n
3

6+ε
− 1

2 = n− ε
2(6+ε) .

B.6. Proof of Theorem 3

To prove Theorem 3, we first establish some auxiliary lemmas.

Lemma B.1. If Assumption 4(i–iv) is satisfied, then ‖ψ̂ −ψ0‖1 = op(1) and ‖ψ̂ −ψ0‖2 =
op(1).
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Proof. The claim in this lemma follows from Bierens (2014, Thm. 4.2) with the
metric d. We thus check his Assumptions 4.1 and 4.2 with d. Assumption 4.1(a) follows
from our Assumption 4(i). Assumption 4.1(b) follows from our definitions of  and d.
Assumption 4.1(c) follows from our definition of g. Assumption 4.1(d) follows from
Lemma 4.1 of Bierens (2014). Assumption 4.1(e) holds trivially. Assumption 4.1(f) follows
from Lemma 2.1 of Bierens (2014) under our Assumption 4(ii–iv). Assumption 4.1(g)
and (h) follows from our definitions of  and n. Assumption 4.1(i) holds with ψn =
(β ′

0,��n−pδ′
0)′—see Section 4.2.2 of Bierens (2014). Assumption 4.1(j) follows from our

Assumption 4(iv) and that G is a logistic link. Assumption 4.2 follows from our definitions
of  and n. �

Lemma B.2. If Assumption 4 is satisfied, then ‖β̂ −β0‖2 = Op(n−1/2).

Proof. The claim in this lemma follows from Bierens (2014, Thm. 6.1) along with
our definition of the metric d(2). We thus check his Assumptions 6.1–6.8. Assumptions
6.1(a) and 6.2 follow from the same argument as in the proof of Lemma B.1 under our
Assumption 4(i–iv). Assumption 6.1(b)–(d) follows from our Assumption 4(iv) and (v).
Assumptions 6.3–6.5 follow by Lemma 7.1 of Bierens (2014) from our definitions of 

and n under our Assumption 4(ii–v). Assumption 6.6 follows from our Assumption 4(v).
Assumptions 6.7 and 6.8 follow from our Assumption 4(v). �

Lemma B.3. Assume Assumption 4 holds. Let cn be a vanishing sequence satisfying

max
1≤i≤n

sup
‖β−β0‖≤ c√

n

∥∥∥∥∥G(X′
iβ0)

G(X′
iβ)2

∂G(X′
iβ)

∂β

∥∥∥∥∥ = Op
(√

ncn
)
,

for all c > 0. Then

max
1≤i≤n

∣∣∣∣∣G(X′
iβ0)

G(X′
i β̂)

−1

∣∣∣∣∣ = Op(cn).

Proof. This lemma can be established using the same proof strategy as in Theorem 2. �

Lemma B.4. Suppose Assumption 4 holds. If, in addition, that H is continuously differ-
entiable with uniformly bounded derivatives, then

max
1≤i≤n

∣∣∣∣∣H(G(X′
i β̂);δ0)−H(G(X′

iβ0);δ0)

G(X′
iβ0)

∣∣∣∣∣ = op(1).

Proof. The result follows from Lemma B.3 and the mean value expansion under
Assumption 4(iv) implying that H is continuously differentiable with uniformly bounded
derivatives. �

Lemma B.5. Suppose Assumption 4 holds. Then

sup
u∈(0,1)

∣∣∣∣∣H(u; δ̂)−H(u;δ0)

u

∣∣∣∣∣ = op(1).
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Proof. First, note that the conclusion of Lemma B.1 implies

‖δ̂ − δ0‖1 = op(1), (B.2)

‖δ̂ − δ0‖2 = op(1). (B.3)

Furthermore, by the definition of the parameter space , we have

∞∑
j=1

δ2
0j < ∞. (B.4)

By the triangle inequality and Cauchy–Schwartz inequality,

∣∣∣ ∞∑
j=1

(δ̂2
j − δ2

0j)
∣∣∣ ≤ ∞∑

j=1

(δ̂j − δ0j)
2 +2

( ∞∑
j=1

(δ̂j − δ0j)
2
)1/2( ∞∑

j=1

δ2
0j

)1/2 = op(1)

and

∣∣∣ ∞∑
j=2

j−1∑
m=1

(δ̂jδ̂m − δ0jδ0m)

∣∣∣ = ( ∞∑
j=2

(δ̂j − δ0j)
2
)1/2( j−1∑

m=1

(δ̂m − δ0m)2
)1/2

+
( ∞∑

j=2

δ2
0j

)1/2( j−1∑
m=1

(δ̂m − δ0m)2
)1/2 +

( ∞∑
j=2

(δ̂j − δ0j)
2
)1/2( j−1∑

m=1

δ2
0m

)1/2 = op(1)

by (B.3) and (B.4). Therefore,

∞∑
j=1

(
δ̂j

1+∑∞
i=1 δ̂2

i

− δ0j

1+∑∞
i=1 δ2

0i

)

= (1+∑∞
i=1 δ2

0i)
∑∞

j=1(δ̂j − δ0j)−∑∞
j=1 δ0j

∑∞
i=1(δ̂2

i − δ2
0i)

(1+∑∞
i=1 δ2

0i)(1+∑∞
i=1 δ2

0i +
∑∞

i=1(δ̂2
i − δ2

0i))
= op(1),

∞∑
j=1

⎛
⎝ δ̂2

j

1+∑∞
i=1 δ̂2

i

−
δ2

0j

1+∑∞
i=1 δ2

0i

⎞
⎠

=
(1+∑∞

i=1 δ2
0i)

∑∞
j=1(δ̂2

j − δ2
0j)−∑∞

j=1 δ2
0j
∑∞

i=1(δ̂2
i − δ2

0i)

(1+∑∞
i=1 δ2

0i)(1+∑∞
i=1 δ2

0i +
∑∞

i=1(δ̂2
i − δ2

0i))
= op(1), and
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∞∑
j=2

j−1∑
m=1

(
δ̂jδ̂m

1+∑∞
i=1 δ̂2

i

− δ0jδ0m

1+∑∞
i=1 δ2

0i

)

= (1+∑∞
i=1 δ2

0i)
∑∞

j=2
∑j−1

m=1(δ̂jδ̂m − δ0jδ0m)−∑∞
j=2

∑j−1
m=1 δ0jδ0m

∑∞
i=1(δ̂2

i − δ2
0i)

(1+∑∞
i=1 δ2

0i)(1+∑∞
i=1 δ2

0i +
∑∞

i=1(δ̂2
i − δ2

0i))

= op(1)

by (B.2)–(B.4). Note also that∣∣∣∣ sin(jπu)

jπu

∣∣∣∣ ≤ 1

holds for any j ∈ Z and u ∈ (0,1). These equations together imply

sup
u∈(0,1)

∣∣∣∣∣∣
ϒ(u; δ̂)−ϒ(u;δ0)

u
(

1+∑∞
i=1 δ2

0i

)
∣∣∣∣∣∣ = op(1).

From the definition of H(u;δ), this completes a proof of the lemma. �

With these lemmas, we are now ready to establish Theorem 3.

Proof of Theorem 3. It suffices to prove that

max
1≤i≤n

∣∣∣∣∣H(G(X′
iβ0);δ0)

H(G(X′
i β̂); δ̂) −1

∣∣∣∣∣ = op(1)

holds under Assumption 4. First, note that we have

max
1≤i≤n

∣∣∣∣∣G(X′
i β̂)−G(X′

iβ0)

G(X′
iβ0)

∣∣∣∣∣ = op(1),

max
1≤i≤n

∣∣∣∣∣H(G(X′
i β̂);δ0)−H(G(X′

iβ0);δ0)

G(X′
iβ0)

∣∣∣∣∣ = op(1), and

max
1≤i≤n

∣∣∣∣∣H(G(X′
i β̂); δ̂)−H(G(X′

i β̂);δ0)

G(X′
i β̂)

∣∣∣∣∣ = op(1)

by Lemmas B.3–B.5, respectively. Together with these uniform convergences, the equality

H(G(X′
iβ0);δ0)

H(G(X′
i β̂); δ̂) −1

= −
[

H(G(X′β̂);δ̂)−H(G(X′β̂);δ0)

G(X′β̂)

(
1+ G(X′β̂)−G(X′β0)

G(X′β0)

)

+ H(G(X′β̂);δ0)−H(G(X′β0);δ0)

G(X′β0)

]/[
H(G(X′β0);δ0)

G(X′β0)
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+ H(G(X′β̂); δ̂)−H(G(X′β̂);δ0)

G(X′β̂)

(
1+ G(X′β̂)−G(X′β0)

G(X′β0)

)

+ H(G(X′β̂);δ0)−H(G(X′β0);δ0)

G(X′β0)

]

and Assumption 4(iv) that x �→ H(G(x′β0);δ0)/G(x′β0) is bounded away from zero prove
the statement of the theorem. �

C. APPENDIX C: Computational Details

This appendix provides computational details about constructing the test (2.4). The input is
V∗ =: limn→∞ T, whose density fξ is in (3.1) and computed by Gaussian Quadrature. To
construct the test (2.4), we first specify the weight W1 to be the uniform distribution over
(0,1) for simplicity of exposition. The weight W1 reflects the importance attached by the
econometrician to different alternatives, which can be easily changed. Then, it remains to
determine a suitable candidate for the weight W0 and the critical value cvα . This is achieved
by employing the generic algorithm provided by Elliott, Müller, and Watson (2015) and
Sasaki and Wang (2022, 2023). The idea is as follows.

First, we can discretize the null space [1,ξ̄ ] into a grid �a and determine W0 accordingly
as the point masses. To this end, we let W̃0 = cvαW0 to subsume the critical value. Denote
ϕW̃0

(·) as the test (2.4) to emphasize the effect of W̃0. Simulate N random draws of V∗
from ξ ∈ �a and estimate the rejection probability under each value of ξ , denoted as
Pξ (ϕW̃0

(V∗) = 1) by sample fractions. By iteratively increasing or decreasing the point

masses as a function of whether the estimated Pξ (ϕW̃0
(V∗) = 1) is larger or smaller than

the nominal level, we can always find a candidate W̃0 that ensures size control on �a. This
is because we allow Pξ (ϕW̃0

(V∗) = 1) < α for some ξ ∈ �a. Once W̃0 is obtained, we
can numerically check if the test controls size on a finer grid than �a. If not, we repeat the
algorithm based on such a finer grid.

In practice, we can determine the point masses by the following concrete steps.

Algorithm:

1. Simulate N = 10,000 i.i.d. random draws from some proposal density with ξ drawn
uniformly from �a, which is an equally spaced grid on [1,2] with 50 points.

2. Start with W̃(0)
0 = {1/50,1/50, . . . ,1/50}′ and cvα = 1. Calculate the (estimated)

rejection probabilities Pj =: Pξj(ϕW̃(0)
0

(V∗) = 1) for every ξj ∈ �a using importance

sampling. Denote them by P = (P1,...,P50)
′.

3. Update W̃0 by setting W̃(s+1)
0 = W̃(s)

0 + η(P − 0.05) with some step-length constant
η > 0, so that the jth point mass in W̃0 is increased/decreased if the coverage
probability for ξj is larger/smaller than the nominal level.

4. Keep the integration 500 times. Then, the resulting W̃(500)
0 is a valid candidate.

5. Numerically check if ϕ
W̃(500)

0
indeed controls the size well by simulating the rejection

probabilities over a much finer grid on �. If not, go back to step 2 with a finer �a.

The above algorithm takes a few seconds to run on a modern PC. The most time-
consuming part is the calculation of the density fξ by Gaussian Quadrature. After conducting
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Table C1. Logarithm of the critical values of the test (2.4). Based on 10,000
simulations.

k α = 0.10 α = 0.05 α = 0.01 k α = 0.10 α = 0.05 α = 0.01

5 0.426 0.490 0.567 80 0.074 0.649 2.004

10 0.711 0.926 1.256 85 0.041 0.574 1.998

15 0.806 1.159 1.707 90 0.028 0.593 1.880

20 0.801 1.229 2.037 95 −0.011 0.547 1.938

25 0.685 1.186 2.216 100 −0.031 0.539 1.780

30 0.611 1.184 2.311 105 −0.063 0.540 1.793

35 0.533 1.076 2.383 110 −0.073 0.515 2.009

40 0.432 1.037 2.323 115 −0.082 0.494 1.977

45 0.377 1.004 2.340 120 −0.093 0.466 1.907

50 0.332 0.917 2.326 125 −0.108 0.454 1.791

55 0.308 0.901 2.256 130 −0.128 0.417 1.793

60 0.264 0.826 2.109 135 −0.137 0.425 1.806

65 0.205 0.785 2.077 140 −0.168 0.406 1.695

70 0.180 0.719 2.095 145 −0.183 0.371 1.713

75 0.140 0.686 2.015 150 −0.187 0.353 1.685

this algorithm, we find that W0 always allocates all the weight to the single point ξ = 1.
Accordingly, we present the logarithm of the critical values in Table C1. This finding
indicates that the least favorable distribution is indeed the point mass at ξ = 1. However, a
theoretical justification eludes us due to the complicated expression of the density.

D. APPENDIX D: A Consistent Estimator of ξ

Our test (2.4) is based on the fixed-k asymptotic framework, in which ξ cannot be
consistently estimated. For completeness, we provide a consistent estimator of ξ and its
asymptotic normality in this appendix. Since these additional results require much stronger
assumptions than those imposed in the main text, we present them separately here in the
appendix.

Again, let Yi = 1/e(Xi) and Ŷi = 1/ê (Xi). Recall that F denotes the CDF of Yi. We make
the following assumptions.

Assumption D.1. Yi is regularly varying at infinity with α > 0. Moreover, F satisfies the
second-order tail expansion that

1−F (x) = c1x−α + c2x−α+ρα (1+o(1)) , x → ∞

for some constants c1 > 0,c2 �= 0,α > 0, and ρ < 0.

Assumption D.2.
√

kn max1≤i≤n

∣∣∣Ŷi−Yi

∣∣∣
1+Yi

= op (1).
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Assumption D.3. kn = o
(

n−2ρ/(1−2ρ)
)

.

We provide some discussions about these conditions. Assumption D.1 requires the
underlying distribution of 1/ei to be regularly varying, following which the consistency of
Hill’s estimator can be derived. To derive its asymptotic normality, we need the second-order
condition, which has been widely imposed in statistics literature about estimating the tail
index. See, for example, de Haan and Ferreira (2007, Chap. 2) for a review. In particular,
Student-t distribution with ν degrees of freedom satisfies this condition with α = ν and
ρ = −2/ν.

Assumption D.2 requires that the estimation error of the propensity is of a smaller order

than k−1/2
n so that it becomes asymptotically negligible. This condition is recently proposed

and studied by Girard, Stupfler, and Usseglio-Carleve (2021). Note that this condition is
stronger than our previous Assumption 2. Assumption D.3 is imposed to diminish the
asymptotic bias. If kn is of the order n−2ρ/(1−2ρ), Hill’s estimator will then have a nonzero
asymptotic bias whose expression depends on the higher-order constants in Assumption
D.1. Estimation of these higher-order constants, especially ρ, is very challenging and has
an even slower convergence rate. Therefore, it is common to select kn to be of a smaller
order, which is close in spirit to the undersmoothing condition in kernel regressions.

Under these assumptions, we can treat Ŷi as the unobserved Yi and construct the classic
Hill’s estimator. In particular, for ξ = 1/α, Hill’s estimator can be written as

ξ̂ = 1

kn

kn∑
j=1

log(Ŷ(j))− log(Ŷ(kn+1)).

The following theorem establishes the asymptotic normality of ξ̂ . The estimator for α is
constructed as α̂ = 1/ξ̂ , whose asymptotic normality follows from the delta method.

Theorem D.1. Suppose Assumptions D.1–D.3 hold. Then,

√
kn

(
ξ̂ − ξ

)
d→ N

(
0,ξ2

)
.

Proof of Theorem D.1 Our Assumption D.1 is sufficient for the condition C2 (γ,ρ,A)

in Girard et al. (2021), where their γ is our ξ and their εi corresponds to our Yi. Our
Assumption D.2 is their condition in equation (2), and our Assumption D.3 implies that
their λ = 0. Then the result follows from their Corollary 2.1. �
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