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Abstract

We prove the following theorem characterizing Du Bois singularities. Suppose that Y is
smooth and that X is a reduced closed subscheme. Let π : Ỹ → Y be a log resolution
of X in Y that is an isomorphism outside of X. If E is the reduced pre-image of X in
Ỹ , then X has Du Bois singularities if and only if the natural map OX → Rπ∗OE is a
quasi-isomorphism. We also deduce Kollár’s conjecture that log canonical singularities are
Du Bois in the special case of a local complete intersection and prove other results related
to adjunction.

1. Introduction and background

In this paper, we prove a simple new characterization of Du Bois singularities. Inspired by this char-
acterization, we deduce several new theorems, including results related to adjunction, and progress
towards a conjecture of Kollár.

Du Bois singularities were initially defined by Steenbrink as a setting where certain aspects of
Hodge theory for smooth varieties still hold; see [Ste80], [Ste81] and [DB81]. They are defined by
the cohomology of a complex which is difficult to understand since it requires the computation
of resolutions of singularities for several varieties (specifically a simplicial or cubic hyperresolution
is required; see [Del74], [GNPP88] or [Car85]). Our new characterization of Du Bois singularities
requires only a single resolution. Our main result is as follows.

Theorem (Theorem 4.6). Let X be a reduced separated scheme of finite type over a field of
characteristic zero. Embed X in a smooth scheme Y and let π : Ỹ → Y be a log resolution of X in
Y that is an isomorphism outside of X. If E is the reduced pre-image of X in Ỹ , then X has Du
Bois singularities if and only if the natural map OX → Rπ∗OE is a quasi-isomorphism.

This result is actually a corollary of a stronger theorem (see Theorem 4.3) in which we prove that
Rπ∗OE is quasi-isomorphic to Ω0

X , the complex used to determine whether or not X has Du Bois
singularities. In addition to being much simpler, this new characterization unambiguously places
Du Bois singularities among the pantheon of singularities of birational geometry. The hypotheses
of Theorem 4.6 can also be weakened in several ways; see Theorems 4.3 and 4.9.

Despite their complicated definition, Du Bois singularities are already known to be closely related
to the singularities of birational geometry. For example, it was conjectured by Kollár that log
canonical singularities are Du Bois; see [Kol92, Conjecture 1.13]. Conversely, it is known that normal
quasi-Gorenstein Du Bois singularities are log canonical; see [Kov99, Theorem 3.6]. Furthermore,
rational singularities are Du Bois, as shown in [Kov99] and [Sai00] (see also [Ste83] for an alternate
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proof of the case of an isolated singularity). In summary, Du Bois singularities fit naturally into the
hierarchy of singularities in birational geometry as pictured in the following diagram.

Log Terminal Singularities ��

��

Rational Singularities

��

+ Gorenstein

��

Log Canonical Singularities
conj �� Du Bois Singularities

+ quasi-Gorenstein & normal

��

We prove Kollár’s conjecture that log canonical singularities are Du Bois in the case of a local com-
plete intersection; see Corollary 5.10. Previous progress towards this conjecture was made by Ishii
for isolated singularities (see [Ish87, Theorem 2.4]), and by Kovács for Cohen–Macaulay singularities
assuming the dimension of the singular locus is ‘not too big’ (see [Kov99] and [Kov00b]).

Because our new criterion for Du Bois singularities requires an embedding into an ambient
scheme, it is natural to look for consequences related to adjunction. The following result is inspired
by our characterization.

Theorem (Theorem 5.5). Suppose that Y is a scheme with Kawamata log terminal singularities
and that I is an ideal sheaf on Y . If the pair (Y,Ir) is log canonical for some positive rational
number r, then the multiplier ideal associated to the pair (Y,Ir) cuts out a scheme with Du Bois
singularities.

Using similar methods, we also recover an alternate proof of a special case of Kawamata’s
subadjunction theorem [Kaw98]; see Theorem 5.11.

We also prove a new theorem linking Du Bois and rational singularities, analogous to results of
Kollár and Shepherd-Barron [KSB88, Theorem 5.1], Karu [Kar00, Theorem 2.5] and Watanabe and
Fedder [FW89, 2.13].

Theorem (Theorem 5.1). Suppose that X is a reduced scheme of finite type over a field of char-
acteristic zero, H is a Cartier divisor that has Du Bois singularities and X −H is smooth. Then X
has rational singularities (in particular, it is Cohen–Macaulay).

All schemes we consider will be separated and of finite type over a field of characteristic zero.
Typically they will also be reduced. In particular, they may be non-normal and have several irre-
ducible components of possibly different dimensions. A smooth scheme will always be assumed to
be equidimensional.

If Y is a scheme, we will often work in the derived category of OY -modules, denoted by D(Y ).
Db

coh(Y ) will denote the derived category of bounded complexes of OY modules with coherent
cohomology; see [Har66]. In the setting of the derived category, we will write F � �qis G� if F � and
G� are quasi-isomorphic.

2. Log resolutions and singularities of pairs

Let Y and Ỹ be reduced separated schemes of essentially finite type over a field k of characteristic
zero. A birational morphism π : Ỹ → Y is a morphism over k that induces a bijection of generic
points and induces a set of isomorphisms of residue fields at those points.

Definition 2.1. A resolution of Y is a proper birational morphism π : Ỹ → Y of schemes over k
such that Ỹ is smooth over k. A resolution is called a good resolution if the exceptional set E ⊂ Ỹ
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is a divisor with simple normal crossings. If I is an ideal sheaf on Y , a log resolution of I is a
good resolution π : Ỹ → Y of Y such that IOỸ = OỸ (−G) is an invertible sheaf and such that
E ∪ Supp(G) is a simple normal crossings divisor. Typically when performing a log resolution, Y
will be smooth or have some ‘nice’ singularities. A strong log resolution of I will be a log resolution
π : Ỹ → Y of I that is also an isomorphism outside the scheme V (I) defined by I.

Remark 2.2. Resolutions and log resolutions exist for schemes of finite type over a field of charac-
teristic zero [Hir64]. A necessary and sufficient condition for the existence of strong log resolutions
is that Y − V (I) is smooth.

We are now in a position to define rational singularities.

Definition 2.3. Suppose that π : Ỹ → Y is a resolution. We say that Y has rational singularities
if the natural map OY → Rπ∗OỸ is a quasi-isomorphism.

We now introduce the terminology necessary to define log terminal and log canonical singulari-
ties.

Let Y be a Q-Gorenstein normal irreducible scheme of finite type over a field of characteristic
zero, and let X =

∑k
i=1 tiXi be a formal combination of closed subschemes Xi � Y , defined by

ideal sheaves ai ⊂ OX with ti ∈ Q. In our context we will always assume the ti are non-negative.
The notation (Y,X) will be used to denote a pair of objects as above. If a is an ideal, we will also
use (Y, at) to denote (Y, tV (a)). Sometimes, when a is a reduced ideal and X = V (a), we will use
the notation (Y, (r)X) to denote (Y, V (a(r))); that is, we take symbolic power instead of ordinary
power.

Suppose that π : Ỹ → Y is a birational morphism from a normal (typically smooth) scheme Ỹ
such that all ideal sheaves aiOỸ

= O
Ỹ

(−Gi) are invertible. Now we define the relative canonical
divisor, so let KY and KỸ denote canonical divisors of Y and Ỹ . The relative canonical divisor,
denoted by KỸ /Y is a Q-divisor supported on the exceptional locus of π. To construct it explicitly,
suppose that nKY is Cartier. Then we can pull back nKY locally to obtain π∗(nKY ), a Cartier
divisor on Ỹ . The relative canonical divisor KỸ /Y is then defined as the unique divisor numerically
equivalent to KỸ − (1/n)π∗(nKY ) supported on the exceptional locus of π. Finally, we write

KỸ /Y −
k∑
i=1

tiGi =
∑
E

a(E,Y,X)E

where the E are arbitrary prime divisors on Ỹ . Note that if the ti are integers, then atiOỸ =
OỸ (−tiGi). The rational number a(E,Y,X) is called the discrepancy of the pair (Y,X) along E.

We now discuss singularities associated to pairs (Y,X) where X has arbitrary codimension in
Y ; see [Mus02] and [Tak04]. These definitions agree with the classical notions when Y is smooth
and X is a divisor; see, for example, [KM98].

Definition 2.4. We define a pair (Y,X) to be log canonical if a(E,Y,X) � −1 for all divisors E
over (Y,X) (where E runs through all irreducible divisors of all birational morphisms such that the
aiOỸ

are invertible). We define such a pair to be Kawamata log terminal if a(E,Y,X) > −1 for
all E as above. We define such a pair to be purely log terminal if a(E,Y,X) � −1 for divisors E,
dominating a component of X, and a(E,Y,X) > −1 for all other divisors.

We will also use multiplier ideals and local vanishing for multiplier ideals; see [Laz04, ch. 9].

Definition 2.5. Let Y be a Q-Gorenstein normal irreducible scheme of finite type over a field of
characteristic zero. Let I be an ideal sheaf and r a non-negative rational number. Let π : Ỹ → Y
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be a log resolution of I in Y and let G denote the divisor on Ỹ such that OỸ (−G) = IOỸ . We
define the multiplier ideal of Ir, written as J (Ir), to be

π∗OỸ (�KỸ /Y − rG�).

Local vanishing for multiplier ideals roughly states that the higher direct images associated to
the multiplier ideal are zero or, more specifically, the following.

Theorem 2.6 (Lazarsfeld [Laz04, § 9.4]). Under the previous hypotheses, we have

Rjπ∗OỸ (�KỸ /Y − rG�) = 0 for j > 0.

3. Relevant properties of Du Bois singularities

Let X be a reduced and separated scheme over a field of characteristic zero. Associated to X is
a filtered complex in the derived category of abelian sheaves on X, denoted by (Ω�X , F ) which
satisfies certain properties; see [DB81]. One of these properties is that the graded pieces associated
to the filtration can be viewed as objects of Db

coh(X). This filtered complex is unique up to filtered
quasi-isomorphism which, in particular, implies that the graded pieces are unique up to quasi-
isomorphism in Db

coh(X). One constructs this filtered complex by using a diagram of schemes called
a (simplicial or cubic) hyperresolution X� → X; see [DB81], [GNPP88], [Ste85] and [Car85]. The fact
that (Ω�X , F ) is independent of the choice of hyperresolution is typically proved directly only over
C (see, for example, [GNPP88, ch. V, Theorem 3.3]); however, the Lefschetz principle and certain
base change theorems for hyperresolutions let one extend this result to any field of characteristic
zero. See [GNPP88, ch. III, § 1.16] for additional discussion.

Let us sketch one construction of (Ω�X , F ). First, one considers a resolution π of the scheme X
as well as something like resolutions of the exceptional set E of π and the image of E in X. These
resolutions themselves have exceptional sets with images in the scheme we are resolving. Both the
exceptional sets and their images must also be resolved (in a particularly compatible way) and so
on. On each of these smooth schemes we have constructed, we consider the usual De Rham complex
with the ‘filtration bête’. All of these De Rham complexes are then pushed down (in the derived
category) to X and combined in a right derived inverse limit, the result of which we call (Ω�X , F ).
The filtration is induced by the filtrations on the smooth schemes; see [GNPP88]. The complexity
of the definition has been an obstacle to the study of Du Bois singularities.

Regardless, each graded piece GriF Ω�X of Ω�X is an object of Db
coh(X) and can be thought of as

a replacement for Ωi
X in the case when X is singular (in fact, for X smooth we have GriF Ω�X [i] �qis

Ωi
X). Therefore, Ωi

X is often used to denote GriF Ω�X [i]. If X is projective over C, then there is
a Hodge to De Rham-like spectral sequence, Epq

1 = Hq(X, Ωp
X), which collapses at the E1 stage,

converges to H i(Xan, C) and induces the usual Hodge structure of [Del74]; see [DB81]. In particular,
for X projective over C, one always has a surjection

H i(Xan, C) �� �� Hi(X, Ω0
X).

Because of this, one often works over C.
In this paper we are mainly concerned with properties of the zeroth graded piece of this com-

plex, Ω0
X . Thus, we include a list of its relevant properties. We will not make use of the Hodge to

De Rham-like spectral sequence related to Du Bois singularities.

Theorem 3.1. For every reduced separated scheme Y over a field of characteristic zero, the complex
Ω0
X ∈ Db

coh(X) has the following properties.

(i) Restriction to open sets. If U ⊂ Y is open, then Ω0
Y |U �qis Ω0

U .
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(ii) Functoriality. If φ : Y ′ → Y is a morphism of finite type of reduced schemes, then it induces a
natural map of objects in the derived category, Ω0

Y → Rφ∗Ω0
Y ′ .

(iii) Natural maps. There are natural maps

OY → Ω0
Y → Rπ∗OỸ

in Db
coh(Y ) where π : Ỹ → Y is a resolution of singularities of Y and the composition is

the usual map. Both maps are quasi-isomorphisms if Y is smooth. The first map is a quasi-
isomorphism if Y has simple normal crossing singularities.

(iv) An exact triangle. Suppose that π : Ỹ → Y is a projective morphism and X ⊂ Y a reduced
closed subscheme such that π is an isomorphism outside of X. Let E denote the reduced sub-
scheme of Ỹ with support equal to π−1(X) and π′ : E → X the induced map. Then one has
an exact triangle of objects in the derived category,

Ω0
Y

�� Ω0
X ⊕ Rπ∗Ω0

Ỹ

− �� Rπ′∗Ω0
E

+1 �� . (3.1.1)

In particular, if π is a log resolution of X in Y (that is, Ỹ is smooth and E = (π−1(X))red is
a divisor with simple normal crossings), then we have the following triangle

Ω0
Y

�� Ω0
X ⊕ Rπ∗OỸ

− �� Rπ′∗OE
+1 �� . (3.1.2)

Proof. We treat each property in turn.

(i) This follows from the construction of cubic hyperresolutions; see [GNPP88]. Alternately, see
[DB81, § 3.2].

(ii) See [DB81, § 3.21] and [GNPP88, ch. I, Theorem 3.8 and ch. V, § 3.6].

(iii) See [DB81, § 4.1 and Theorem 4.5]. The statements about isomorphisms for certain classes of
singularities of X follow directly from constructions of hyperresolutions.

(iv) See [DB81, Proposition 4.11]. This is also particularly easy to see from the point of view of
cubic hyperresolutions; see [GNPP88].

Now we define Du Bois singularities.

Definition 3.2. Suppose that X is a separated reduced scheme of finite type over a field of char-
acteristic zero. There is a natural map OX → Ω0

X by Theorem 3.1(iii). We say that X has Du Bois
singularities if that map is a quasi-isomorphism.

Remark 3.3. If X is projective over C and has Du Bois singularities, it is immediate from the Hodge
to De Rham-like spectral sequence mentioned above that the natural map H i(Xan, C) → H i(X,OX )
is surjective.

The following lemma about gluing Du Bois singularities can be used to construct numerous
(non-normal) examples; see [DB81, Propositions 3.8 and 4.10].

Lemma 3.4. Suppose that X is a reduced separated scheme of finite type over a field of characteristic
with closed subschemes X1 and X2 such that X = X1 ∪ X2. Suppose that X1, X2 and X1 ∩ X2 all
have Du Bois singularities (in particular, we assume that X1 ∩X2 is reduced), then X also has Du
Bois singularities.

Proof. Du Bois’ results [DB81, Propositions 3.8 and 4.10] give us an exact triangle

Ω0
X

�� Ω0
X1

⊕ Ω0
X2

�� Ω0
X1∩X2

+1 �� .
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Note that the map

h0(Ω0
X1

) ⊕ h0(Ω0
X2

) �� h0(Ω0
X1∩X2

)

is surjective. Basic facts about pullback squares guarantee that h0(Ω0
X) is isomorphic to OX , and

the long exact sequence plus the surjectivity mentioned above guarantee that hi(Ω0
X) = 0 for i > 0.

One can give a roughly equivalent proof using Theorem 3.1(iv) instead of Du Bois’ results [DB81,
Propositions 3.8 and 4.10].

The following criterion of Kovács is particularly useful for proving schemes have Du Bois singu-
larities.

Theorem 3.5 (Kovács [Kov99, Theorem 2.3]). Let U be a reduced separated scheme of finite type
over a field of characteristic zero such that OU → Ω0

U has a left inverse (that is, a map Ω0
U → OU such

that the composition OU → Ω0
U → OU is a quasi-isomorphism); then U has Du Bois singularities.

Remark 3.6. As an easy corollary, using Theorem 3.1(iii), Kovács proved that rational singularities
are Du Bois.

Remark 3.7. This was originally only proven over C. The proof relies on the following fact. If X
is projective over C, then there is a surjective map H i(X,OX ) → Hi(X, Ω0

X). This surjectivity is
easily seen to be preserved by base change of our underlying field. Using this fact, it is relatively
easy to extend Theorem 3.5 to other fields of characteristic zero.

There is a corollary of this result that we will need; see also [Kol95, Theorem 12.8] and [Kov00a].

Corollary 3.8 (Kovács [Kov99, Corollary 2.4]). Let f : V → U be a morphism of reduced sepa-
rated schemes of finite type over a field of characteristic zero. Suppose that V has Du Bois singu-
larities and that the natural map OU → Rf∗OV has a left inverse, then U has Du Bois singularities
as well.

4. A hyperresolution-free characterization of Du Bois singularities

We begin with a lemma that has been used implicitly in [Kov99, Lemma 3.2] and [DB90, Propo-
sition 7.7] in relation to Du Bois singularities. A precise statement is included since this result is
critical in the construction of the new characterization of Du Bois singularities as well as certain
applications.

Lemma 4.1. Let C be a triangulated category. Suppose that we have objects A,B,C,D and arrows
s : A → B, t : A → C, u : B → D, v : C → D such that

A
s,−t �� B ⊕ C

u+v �� D
r �� T (A)

is an exact triangle. If A
s �� B

φ �� M
ψ �� T (A) is an exact triangle, then there exists mor-

phisms f and g such that

C
v �� D

f �� M
g �� T (C)

is an exact triangle. Furthermore, we have the following map of exact triangles.

A

t
��

s �� B
φ ��

u

��

M
ψ ��

C
v �� D

f �� M
g ��
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Proof. The proof of this lemma is a straightforward application of the octahedral axiom; see [Sch06,
Lemma 5.3.1] for details.

We now apply the previous lemma in the case of the exact triangle (3.1.1).

Proposition 4.2. Let π : X̃ → X be a proper birational morphism of reduced separated schemes
over a field of characteristic zero such that X̃ has Du Bois singularities. Let Σ be a closed subset of
X such that π is an isomorphism outside of Σ. Let E be the reduced total transform of Σ, suppose
that E also has Du Bois singularities, and let IE ⊂ OX̃ be the ideal sheaf of E (these conditions
are always satisfied when X̃ is a strong log resolution of Σ ⊂ X). Then the following is a map of
exact triangles.

Rπ∗IE �� Ω0
X

��

��

Ω0
Σ

+1 ��

��
Rπ∗IE �� Rπ∗OX̃

v �� Rπ∗OE
+1 ��

Proof. We begin with the following exact triangle

Ω0
X

�� Rπ∗OX̃ ⊕ Ω0
Σ

v−u �� Rπ∗OE
+1 ��

which we obtain from (3.1.1). We also have the exact triangle

Rπ∗IE �� Rπ∗OX̃
v �� Rπ∗OE

+1 ��

simply arising from pushing down the corresponding short exact sequence.
Applying an easy sign switch followed by Lemma 4.1 gives us the desired result.

We now can use the previous proposition to construct our new characterization.

Theorem 4.3. Let Y be a reduced separated scheme of finite type over a field k of characteristic
zero with rational singularities. Let X be a reduced subscheme of Y . Let IX denote the ideal sheaf
of X in Y . Assume that there exists a proper birational map π : Ỹ → Y such that Ỹ has rational
singularities, the reduced pre-image of X has Du Bois singularities and π is an isomorphism outside
of X. If E is the reduced total transform (pre-image) of X, then Ω0

X �qis Rπ∗OE .

Proof. Let IE be the ideal sheaf of E ⊂ Ỹ . By Lemma 4.2 we have the following map of exact
triangles.

Rπ∗IE �� Ω0
Y

��

��

Ω0
X

��

+1 ��

Rπ∗IE �� Rπ∗OỸ
�� Rπ∗OE

+1 ��

Since Y has rational singularities it has Du Bois singularities, so the middle vertical arrow is a
quasi-isomorphism (with OY ). The left vertical arrow is always a quasi-isomorphism, so the right
vertical arrow is a quasi-isomorphism as well. Since Ω0

X is only defined up to quasi-isomorphism,
this completes the proof.

Remark 4.4. Note that the hypotheses of this theorem are satisfied if Y is smooth and π is a strong
log resolution of X in Y ; that is, Ỹ is smooth, the reduced pre-image of X has simple normal
crossings and π is an isomorphism outside of X.

The following special case of Theorem 4.3 is useful for comparing Du Bois and rational singulari-
ties. It can also be used to easily reobtain the maps of Theorem 3.1(iii) and the exact triangle (3.1.2);
see [Sch06, Remark 5.3.7 and Corollary 5.3.9] for details.
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Corollary 4.5. Suppose that Y is smooth and X is a reduced subscheme of Y . Let π : Ỹ → Y
be an embedded resolution of X in Y with simple normal crossings reduced exceptional divisor
E′ ⊂ Ỹ . Let X̃ denote the strict transform of X and suppose that E′ meets X̃ transversally in a
simple normal crossings divisor on X̃ . If E = (π−1(X))red, then Rπ∗OE �qis Ω0

X .

Proof. Note that E is the union of two reduced schemes with Du Bois singularities that intersect
in a reduced scheme with Du Bois singularities, and thus it is Du Bois by Lemma 3.4. Apply
Theorem 4.3.

Corollary 4.6. Let X be a reduced separated scheme of finite type over a field of characteristic
zero. Suppose that X ⊆ Y where Y is smooth and suppose that π : Ỹ → Y is a log resolution of X
in Y that is an isomorphism outside of X. If E is the reduced pre-image of X in Ỹ , then X has Du
Bois singularities if and only if the natural map OX → Rπ∗OE is a quasi-isomorphism.

Corollary 4.7. With the above notation, Rπ∗OE (as an object in Db
coh(X)) is independent of the

choice of embedding or resolution, up to quasi-isomorphism.

Remark 4.8. Using the above notation, it is easy to see that π∗OE is the structure sheaf of the
seminormalization (see [GT80]) of X when the field being worked over is algebraically closed [Sch06,
Corollary 5.4.17]. This fact about Du Bois singularities and seminormality was also proven in [Sai00,
Proposition 5.2]. Faithfully flat base change then allows us to note the following. If X is a reduced
separated scheme of finite type over any field of characteristic zero, then X has Du Bois singularities
if and only if X is seminormal and Riπ∗OE = 0 for i > 0.

One limitation of this characterization is that it requires π to be an isomorphism outside of X.
In applications, this can be a restrictive condition. The following result allows us to weaken this
hypothesis.

Theorem 4.9. Suppose that Y is a smooth scheme of finite type over a field of characteristic zero,
X is a reduced closed subscheme of Y and IX the ideal of X in Y . Suppose that a is any other
sheaf of ideals on Y . Then there exists a simultaneous log resolution π2 : Y2 → Y of IX and a such
that if E2 = π−1

2 (X) is the reduced pre-image of X, then R(π2)∗OE2 �qis Ω0
X .

Proof. Begin by taking a strong log resolution π1 : Y1 → Y of IX and consider a1 = aOY1 . Let
E1 = π−1

1 (X). We claim that if we can construct a log resolution of a1 by repeated blow-ups at
smooth centers and such that the reduced pre-image of E1 (which is the reduced pre-image of X)
has simple normal crossings at each step; this would prove the proposition. To see this, suppose
that π1a : Y1a → Y1 is the blow-up at a smooth center C such that E1a = (π−1

1a (E1))red has simple
normal crossings. We claim that then R(π1a)∗OE1a �qis OE1 . There are two cases:

(1) C ⊂ E1;

(2) C �⊂ E1.

In the first case, R(π1a)∗OE1a �qis Ω0
E1

by Theorem 4.3, but simple normal crossing singularities
have Du Bois singularities, so there is nothing to check.

In the second case, we need to check that R(π1a)∗E1a �qis OE1 . Because Y1 has rational singu-
larities, this is equivalent to showing that the natural map

OY1(−E1) → R(π1a)∗OY1a(−E1a)

is a quasi-isomorphism. However, since the smooth center we blew up was not contained in E1,
π∗

1a(E1) = E1a. Thus, we see that

OY1(−E1) → R(π1a)∗(OY1a(−E1a))
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is an isomorphism by an application of the projection formula (again we use that Y1 has rational
singularities).

By repeating this argument, we see that if π2 : Y2 → Y1 is a log resolution of a1 obtained in this
way, R(π2)∗OE2 �qis OE1 .

To show that such a sequence of blow-ups exists, we need the following lemma which is actually
an easy corollary of an algorithmic desingularization theorem; see, for example, [W�lo05, BEV05].

Lemma 4.10. Suppose that Y1 is a smooth scheme of finite type over a field of characteristic zero,
a1 is an ideal sheaf on Y1 and E1 is a simple normal crossings divisor on Y1. Then there exists a log
resolution π : Y2 → Y1 obtained by successive blow-ups of smooth centers that have simple normal
crossings with the pre-image of E1 at every step.

Proof. In [W�lo05] (respectively, [BEV05]), instead of simply resolving ideals, for recursive purposes
one resolves a tuple (Y1, a1, E1, 1) called a marked ideal (respectively, (Y1, (a1, 1), E1) called a basic
object). A resolution of one of these objects is a chain of blow-ups at smooth centers such that
the centers have simple normal crossings with the Ei object and, furthermore, the Ei-term only
changes by adding the new exceptional set at each stage; see [W�lo05, Definition 2.13] (respectively,
[BEV05, Definitions 2.3 and 3.6]). Resolutions of marked ideals (respectively, basic objects) exist by
[W�lo05, Theorem 4.0.1] (respectively, [BEV05, 3.10]), which completes the proof of the lemma.

Now we return to the proof of Theorem 4.9. Since the centers at each stage have simple normal
crossings with the pre-image of E1, we see that this lemma completes the proof of the proposition.

Additional generalizations that do not require the precise control of the resolution would be
desirable; see § 6.

5. Applications

In this section we apply our results to other problems in birational geometry.
The following theorem was inspired by an analogous result of Fedder and Watanabe involving F -

injective and F -rational singularities; see [FW89, Proposition 2.1.3]. A similar statement involving
semi-log canonical and canonical singularities can be found in [KSB88, Theorem 5.1] and a further
generalization can be found in [Kar00, Theorem 2.5].

Theorem 5.1. Suppose that X is a reduced scheme of finite type over a field of characteristic zero,
H is a Cartier divisor that has Du Bois singularities and X − H is smooth. Then X has rational
singularities (in particular, it is Cohen–Macaulay).

Our proof of this theorem relies on the following result of Kovács.

Theorem 5.2 (Kovács [Kov00a]). Suppose that X and X̃ are reduced irreducible separated schemes
of finite type over a field of characteristic zero k. Further, suppose that π : X̃ → X is a map over
k and that X̃ has rational singularities. If the natural map OX → Rπ∗OX̃ has a left inverse (that
is, there exists a map Rπ∗OX̃ → OX such that the composition OX → Rπ∗OX̃ → OX is a quasi-
isomorphism), then X has rational singularities as well.

The proof of Theorem 5.2 relies on the existence of resolutions of singularities (see [Hir64]),
Grothendieck duality (see [Har66]), and Grauert–Riemenschneider vanishing (see [GR70]). Note that
π is not required to be birational. Compare with [Kov99, Theorem 2.3] which is stated previously
in this paper in Theorem 3.5.
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Remark 5.3. The hypothesis that X and X̃ are irreducible can be removed if we require that every
irreducible component of X̃ dominates an irreducible component of X.

We now prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality we may assume that X = SpecS is affine and
that H = V (f) where f ∈ S is a regular element. Using this notation, since SpecS[f−1] is smooth
and f is a regular element, it is easy to see that X is smooth in codimension one. Let π : X̃ → X
be a strong log resolution of (X,H) such that the strict transform H̃ of H is also smooth (and thus,
in particular, π|H̃ is a resolution of H). We use H to denote the reduced total transform of H and
we observe that it is a divisor with simple normal crossings. Therefore, H has Du Bois singularities.
We obtain the exact triangle

Rπ∗OX̃(−H) �� Ω0
X

�� Ω0
H

+1 ��

from Proposition 4.2. Now consider the following diagram.

fOX

��
Rπ∗fOX̃

��
Rπ∗OX̃(−H) ��

��

Ω0
X

��

�������������
Ω0
H

+1 ��

Rπ∗OX̃

Here we think of fOX̃ as an ideal sheaf (and one that is certainly contained in OX̃(−H) since the
reduced divisor corresponding to fO

X̃
is just −H). Since H is Du Bois, Ω0

H �qis OH . However,
since X is Du Bois outside of H, X is itself Du Bois [Kov00b, Theorem 3.2] and, in particular,
Ω0
X �qis OX . Therefore, Rπ∗OX̃(−H) �qis fOX . Finally, consider the image of fOX in Rπ∗OX̃ .

Since Rπ∗OX̃(−H) → Rπ∗OX̃ factors through Ω0
X , we see that the image of Rπ∗OX̃(−H) also

agrees with that of fOX in Rπ∗OX̃ . This gives us the following composition

fOX
�� Rπ∗(fOX̃) �� fOX

which is a quasi-isomorphism. Finally, abstractly (but compatibly), fOX
∼= OX and fOX̃

∼=
OX̃ , which gives us the desired result by Theorem 5.2.

Remark 5.4. If Question 6.3 holds (or if certain natural generalizations to Question 6.1 hold), then
one could replace the condition that X − H is smooth with the condition that X − H has rational
singularities.

Our alternate characterization of Du Bois singularities (Theorem 4.3) and related results in
[Tak04] (see Corollary 5.8) inspired the following adjunction-like theorem for log canonical and
Du Bois singularities; also compare with [Vas98] and [Amb98].

Theorem 5.5. Suppose that Y is a scheme of finite type over a field of characteristic zero with
Kawamata log terminal singularities, and that I is an ideal sheaf on Y . If the pair (Y,Ir) is
log canonical for some positive rational number r, then J (Ir) cuts out a scheme with Du Bois
singularities.

822

https://doi.org/10.1112/S0010437X07003004 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003004


A simple characterization of Du Bois singularities

Proof. Without loss of generality, we may assume that Y is affine. Let X = V (J (Ir)). Let π : Ỹ →
Y be a simultaneous log resolution of I and J (Ir). In particular, Ỹ is smooth and the reduced
pre-images of J (Ir) and I are divisors with simple normal crossings. Let us use G to denote the
divisor on Ỹ such that IOỸ = OỸ (−G) and let us use E to denote (π−1(X))red. Note that E has
Du Bois singularities.

Since the pair is log canonical and all of the divisors with discrepancy equal to −1 are centered
over X, we have �KỸ /Y − rG� � −E and therefore we have an inclusion OỸ (−E) ⊂ OỸ (�KỸ /Y −
rG�). Thus, we obtain the composition

J (Ir) �� Rπ∗(J (Ir)OỸ ) �� Rπ∗OỸ (−E) �� Rπ∗OỸ
(�K

Ỹ /Y
− rG�) �qis J (Ir)

where the last isomorphism is the local vanishing theorem for multiplier ideals [Laz04, Theo-
rems 9.4.23 and 9.4.4]. The total composition is a quasi-isomorphism and can be thought of as
a splitting (technically a left inverse) of J (Ir) �� Rπ∗OỸ (−E) in the derived category. Note
that we can fit the composition into a larger diagram in the derived category,

J (Ir) ����

��

OY
�� OX

��

+1 ��

Rπ∗OỸ (−E) ��

��

Rπ∗OỸ
�� Rπ∗OE

��

+1 ��

Rπ∗OỸ
(�K

Ỹ /Y
− rG�) �� Rπ∗OỸ

(�K
Ỹ /Y

�)

J (Ir) �� OY
�� OX

+1 ��

where the dotted arrow exists because the derived category is a triangulated category. However, since
the left two total vertical compositions are quasi-isomorphisms, the right total vertical composition
is also a quasi-isomorphism, which proves that X is Du Bois by [Kov99, 2.4], or as stated earlier in
Corollary 3.8.

Remark 5.6. We note that if Y is smooth, then we can choose π so that the object Rπ∗OE in
the proof above is quasi-isomorphic to Ω0

X by Theorem 4.9. We expect this is always true, see
Question 6.1.

We may use this theorem to prove a corollary related to a conjecture of Takagi [Tak04, Conjec-
ture 4.4]. Also see [Kaw06], a recent paper by Kawakita. First, however, we need a lemma about
multiplier ideals.

Lemma 5.7. Suppose that Y is a smooth scheme of finite type over a field of characteristic zero
and that X ⊂ Y is a reduced closed subscheme of pure codimension r with ideal sheaf IX . If the
pair (Y, rX) (or (Y, (r)X)) is log canonical (see Definition 2.4), then the multiplier ideal J (IrX)
(or J (I(r)

X )) is equal to IX .

Proof. The associated multiplier ideal is reduced since the pair is log canonical, it has the right
support since the multiplicity of rX (respectively, (r)X) along the generic points of X, is equal to
the codimension.

Corollary 5.8. Let (Y,X) be a pair where Y is a smooth scheme of finite type over a field
of characteristic zero and X is a reduced subscheme of pure codimension r. If the pair (Y, rX)
(or (Y, (r)X)) is log canonical, then X has Du Bois singularities.
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It is not difficult to construct examples that show that the converse of this corollary is false in
general. Consider the subscheme defined by I = (uv , uz , z(v − y2)) inside Spec k[u, v, y, z]. One can
verify that (Spec k[u, v, y, z], V (I(2))) is not log canonical by performing a log resolution and it is
easy to see that V (I) has Du Bois singularities using Lemma 3.4. Note that this example also occurs
in a related situation in [Sin99, Example 3.2]; see also [Fed83].

Remark 5.9. A similar statement to Corollary 5.8 can be made in the non-equidimensional case
assuming the ideal vanishes to the order of the codimension along each irreducible component.

We can also use the corollary to prove that log canonical local complete intersections are Du Bois.

Corollary 5.10. Suppose that X is a normal local complete intersection. Then X has Du Bois
singularities if and only if it has log canonical singularities.

Proof. First assume that X has log canonical singularities. The statement is local, so we assume
that X is affine and that X embeds in a smooth scheme Y as a complete intersection (note, in
particular, that it is Gorenstein). The condition that X is log canonical is then equivalent to the
condition that (Y, rX) is log canonical by [EM04, Corollary 3.2]. Apply Corollary 5.8 to obtain one
direction of the equivalence. The converse is just [Kov99, Theorem 3.6].

A technique similar to that used in Theorem 5.5 can also be used to prove a special case
of Kawamata’s subadjunction theorem; see [Kaw98]. Instead of using the ‘splitting’ for Du Bois
singularities used above, we use the analogous theorem for rational singularities stated previously
in Theorem 5.2.

Theorem 5.11 (Kawamata [Kaw98]). Suppose that Y is Kawamata log terminal, I is an ideal
sheaf, r is a positive rational number and the pair (Y,Ir) is log canonical. Further suppose that the
pair has a log resolution π : Ỹ → Y that only achieves a discrepancy of −1 along a set of divisors
dominating irreducible components of V (J (Ir)) and such that these −1 divisors are disjoint in Ỹ .
Then X = V (J (Ir)) has rational singularities.

Proof. Let E′ denote the divisor on Ỹ made up of components with a discrepancy of −1. Let us use
G to denote the divisor on Ỹ such that IrOỸ = OỸ (−G). The hypotheses imply that E′ is smooth
and that OỸ (−E′) ⊂ OỸ (�KỸ /Y − rG�). We thus obtain the following composition

J (Ir) �� Rπ∗J (Ir)OỸ
�� Rπ∗OỸ

(−E′) �� Rπ∗(OỸ
(�K

Ỹ /Y
− rG�)) �qis J (Ir)

as before. We now mirror the argument found in Theorem 5.5 by fitting this ‘splitting’ of the map
J (Ir) → Rπ∗OỸ (−E′) into the following larger diagram.

J (Ir) ����

��

OY
�� OX

��

+1 ��

Rπ∗OỸ (−E′) ��

��

Rπ∗OỸ
�� Rπ∗OE′

��

+1 ��

Rπ∗OỸ
(�K

Ỹ /Y
− rG�) �� Rπ∗OỸ

(�K
Ỹ /Y

�)

J (Ir) �� OY
�� OX

+1 ��

We then apply Theorem 5.2 and Remark 5.3 to complete the proof.
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Corollary 5.12. Suppose that (Y,X) is a pair where Y is a smooth scheme of finite type over a
field of characteristic zero and X is a reduced subscheme of pure codimension r. If the pair (Y, rX)
(or (Y, (r)X)) is purely log terminal (see Definition 2.4), then X has rational singularities.

Proof. Let IX be the ideal sheaf of X and let I be the ideal sheaf IrX of rX (or I(r)
X of (r)X) in Y .

We note that, as before, J (I) = IX . Thus, the only issue is proving that such a pair satisfies the
conditions of Theorem 5.11.

We let π : Ỹ → Y be a log resolution of IX (that is simultaneously a log resolution of I(r)
X if

applicable). Let E be the reduced exceptional divisor of π. Let E′ be the sub-divisor of E made up
of components of E that dominate components of X. We claim that we may assume that E′ is in
fact smooth and each divisor of E′ is obtained from blowing up the generic point of an irreducible
component of X. To see this claim, first perform a log resolution Y1 → Y of IX with this property;
see [BEV05, Theorem 7.3(iii)]. This is a log resolution of I generically. Therefore, if we now follow
a modern algorithm for a log resolution of IOY1 (see, for example, [BEV05] or [W�lo05]), it is easy
to see that all future blow-ups will be centered over a lower codimension subscheme of X.

In summary, we may assume that each component of X has exactly one component of E dom-
inating it and these components are disjoint. At this point the definition of purely log terminal
allows us to apply Theorem 5.11, which completes the proof.

6. Further questions

Let Y be an ambient space with rational singularities and let X be a subscheme that we are trying
to determine whether or not OX �qis Ω0

X . The main limitation of the characterizations of Du
Bois singularities contained in this paper is that, in most cases, we cannot modify Y outside of X.
In many applications this is not optimal. Therefore we have the following question.

Question 6.1. Suppose that Y has rational singularities and X ⊂ Y . Let π : Ỹ → Y be any log
resolution of the pair (Y,X). Let E denote the reduced scheme with support π−1(X). Is it true that
Rπ∗OE �qis Ω0

X?

There is another direction one can explore. Is there a way to abstract the properties of E which
determine Ω0

X without the need for an embedding? Specifically, we have the following question.

Question 6.2. Given a reduced scheme X of finite type over a field of characteristic zero, can
one specify properties of a map π : E → X (without reference to an embedding of X) which
guarantee that Rπ∗OE�qisΩ0

X? And, given such a definition, can one show that reasonable additional
requirements (such as whether any two such maps can be dominated by a third) are met?

Some possible conditions on π include the following (for each x ∈ X, let π−1(x) denote the
reduced fiber):

(i) π should be a proper surjective map (with connected fibers);
(ii) k(x) �qis R(π|π−1(x))∗Oπ−1(x);
(iii) some sort of requirement on the singularities of π−1(x) or perhaps a requirement on the sin-

gularities of E (simple normal crossings might be reasonable).

The following related question, which can be thought of as a strengthening of a conjecture of
Kollár [Kol95, ch. 12], would also be useful in certain applications.

Question 6.3. Suppose that Y is a reduced separated scheme of finite type over a field of character-
istic zero, X ⊂ Y is a reduced closed subscheme and Y − X has rational singularities. Does there
exist a proper birational map π from a scheme Ỹ to Y such that:
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(i) Ỹ has rational singularities;

(ii) π is an isomorphism outside of X; and

(iii) the reduced scheme corresponding to π−1(X) has Du Bois singularities?

It is also reasonable to ask whether the consequence of the adjunction-type Theorem 5.5 can be
strengthened; see [Vas98] and [Tak04]. Specifically, we ask the following.

Question 6.4. Is there a generalization of semi-log-canonical singularities (see [Kol92]) such that
if Y is Kawamata log terminal, I an ideal sheaf, r a positive rational number and (Y,Ir) is log
canonical, then V (J (Ir)) is semi-log canonical?

A generalization of semi-log-canonical is truly needed here. Even beyond the Q-Gorenstein
hypothesis, semi-log-canonical singularities are typically assumed to be S2, have simple normal
double crossings in codimension one and be equidimensional. One can construct examples where
the pair (Y,Ir) is log canonical but V (J (Ir)) is not S2, does not have simple normal double crossings
in codimension one and is not equidimensional.

Finally, we should mention the possible idea of something like a converse to Corollary 5.8.

Question 6.5. Suppose that Y is smooth and X ⊂ Y is log canonical (or an appropriate
generalization of semi-log canonical) of pure codimension r. Is it true that the pair (Y, (r)X) is
log canonical?

An affirmative answer to this question would imply that log canonical singularities are Du Bois
by Corollary 5.8, and likely have other applications as well.
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Mus02 M. Mustaţǎ, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), 599–615;
MR: 1896234 (2003b:14005).

Sai00 M. Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), 283–331;
MR: 1741272 (2002h:14012).

Sch06 K. Schwede, On F -injective and Du Bois singularities, PhD thesis, University of Washington
(2006).

Sin99 A. K. Singh, Deformation of F -purity and F -regularity, J. Pure Appl. Algebra 140 (1999),
137–148; MR: 1693967 (2000f:13004).

827

https://doi.org/10.1112/S0010437X07003004 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003004


A simple characterization of Du Bois singularities

Ste80 J. H. M. Steenbrink, Cohomologically insignificant degenerations, Compositio Math. 42 (1980),
315–320; MR: 607373 (84g:14011).

Ste81 J. H. M. Steenbrink, Review of ‘Complexe de de Rham filtré d’une variété singulière’, AMS
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