Canad. Math. Bull. Vol. 18 (4), 1975

AN *N*-PARAMETER CHEBYSHEV SET WHICH IS NOT A SUN

BY DIETRICH BRAESS

Recently, Dunham has given examples for 1-parameter and 2-parameter Chebyshev sets which are not suns. In this note *n*-parameter sets with these properties are described.

1. Introduction. When studying the old problem whether Chebyshev sets are always convex, Klee [10] introduced certain sets which were called suns by Efimov and Stechkin [7]. Recently, in two shorts notes Dunham [4, 5] has given examples of 1-parameter- and 2-parameter-sets which are Chebyshev sets but not suns (cf. also [3]). The examples refer to Chebyshev sets in $\mathscr{C}[0, 1]$ containing an isolated point.

Combining Dunham's idea with some more advanced techniques, in this note we will construct Chebyshev sets in $\mathscr{C}[0, 1]$ which are the union of an *n*-dimensional manifold with boundary and an isolated point. Since every sun is a connected set [4], the constructed set is not a sun.

2. The underlying set. The construction is started by introducing the following convex cone in $\mathscr{C}[0, 1]$:

(2.1)
$$K = \left\{ h: h(x) = \sum_{j=1}^{n} \frac{a_j}{x+j}, \quad a_j \ge 0, \quad j = 1, 2, \dots, n \right\}.$$

Observe that $K \setminus \{0\}$ belongs to the set of positive functions:

(2.2)
$$C^+ = \{h \in \mathscr{C}[0,1]: h(x) > 0, x \in [0,1]\}.$$

Moreover, the cone K has the Haar property [1].

DEFINITION. Let $u_1, u_2, \ldots, u_n \in \mathscr{C}[0, 1]$ and $0 \le m \le n$. The convex cone

$$\left\{h:h(x)=\sum_{j=1}^n a_j u_j(x); a_j \in \mathbb{R}, j=1,2,\ldots,m; a_j \ge 0, j=m+1,\ldots,n\right\}$$

has the Haar property, if the functions $\{u_j\}_{j\in J}$ span a Haar subspace whenever

 $\{1, 2, \ldots, m\} \subset J \subset \{1, 2, \ldots, n\}.$

More generally, we get cones with the Haar property contained in $C^+ \cup \{0\}$,

MOS classification: 41 A 65, 41 A 50.

 $\mathbf{2}$

Received by the editors July 29, 1974 and, in revised form, December 16, 1974. Key words and phrases: Convexity of Chebyshev sets.

[October

when in (2.1) the terms $(x+j)^{-1}$ are replaced by $\gamma(j, x)$ with γ being an arbitrary totally positive kernel [9].

The function

(2.3)
$$\varphi(x, y) = e^{y - (x/y)}, \quad 0 \le x \le 1, y > 0,$$

is strictly increasing in y, if x is considered fixed. Hence, φ induces a continuous mapping:

$$\psi: C^+ \to C^+,$$

$$(\psi h)(x) = \varphi(x, h(x)).$$

We will consider the approximation in the transformed family

$$G = \psi(K \setminus \{0\}) \cup \{0\}.$$

Since g(0) > 1 for each $g \in G$, $g \neq 0$, zero is an isolated point in G.

3. Existence. Let $\mathscr{C}[0, 1]$ be endowed with the uniform norm:

 $||f|| = \sup\{|f(x)|: x \in [0, 1]\}.$

An element g^* in a non-void subset $G \subset \mathscr{C}[0, 1]$ is called a best approximation to f in G, if $||f-g|| \ge ||f-g^*||$ for all $g \in G$.

To prove that there is a best approximation in G to each $f \in \mathscr{C}[0, 1]$ consider a minimizing sequence $\{g_{y}\}$ satisfying

$$\lim_{v \to \infty} \|f - g_v\| = \eta := \inf\{\|f - g\| : g \in G\}.$$

Without loss of generality we may assume $g_{\nu} \neq 0$. Let $g_{\nu} = \psi(h_{\nu})$. By standard arguments $\{g_{\nu}\}$ is bounded. This implies boundedness of $g_{\nu}(0)$ and $h_{\nu}(0)$. From the representation (2.1) of the elements in K it follows that $||h_{\nu}||$ is also bounded. Select a subsequence of $\{h_{\nu}\}$ which converges to some $h^* \in K$. If $h^* \neq 0$, then the corresponding subsequence of $\{g_{\nu}\}$ converges uniformly to $g^* = \psi(h^*)$, which is a best approximation. If on the other hand $h^*=0$, then the subsequence converges to $g^*=0$ uniformly on each compact subinterval of (0, 1). This implies optimality of g^* by simple arguments (cf. [5]).

4. Varisolvency of transformed Haar subspaces. Assume that $u_1, u_2, \ldots, u_d \in \mathscr{C}[0, 1]$ span a *d*-dimensional subspace. With these functions a mapping

$$F: \mathbb{R}^{a} \to \mathscr{C}[0, 1],$$
$$F(a_{1}, a_{2}, \dots, a_{d}) = \sum_{i} a_{i} u_{i}(x)$$

is defined. Let A be an open subset of \mathbb{R}^d such that H=F(A) is contained in C^+ , the set of positive functions. Then $V=\psi(H)$ is a well defined family which will be investigated now.

Let $h_1, h_2 \in H$, $h_1 \neq h_2$. By the Haar condition $h_1 - h_2$ has at most d-1 zeros in [0, 1]. It follows from the monotonicity of $\varphi(x, h)$ that $\psi(h_1) - \psi(h_2)$ has as many

zeros as h_1-h_2 . Consequently, for each pair $g_1, g_2 \in V$ the difference g_1-g_2 has at most d-1 zeros.

Let $x_1 < x_2 < \cdots < x_d$ be d distinct points in [0, 1]. We introduce the restriction mapping

$$R:\mathscr{C}[0,1] \to \mathbb{R}^d$$
$$R \cdot f = (f(x_1), f(x_2), \dots, f(x_d)).$$

The preceding discussion shows that $R: V \to \mathbb{R}^d$ is a one-one mapping. Consequently the product map $R \circ \psi \circ F: A \to R(V) \subset \mathbb{R}^d$ is a homeomorphism. By virtue of Brouwer's theorem on the invariance of the domain [8], R(V) is open in \mathbb{R}^d . This means that the set of vectors (y_1, y_2, \ldots, y_d) , for which the interpolation problem

$$g(x_i) = y_i, \quad i = 1, 2, \dots, d$$

has a solution $g \in V$, is open in *d*-space. Moreover, the solution is determined by the continuous mapping $R^{-1} = \psi \circ A \circ (R \circ \psi \circ A)^{-1}$. Hence, V is varisolvent [12, p. 3] with constant degree d.

Rice's theory of varisolvent families establishes that there is at most one best approximation in V. The gap in his theory discovered by Dunham [6], does not matter in this case, because the degree is a constant [2].

Finally, we notice that V is asymptotically convex [11, p. 163] and is an Haar embedded manifold [13]. The construction of sets with these properties from Haar subspaces in [11] and [13] is very similar.

5. Uniqueness. Now we are ready to prove uniqueness of the best approximation in the set G introduced in Section 2. Formally the proof is similar to the proof of uniqueness for cones with the Haar property [1].

Assume that $g_i = \psi(h_i) \neq 0$, i=1, 2, are two best approximations to f in G. Put $h^* = (h_1 + h_2)/2$ and observe that $g^* = \psi(h^*)$ is another best approximation, because the monotonicity of φ implies that $h^*(x)$ lies between $h_1(x)$ and $h_2(x)$ for each $x \in [0, 1]$. Write $h^*(x) = \sum_{j=1}^n a_j^* \cdot (x+j)^{-1}$ and set $J = \{j: 1 \leq j \leq n, a_j^* > 0\}$ The manifold

$$H = \left\{ h = \sum_{j \in J} a_j (x+j)^{-1} : a_j \in \mathbb{R} \right\} \cap C^+$$

is a subset of a Haar subspace and satisfies the conditions specified in the last section. Hence, there is at most one best approximation in the varisolvent family $\psi(H)$. Since $g_1, g_2 \in \psi(H)$, we have $g_1 = g_2$. This proves uniqueness in $G \setminus \{0\}$.

Assume that $g_1 = \psi(h_1) \neq 0$ and $g_2 = 0$ are two best approximations. Put $h_3 = h_1/2$. From $g_2(x) = 0 < \psi(h_3)(x) < \psi(h_1)(x)$ we conclude that $g_3 = \psi(h_3) \in G$ is another best approximation. This contradicts uniqueness in $G \setminus \{0\}$.

References

1. D. Braess, Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation. Math. Z. 132 (1973), 327-341.

1975]

D. BRAESS

2. — , On varisolvency and alternation, J. Approximation Theory 12 (1974), 230-233.

3. B. Brosowski, F. Deutsch, J. Lambert and P. D. Morris, *Chebyshev sets which are not suns*, Math. Annalen 212 (1974), 89-101.

4. C. B. Dunham, Chebyshev sets in C[0, 1] which are not suns, Canad. Math. Bull. (1) 18 (1975), 35-38.

5. ----, A 2-parameter Chebyshev set in $\mathscr{C}[0, 1]$ which is not a sun, Proc. Amer. Math. Soc. (to appear).

6. ——, Necessity of alternation, Canad. Math. Bull. 11 (1968), 743-744.

7. N. V. Efimov and S. B. Stechkin, *Some properties of Chebyshev sets* (Russian) Dokl. Akad. Nauk SSSR 118 (1958), 17–19.

8. W. Hurewicz and H. Wallmann, *Dimension Theory*, Princeton University Press, Princeton 1948.

9. S. Karlin, Total Positivity I, Stanford University Press, Stanford 1968.

10. V. Klee, A characterization of convex sets, Amer. Math Monthly 56 (1949), 247-249.

11. G. Meinardus, *Approximation of Functions: Theory and Numerical Methods*, Springer, Berlin-Heidelberg-New York 1967.

12. J. R. Rice, *The Approximation of Functions 2, Nonlinear and Multivariate Theory*, Addison-Wesley, Reading 1969.

13. D. Wulbert, Uniqueness and differential characterization of approximations from manifolds of functions, Amer. J. Math. 93 (1971), 350-366.

INSTITUT FÜR MATHEMATIK

RUHR-UNIVERSITÄT BOCHUM 463 BOCHUM, F. R. GERMANY