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Abstract

We compute the Alexander polynomial of a nonreduced nonirreducible complex projective plane curve
with mutually coprime orders of vanishing along its irreducible components in terms of certain multiplier
ideals.

2010 Mathematics subject classification: primary 14H20; secondary 14C20, 14F18, 32S20.

Keywords and phrases: Alexander polynomial, log-resolution, multiplier ideals, local systems.

1. Introduction

Let C be a complex projective plane curve which is defined by a homogeneous
polynomial f (x, y, z) of degree d in C[x, y, z]. For f reduced, Esnault [5] introduced
a method to compute the Betti numbers, the rank and the signature of the intersection
matrices of the singularity of f at the origin of C3. Esnault used mixed Hodge
structures on cohomology groups of the Milnor fibre, the existence of spectral
sequences converging to the cohomology groups and resolution of singularities. In
follow-up work, Loeser and Vaquié [10] studied the Alexander polynomial of a
reduced complex projective plane curve, generalising previous work by Libgober
[8, 9]. The approaches of Libgober [9] and Loeser-Vaquié [10] to Alexander
polynomials of complex projective plane curves are the starting point for the study
of multiplier ideals and local systems.

In this paper, we recall the definition of the global Alexander polynomial of a
reduced complex projective plane curve, Loeser–Vaquié’s formula [10] and some
methods for computing the Alexander polynomial by Bartolo [1]. Our main result
is an extension to the Alexander polynomial of a nonreduced complex projective plane
curve and a generalisation of the Loeser–Vaquié formula to certain plane curves. Let
us now give a short summary of this work. Assume

f (x, y, z) = f1(x, y, z)m1 · · · fr(x, y, z)mr ,
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with mi ≥ 1, where fi(x, y, z) are distinct irreducible homogeneous polynomials of
degree di ≥ 1 (which define projective plane curves Ci, respectively). In [3], Budur
gives an explicit description of the local system of the complement U to C in
P2. According to [2, 3], there is an eigensheaf decomposition of the OU-module
sheaf σ∗CM into the unitary local systems Vk on U given by the eigensheaf of
the geometric monodromy T with respect to the eigenvalue e−2πik/d, where σ is the
canonical projection of the Milnor fibre M of f onto U. Therefore, H1(U,Vk) is the
eigenspace of the monodromy T on H1(M,C) with respect to the eigenvalue e−2πik/d,
for 0 ≤ k ≤ d − 1.

Inspired by Randell’s theorem [12], we extend the definition of the Alexander
polynomial ∆C(t) to nonreduced complex projective plane curves. Namely, it is the
characteristic polynomial of the monodromy T on H1(M,C), that is,

4C(t) =

d−1∏
k=0

(t − e2πik/d)dimC H1(U,Vd−k).

The following result is the main theorem of the paper.

Theorem 1.1 (Theorem 3.1). If m1, . . . ,mr are mutually coprime, then

∆C(t) = (t − 1)r−1
d−1∏
k=1

(
t2 − 2t cos

2kπ
d

+ 1
)`k

,

where

`k = dimC H1
(
P2,J

(
P2,

r∑
i=1

{kmi

d

}
Ci

)( r∑
i=1

{kmi

d

}
di − 3

))
.

Note that, as usual, we write J(P2,
∑r

i=1 αiCi) for the multiplier ideal of
∑r

i=1 αiCi

with αi being given positive rational numbers (see [2, 7] for the definition), and we
write F (l) for the twisted sheaf for a sheaf F and an integer l. Here, it is easy to see
that

∑r
i=1{kmi/d}di is an integer.

To prove the theorem, we use Budur’s computations on the dimension of the
complex vector space H1(U,Vd−k) in terms of log-resolution of the family {C1, . . . ,Cr}

(see [2–4]) and some arguments of Esnault and Loeser–Vaquié in [5, 10], respectively.

2. The Alexander polynomial of a complex projective plane curve

In this section, we recall the definition of the Alexander polynomial of a
complex projective plane curve, Loeser–Vaquié’s formula and Bartolo’s computation
of Alexander polynomials. We give some simple remarks and an example.

2.1. Alexander polynomials. We start with the definition of the Alexander
polynomial of a projective curve. Let C be a reduced complex projective plane curve
of degree d with r distinct irreducible components. Let L be a line in P2 := P2

C which
is general with respect to C, that is, L intersects C at exactly d distinct points. Such a
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line L exists since C is reduced. Then the manifold W := P2\(C ∪ L) has a homotopy
type of a finite CW-complex. By van Kampen’s theorem [6], the natural map

π1(L\(L ∩C))→ π1(W)

is a surjective homomorphism and the group π1(W) is generated by the images of all
the d standard generators of the free group π1(L\(L ∩C)). The generators of π1(W) are
loops in L going once around a point of L ∩C, and if two loops respectively go around
two points of L ∩ C belonging to the same irreducible component of C they give rise
to two conjugate elements in π1(W). Thus,

H1(W,Z) � π1(W)/[π1(W), π1(W)] � Zr,

and the Hurewicz morphism
π1(W)→ H1(W,Z)

is just the canonical projection

π1(W)→ π1(W)/[π1(W), π1(W)],

with [π1(W), π1(W)] being the commutator subgroup of π1(W).
Consider the surjective homomorphism ϕ : π1(W)→ Z which is the composition

of the Hurewicz morphism and the sum function. Then there exists an infinite cyclic
cover W̃ϕ → W with respect to ϕ such that π1(W̃ϕ) = ker ϕ. Let t : W̃ϕ → W̃ϕ be the
canonical generator of the group of cover transformations Deck(W̃ϕ/W) � Z. Then Z
acts naturally on H1(W̃ϕ,C) by t · c := t∗(c) for any class c in H1(W̃ϕ,C), from which
H1(W̃ϕ,C) has a structure of a C[t, t−1]-module. Since C[t, t−1] is a principal ideal
domain, the torsion C[t, t−1]-module H1(W̃ϕ,C) admits, up to an order of summands,
a unique decomposition via monic polynomials δ j(t) in C[t] ⊂ C[t, t−1] with δ j(0) , 0,
1 ≤ j ≤ N, for some N in N>0, namely,

H1(W̃ϕ,C) =

N⊕
j=1

C[t, t−1]/(δ j(t)).

Then the (global) Alexander polynomial ∆C(t) of the curve C is defined by

∆C(t) :=
N∏

j=1

δ j(t).

One can prove that ∆C(t) is independent of the choice of L provided it is general with
respect to C (see [12]).

It is known that if C is irreducible and the fundamental group π1(P2\C) is either
abelian or finite then the Alexander polynomial is trivial. One may prove easily that
the multiplicity of the factor t − 1 in ∆C(t) is exactly r − 1, where r is the number of
irreducible components of C.
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Assume that p is a singular point of C. We may consider the Milnor fibre Mp and
the monodromy

Tp : H1(Mp,C)→ H1(Mp,C)

of the singularity (C, p). Denote by ∆C,p(t) the characteristic polynomial of Tp. Let
Sing(C) be the locus of singular points of the curve C. Then, according to Libgober
[8], the Alexander polynomial ∆C(t) divides the product

∏
p∈Sing(C) ∆C,p(t), and it also

divides the so-called Alexander polynomial at infinity (td − 1)d−2(t − 1).

2.2. Loeser–Vaquié’s formula. Let f (x, y, z) be a homogeneous polynomial of
degree d in C[x, y, z] that defines the reduced curve C. Assume we have the
decomposition of f into distinct irreducible homogeneous polynomials,

f (x, y, z) = f1(x, y, z) · · · fr(x, y, z),

with r in N>0. For 1 ≤ i ≤ r, denote by Ci the reduced projective curve in P2 defined
by fi. By definition, a log-resolution of the family {C1, . . . ,Cr} is a proper birational
morphism π : Y → P2, where Y is a smooth complex algebraic variety, such that the
exceptional set

Ex(π) := {y ∈ Y | π is not biregular at y},

the support Supp(det Jacπ) of the determinant of the Jacobian of π, the preimages
π−1(Ci) of Ci for all 1 ≤ i ≤ r, and the union

Ex(π) ∪ Supp(det Jacπ) ∪
r⋃

i=1

π−1(Ci)

are simple normal crossing divisors. The existence of such a log-resolution follows
from a celebrated theorem by Hironaka. Let KY/P2 be the canonical divisor of π. For
α = (α1, . . . , αr) in Qr

>0, we put

J(P2, αC) := π∗OY (KY/P2 − bπ∗(αC)c),

where αC =
∑r

i=1 αiCi, and bπ∗(αC)c is the round-down of the coefficients of the
irreducible components of the divisor π∗(αC). Clearly, J(X, αC) is a sheaf of ideals
on P2, which is an ideal of the sheaf OP2 . An important result proved by Lazarsfeld in
[7] using the Kawamata–Viehweg vanishing theorem states that, for any α in Qr

>0, the
sheaf of idealsJ(P2, αC) is independent of the choice of the log-resolution π, and that
Riπ∗OY (KY/P2 − bπ∗(αC)c) = 0 for all i ≥ 1. The sheaf of ideals J(P2, αC) is called the
multiplier ideal of αC.

As in [10], in order to compute the Alexander polynomial ∆C(t), it is useful to
apply Randell’s result in [12]. By viewing the homogeneous polynomial defining C as
a germ of a singularity at the origin of C3 we may consider its Milnor fibre M and the
monodromy T induced by

(x, y, z) 7→ (e2πi/d x, e2πi/dy, e2πi/dz).

Note that M is diffeomorphic to {(x, y, z) ∈ C3 | f (x, y, z) = 1}.
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Theorem 2.1 (Randell [12]). The Alexander polynomial of C is equal to the
characteristic polynomial of the monodromy T |H1(M,C).

Applying Theorem 2.1 and the main result in Esnault [5], Loeser and Vaquié prove
the following theorem, which relates the Alexander polynomial of a reduced projective
plane curve to the multiplier ideals of C. For simplicity of notation, we write Jα for
J(P2, αC), and Jα(l) for Jα ⊗ OP2 (l).

Theorem 2.2 (Loeser–Vaquié [10]). If C is a reduced complex projective plane curve
of degree d with r irreducible components, then

4C(t) = (t − 1)r−1
d−1∏
k=1

(
t2 − 2t cos

2kπ
d

+ 1
)dimC H1(P2,Jk/d(k−3))

.

2.3. Computation of dimC H1(P2, Jk/d(k − 3)). In this paragraph, we review
the work of Bartolo [1] in computing the dimension of the complex vector space
H1(P2,Jk/d(k − 3)). For 1 ≤ k ≤ d − 1, we denote as usual by Jk/d,p the stalk at p in
C of the sheaf Jk/d. It may be easily checked that, if p is nonsingular, Jk/d,p = OP2,p.
Consider a map

ψk : H0(P2,OP2 (k − 3))→
⊕
p∈C

OP2,p/Jk/d,p

defined as follows. We may identify the vector space H0(P2,OP2 (k − 3)) with the space
of polynomials in C[x, y] of degree ≤ k − 3. The Taylor expansion at p of each element
g of H0(P2,OP2 (k − 3)) induces a holomorphic function germ gp at p in C. Then ψk is
given by

ψk(g) = (gp +Jk/d,p)p∈Sing(C),

which is a complex linear map.

Lemma 2.3 (Bartolo [1]). dimC H1(P2,Jk/d(k − 3)) = dimC coker(ψk).

By a simple computation,

dimC H0(P2,OP2 (k − 3)) = 1
2 (k − 2)(k − 1).

In order to compute the dimension of the target space of ψk, we follow [5] by using
a log-resolution of the family {C}. Let π : Y → P2 be a log-resolution of {C}, with
numerical data given as follows

E = π−1(C) =
∑
i∈A

NiEi, Ep :=
∑

i∈A,π(Ei)=p

NiEi

for p in C, and KY/P2 =
∑

i∈A aiEi, where the Ei’s are the irreducible components of
π−1(C) and the ai’s are the discrepancies of π.
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Proposition 2.4. With π as before,

dimC H1(P2,Jk/d(k − 3))

=
1
2

∑
p∈C

b(k/d)Epc · (KY/P2 − b(k/d)Epc) −
1
2

(k − 2)(k − 1) + dimC ker(ψk).

Proof. From Lemma 2.3, dimC H1(P2,Jk/d(k − 3)) is given by∑
p∈C

dimC OP2,p/Jk/d,p − dimC H0(P2,OP2 (k − 3)) + dimC ker(ψk).

According to [5, Remarque 11],

dimC OP2,p/Jk/d,p = 1
2 b(k/d)Epc · (KY/P2 − b(k/d)Epc).

This proves the proposition. �

In view of Proposition 2.4, computing dim H1(P2,Jk/d(d − 3 − k)) reduces to
computing dim ker(ψk), the dimension of the vector space of complex projective plane
curves of degree k − 3 passing through all the singular points p of C with germ
contained in Jk/d,p. Note that, if p is a singular point of C of type A1, the last formula
in the proof of Proposition 2.4 shows that Jk/d,p = OP2,p. Therefore, as for the case of
a nonsingular point, an A1-singularity does not contribute to ∆C(t).

Example 2.5. Consider an irreducible curve C of degree d whose singular points are
either of type A1 or of type Ba,b (that is, the local equation is xa + yb = 0), where a
and b are positive integers such that ab divides d. If p is a singular point of type
Ba,b of C, it follows that J1/a+1/b,p is the maximal ideal of OP2,p and, in that case,
dimC H1(P2,J1/a+1/b(d/a + d/b − 3)) can be easily computed.

3. Generalisation to nonreduced complex projective plane curves

3.1. Alexander polynomial of nonreduced curves and the main theorem. Let
us consider a complex projective plane curve C which is nonreduced, and define an
Alexander polynomial for it. Note that the definition in the reduced case does not
work now since there is no line in P2 which is general to the nonreduced curve C.
Inspired by Theorem 2.1, however, we may define the Alexander polynomial of C in
the following way. Let f (x, y, z) ∈ C[x, y, z] be a homogeneous polynomial of degree
d that defines C. The polynomial f can be considered as a surface homogeneous
singularity germ at the origin of C3. By [11, Lemma 9.4], its Milnor fibre M is
diffeomorphic to {(x, y, z) ∈ C3 | f (x, y, z) = 1}. The geometric monodromy M → M
is given by multiplication of elements of M by e2πi/d, which induces an endomorphism
T of the complex vector space H∗(M,C). Then we define the Alexander polynomial
∆C(t) of C to be the characteristic polynomial of the endomorphism T |H1(M,C).

Assume

f (x, y, z) = f1(x, y, z)m1 · · · fr(x, y, z)mr ,
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where fi(x, y, z) is an irreducible homogeneous polynomial of degree di ≥ 1 and mi is
in N>0 for 1 ≤ i ≤ r. Let Ci denote the complex projective plane curve defined by fi
for 1 ≤ i ≤ r. The main result of our paper is the following theorem.

Theorem 3.1. If m1, . . . ,mr are mutually coprime, then

∆C(t) = (t − 1)r−1
d−1∏
k=1

(
t2 − 2t cos

2kπ
d

+ 1
)`k

,

where

`k = dimC H1
(
P2,J

(
P2,

r∑
i=1

{kmi

d

}
Ci

)( r∑
i=1

{kmi

d

}
di − 3

))
.

From this theorem, by taking m1 = · · · = mr = 1, one can recover Loeser–Vaquié’s
result on the Alexander polynomial of a reduced complex projective plane curve
(Theorem 2.2).

3.2. Local systems and cyclic covers. A complex local system V on a complex
manifold is a locally constant sheaf of finite dimensional complex vector spaces. The
rank of a locally constant sheaf is the dimension of a stalk as a complex vector space. In
[2], Budur shows that local systems of rank-one on a complex manifold U correspond
to morphisms of groups H1(U)→ C∗. A local system is unitary if it corresponds to a
morphism of groups H1(U)→ S1. In particular, the constant sheaf CU and any local
system of rank-one of finite order are unitary local systems.

Let f and fi (respectively, C and Ci) be as before. Denote by c1(L) the first Chern
class of a line bundle L. We consider the group

Picτ(P2,C) := {(L, α) ∈ Pic(P2) × [0, 1)r | c1(L) = α[C] ∈ H2(P2,R)}

with the multiplication defined as follows

(L, α) · (L′, α′) := (L ⊗ L′ ⊗ OP2 (−b(α + α′)Cc)), {α + α′}),

where bαc = (bα1c, . . . , bαrc), {α} = α − bαc, α[C] =
∑r

i=1 αi[Ci] and [Ci] are the
cohomology classes in H2(P2, R). By [2, Theorem 1.2], there is a canonical
isomorphism Picτ(P2,C) � Hom(H1(U),S1), which allows us to identify a unitary local
system of rank-one on U with an element of Picτ(P2,C).

The group µd of dth roots of unity is the dual group of Z/dZ and can be considered
as a subgroup of Picτ(P2,C). Using this identification, µd = {(Lk, αk) | 0 ≤ k ≤ d − 1}
which gives rise naturally to the cyclic cover

φ : X̃ := SpecOP2

( d−1⊕
k=0

L−1
k

)
→ P2

which is ramified along C. Conversely, each d-cyclic cover of P2 ramified along
C determines a cyclic subgroup of order d of the group Picτ(P2,C). Since Z/dZ
acts on L−1

k via the character e2πik/d, it acts on the OP2 -module sheaf φ∗OX̃ .
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By [2, Corollary 1.11], φ∗OX̃ =
⊕d−1

k=0 L
−1
k , with L−1

k being the eigensheaf with respect
to the eigenvalue e2πik/d of the action of Z/dZ on φ∗OX̃ .

Let U := P2\C and M be as before. Since the action of Z/dZ on M is free, we
have a natural isomorphism M/(Z/dZ) � U. Consider the quotient map σ : M → U
and write σ∗CM =

⊕d−1
k=0 Vk, where Vk is the unitary local system on U given

by the eigensheaf of T with respect to the eigenvalue e−2πik/d. This implies that
H1(U, σ∗CM) =

⊕d−1
k=0 H1(U,Vk). Consider the Leray spectral sequence

Ep,q
2 = Hq(U,Rpσ∗CM)⇒ Hp+q(M,CM).

Since σ is finite, Rpσ∗CM = 0 for all p ≥ 1. Hence

H1(M,C) = H1(M,CM) = H1(U, σ∗CM) =

d−1⊕
k=0

H1(U,Vk). (3.1)

By [3, Section 4],

H1(M,C)e−2πik/d = H1(U,Vk) for 0 ≤ k ≤ d − 1. (3.2)

By [3, Lemma 4.2], via the isomorphism Picτ(P2,C) � Hom(H1(U), S1), the local
system Vk corresponds to (OP2 (

∑r
i=1{kmi/d}di), ({km1/d}, . . . , {kmr/d})). Note that∑r

i=1{kmi/d}di is an integer.
Now fix a log-resolution π : Y → P2 of the family {C1, . . . ,Cr}, and define E by

E := π−1(C1 ∪ · · · ∪Cr). For 0 ≤ k ≤ d − 1, define

L(k) := π∗OP2

( r∑
i=1

{kmi

d

}
di

)
⊗ OY

(
−

⌊ r∑
i=1

{kmi

d

}
π∗Ci

⌋)
.

For simplicity, we write hl(F ) for dimC Hl(Y,F ), with F a sheaf on Y .

Proposition 3.2. dimC H1(U,V0) = r − 1 and, for 1 ≤ k ≤ d − 1,

dimC H1(U,Vd−k) = h1(L(k)−1
) + h0(Ω1

Y (log E) ⊗ L(k)−1
).

Indeed, the first identity in the proposition follows from [5, Théorème 6], and the
second one is a corollary of [4, Theorem 4.6] and [3, Lemma 4.2].

3.3. Finishing the proof of Theorem 3.1. In the following, we use the hypothesis
that m1, . . . ,mr are mutually coprime, which means that the Vk are pairwise distinct.
Then, Loeser–Vaquié’s arguments in the proof of [10, Théorème 4.1] still work.

From the definition of ∆C(t), the identifications (3.1) and (3.2) and Proposition 3.2,

4C(t) = (t − 1)r−1
d−1∏
k=1

(t − e2πik/d)h1(L(k)−1)+h0(Ω1
Y (log E)⊗L(k)−1).

Therefore, it suffices to prove h1(L(k)−1) = `k and h0(Ω1
Y (log E) ⊗ L(k)−1) = `d−k, for

1 ≤ k ≤ d − 1. The first equality is a direct corollary of [4, Theorem 4.6] and
Proposition 3.2. We now turn to the second.
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Consider a common Z/dZ-equivariant desingularisation θ : Z → X̃ and ν : Z → Ỹ ,
such that π ◦ ρ ◦ ν = φ ◦ θ =: u, where φ is the cyclic cover ramified along C,

φ : X̃ = SpecOP2

( d−1⊕
k=0

OP2

(
−

r∑
i=1

{kmi

d

}
di

))
→ P2,

and ρ is the cyclic cover ramified along E,

ρ : Ỹ = SpecOY

( d−1⊕
k=0

L(k)−1
)
→ Y.

We may choose Z such that ∆ := Z\u−1(U) is a normal crossing divisor. Moreover, by
using [5, Corollaire 4] we can prove that

H0(Y,Ω1
Y (log E) ⊗ (ρ ◦ ν)∗OZ) = H0(Z,Ω1

Z(log ∆)). (3.3)

We first compute the dimension of the complex vector space on the left-hand side
of (3.3). Because (ρ ◦ ν)∗OZ = ρ∗OỸ =

⊕d−1
k=0 L

(k)−1, we get the decomposition

H0(Y,Ω1
Y (log E) ⊗ (ρ ◦ ν)∗OZ) =

d−1⊕
k=0

H0(Y,Ω1
Y (log E) ⊗ L(k)−1

).

Notice that the first direct summand of the decomposition (which corresponds to k = 0)
has complex dimension r − 1.

To compute the dimension of the complex vector space on the right-hand side of
(3.3), we note that by [5, Lemma 7],

dimC H0(Z,Ω1
Z(log ∆)) = dimC H0(Z,Ω1

Z) + (r − 1).

According to [2, Corollary 1.13] and Serre duality,

H0(Z,Ω1
Z) �

d−1⊕
k=1

H1
(
P2,J

(
P2,

r∑
i=1

{kmi

d

}
Ci

)( r∑
i=1

{kmi

d

}
di − 3

))
.

(The direct summand of H0(Z,Ω1
Z) corresponding to k = 0 in [2, Corollary 1.13]

vanishes by Serre duality.)
Thus by (3.3),

d−1∑
k=1

h0(Ω1
Y (log E) ⊗ L(k)−1

) =

d−1∑
k=1

`k.

Further, because h1(L(k)−1) = `k, the argument in the proof of [10, Proposition 4.6]
implies that h0(Ω1

Y (log E) ⊗L(k)−1) ≥ `d−k, for 1 ≤ k ≤ d − 1. Therefore, it follows that
h0(Ω1

Y (log E) ⊗ L(k)−1) = `d−k.

Remark 3.3. It seems that the above approach also works in the general case where
m1, . . . ,mr are not necessarily mutually coprime. Indeed, the maps φ and ρ in the proof
are still cyclic covers ramified along C and E, respectively, but with order dividing d,
and the above arguments may be applied.
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