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SYNERGY IN THE THEORIES OF GRÔBNER BASES 
AND PATH ALGEBRAS 

DANIEL R. FARKAS, C. D. FEUSTEL AND EDWARD L. GREEN 

ABSTRACT. A general theory for Grôbner basis in path algebras is introduced which 
extends the known theory for commutative polynomial rings and free associative alge
bras. 

0. Introduction. A primary goal of the theory of Grôbner bases is to systematically 
construct a set of generators for an ideal in a ring, which is a particularly amenable to 
computation. The theory began in earnest with Buchberger's algorithm for producing 
Grôbner bases of ideals in the polynomial ring ([3], [9], [11]). Mora pointed out ([6]) that 
the algorithm could be adapted to ideals in the free associative algebra where, it turns out, 
the theory is an implementation of Bergman's Diamond Lemma ([2]). These same ideas 
have been exploited by Ufnarovskii to analyze the growth of finitely generated algebras 
([14]). The authors' interest originally arose from the design of a computer program to 
calculate invariants for finite dimensional algebras. Here we required a Buchberger-type 
algorithm for path algebras. Towards this end, we show how the theory can be extended 
to path algebras. We hope that an individual interested in computational algebra will be 
attracted to new applications for Grôbner bases and that a ring theorist working on the 
representation theory of algebras will discover a powerful new tool. 

Since path algebras are quotients of free algebras and since Mora [6] presents a method 
for finding a Grôbner basis for free associative algebras over a field when such a basis is 
finite, we briefly justify the need for the extension of the theory to path algebras. First, 
it should be noted that free algebras are special cases of path algebras. Thus one might 
view our work as an extension of the free algebra theory. Second, when viewing path 
algebras as quotient rings of free associative algebras, the additional monomial relations 
substantially increase the computational complexity of finding a Grôbner basis. (Tech
nically, one must also add variables for the vertices of the graph, monomial relations 
for the orthogonality of the vertex variables, and the relation that the sum of the vertex 
variables equals 1.) A third reason to introduce a theory for path algebras is that, in the 
case of finite dimensional algebras over algebraically closed fields, there is a graph called 
the quiver of the algebra which is an isomorphism invariant of the algebra. Moreover, 
the given algebra is a homomorphic image of the path algebra of its quiver. This point of 
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view enhances the speed of our real programs. It is also inevitable in our algorithm which 
computes minimal projective resolutions for modules over finite dimensional images of 
path algebras (see [5]). Finally, we show that if an algebra has a basis and a well-ordering 
on that basis which satisfies certain axioms which are natural for our theory of Grôbner 
bases, then the algebra can be associated to a path algebra. 

We should point out that there is a general theory of Grôbner bases for graded struc
tures [12] of which our axioms are a particular case. Other work on noncommutative 
Grobner bases that is of interest can be found in [1, 7, 13]. 

We begin the exposition with the notation of a Grôbner generating set for a subspace of 
a vector space, given a well-ordered basis for the ambient space. In section two, we isolate 
five properties shared by commutative polynomial rings, free associative algebras, and 
path algebras and show that algebras satisfying these properties have a theory of Grôbner 
bases. Section three considers finite Grôbner bases. The final section shows that if we 
regard the five relevant properties of the examples as axioms then an algebra satisfying 
them can be associated with a graph in such a way that the algebra is a homomorphic 
image of the corresponding path algebra with finite fibers. Path algebras are inevitable. 

1. Vector spaces and order. Our approach to Grôbner bases rests on some elemen
tary observations about a vector space with a distinguished well-ordered basis. Suppose, 
to begin with, that B is simply a well-ordered set. (By this we mean that B is equipped 
with a total order < satisfying the minimum condition.) If C is a nonempty finite subset 
of B, we let TIP(C) denote the largest element in C. The order on B induces a relation 
(which is also written <) on the collection Fin(#) of all finite subsets of B, according to 
the following inductive description. 

C < D provided either 
(1) C = 0, 
(2) C ± 0 and TIP(C) < TIP(D), or 
(3) C ^ 0, TIP(Q = TIP(D), and C \ {TIP(C)} <D\ {TIP(D)}. 

THEOREM 1. (Fin(£), <) is a well-ordered set. 

PROOF. We leave it as an exercise in induction on cardinality to show that < is a total 
ordering on Fin(B) and limit ourselves to a proof that < satisfies the minimum condition. 
Consider a descending chain 

A\ >A\>A\ >••• 

in Fin(#). Since 0 is the unique minimal element in Fin(B), no Aj is empty. By definition 

TIP(A|) >TIP(A*)> •••. 

Since B is well-ordered, this list stabilizes at A^(1) with tip x\. For n > 7r(l) set A2
n — 

Ai\{jcj}.Then 

^TT(I ) > ^TT(1)+1 > ^7r(l)+2 > * ' * • 
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Repeat the process. We have used Cantor diagonalization to construct a strictly descend
ing sequence of elements in B, 

X\ > X2 > X3 > • • • . 

This contradicts the minimum condition on B. m 
The next result says that if we "replace" one element of a finite set with elements that 

are smaller than this element, then the resulting set is less than the original. It is proved 
easily by induction. 

LEMMA 2. Let C, D,E,F G Fin(fl). 

(i) IfE Ç F then E < F. 
(ii) IfTlP(D) G C then (CUD)\ TIP(D) < C. • 

Now suppose V is a vector space with the well-ordered basis B. 
Every nonzero v G V can be written uniquely as a linear combination of members in 

B, each with nonzero coefficient. We call those elements of B which appear the support 
of v or supp(v). The support of the zero vector is 0. If v, w G V we write v < w when 
supp(v) < supp(w). Finally, assuming v is nonzero, we use the abbreviation TIP(v) for 
TIP(supp(v)). In the literature, TIP(v) is sometimes called the head of v. 

LEMMA 3. Suppose v, w G V and TIP(w) G supp(v). Let X be the unique scalar such 
that TIP(vv) $ supp(v — Aw). Then v — Xw < v. 

PROOF. The statement is a disguised version of Lemma 2. • 
For the remainder of this section, W will denote a subspace of V. Let NONTIPS( W) 

denote {e G B \ e is not the tip of any vector in W}. In some sense, the next theorem is 
the real beginning of our theory. 

THEOREM 4. We span(NONTIPS(H0) = V. 

PROOF. Set W' = span(NONTIPS(W)). By construction WHW' = 0. 
If V ^ W + W' we can choose v G V minimal (for <) with respect to v ^ W + W. 

Since v fi W there is an e G supp(v) which is the tip of some element w G W. Choose 
the scalar A so that e $ supp(v—Aw). By the lemma, v —Aw < v. Since v —Aw G W+W, 
we have v G W + W\ a contradiction. • 

The theorem exhibits a vector space splitting 0—> W —> V<r->V /W —+ 0: if v G V 
then there is a unique linear combination, z/7r(v), of basis elements in NONTIPS(W) so 
that v = z/7r(v) modulo W. We may refer to i/ir(v) as the normal form for v modulo W. 
Its value lies in the fact that there is a simple algorithm for calculating the normal form, 
based on the proof of Theorem 4. If v, w and A are as in Lemma 3, we will say that 
v — Aw is a simple (vector space) reduction of v over w. A (vector space) reduction of 
visa sequence of successive simple reductions. As a consequence of Lemma 3 and the 
minimum condition on B, after some finite number of simple reductions, a vector can be 
reduced no more. 

A (vector space) Grobner generating set for W is a nonempty subset G Ç W such 
that any element of B which is a tip of a vector in W is the tip of at least one vector in G. 
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THEOREM 5. If G is a Grobner generating set for W then every element in V can be 
reduced over elements in G to its normal form modulo W. 

PROOF. If v G V, reduce it over G until it can be reduced no further. First, the new 
vector is congruent to v modulo W. Second, no tip of an element in W can appear in its 
support by Lemma 3. • 

Since the normal form of a vector is zero if and only if it is in W, we see from The
orem 5 that a Grôbner generating set for W spans W. How can one decide whether a 
subset of W is a Grôbner generating set? Unfortunately, not every set which spans W 
works. Indeed, let B = { î, ^2, £3} where e\ > e^ > e^ and let W be the span of e\ and 
e2 over R. Then H = {e\ + e2,e\ — e^ is not a Grobner generating set. The crux of 
the problem is that e\ reduces as completely as possible over H to both ei and —ei. This 
lack of uniqueness can be finessed for vector spaces by adding the restriction that one 
member of the generating set cannot reduce over another; alas, there is no comparable 
good news for algebras. 

We go one step further. A nonzero vector w G W is sharp in W ([4]) provided that the 
coefficient of its tip is 1 and no member of supp(w) other than TIP(w) is the tip of any 
vector in W. Let SHARP(H0 denote the collection of all sharp vectors in W. 

THEOREM 6 ([4]). SHARP( W) is a Grôbner generating set for W such that no mem
ber simply reduces over another. 

PROOF. Suppose e is the tip of some vector in W. Let w be the smallest vector in W 
with tip e\ after multiplying by a suitable scalar, w is sharp. (We have applied Lemma 3 
again.) The only way that one sharp vector can reduce over another is if both have 
the same tip. But in that case, their difference is a vector in W whose support lies in 
NONTIPS(W), a contradiction. • 

2. Path algebras. The path algebra KT is a vector space over the field K concocted 
from a finite directed graph T with vertex set To = {vi, . . . , vy} and arrow set Ti = 
{a\y... ,a^}. Its distinguished basis B consists of all directed paths in T. The length of 
a path is the number of arrows in that path; each vertex lies in #, regarded as a path of 
length zero. The product on B is concatenation: if the terminal vetex of the path p is the 
origin vertex of q then the path pq makes sense. If the terminus and origin do not match 
up, the product is zero. Hence we can identify a path of positive length with a word in the 
arrow symbols. Given an order vi < V2 < • • • < vy on vertices and a\ < a^ < • • • < a A 
on arrows, the length-lexicographic order on B is a well ordering defined as follows: 
m < m' if either the length of m is less than the length of m' or the lengths are equal but 
m precedes m' in alphabetical order, reading left to right. 

The reader has undoubtedly noticed that path algebras are not merely vector spaces. 
They are algebras with a multiplicative structure strongly tied to B. We isolate five prop
erties which will play a role in the theory of Grobner bases for algebras. First, a definition. 
If a, b G B we say that a divides b, or a\b for short, provided we can find u,v G B such 
that b = uav. The well-ordered basis B of AT satisfies 
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(Ml) BU {0} is closed under multiplication 
(M2) "Divides" is reflexive on B. 
(M3) For each a G B, {b \ b divides a] is finite. 
(M4) If a,b,u,v G B and neither of the products below are zero then 

a < b => uav < ubv. 

(M5) If a, b G B then a\b implies a < b. 
Consider the following two examples: 

POLYNOMIAL RINGS. The commutative polynomial algebra K[x\,..., xn] is a vector 
space over the field K which has a basis B consisting all monomials together with 1. If 
we order the variables 1 < x\ < X2 < • • • < xn then B can be well ordered by using 
degree and lexicographic ordering. That is, if m = x^x^2 • • -xfi1 and m' = x\x • - • x%n then 
m < m' if either £#/ < E&/ or if £#/ = ££/ and there is ay so that at — bt for / < j 
and a, < bj. 

FREE ALGEBRAS. The free algebra K{x\,...,xn) is a vector space over the field K 
which has a basis B consisting of all words in x\,..., xn. If we order the letters x\ < xi < 
• • • < xn then B can be well ordered by the length-lexicographic ordering. 

Again we see that properties (M1)-(M5) are satisfied for these examples. For this 
section, R will be a ring that satisfies (M1)-(M5) with a given distinguished well-ordered 
basis B. 

LEMMA 7. A. "Divides" is a partial order. 
B. For each b G B, {(u, v, w) G B3 \ uvw = b} is finite. 

PROOF. A. We need only check that "divides" is antisymmetric. If a\b and b\a then 
a < b and b < a by (M5). Hence a = b. 

B. Suppose b = uvw for u, v, w G B. Since "divides" is reflexive, we can find 
eu e2> 3̂> 4̂ £ B such that u = e\ue2 and w = e^we^. Thus 

Z? = e\ue2veT>we<\. 

In particular, each of u, v and w divides b. According to (M3), there are only finitely 
many possibilities. • 

Fix a nonzero two-sided ideal / of R. An algebra Grobner generating set for / is a 
nonempty subset G Ç / such that the tip of each nonzero element of / is divisible by the 
tip of some element in G. (In the literature, G is called a "Grôbner basis" for /.) We wish 
to connect this notion with the appropriate version of reduction for algebras. 

Let a G R be nonzero. A simple (algebra) reduction p for a is determined by a 4-tuple 
(A,u,f,v) where A G K*J e R\ {0}, and w, v G B. It satisfies 

(1) wTIP(/>G supp(tf) 
(2) uTlP(f)v g supp(a - Xufv). 

In this case a — Xufv is written p(a) and referred to as the reduction of a by p. An algebra 
reduction for a is a sequence /?i,..., pq such that p\ is a simple reduction for a and 
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Pj+i is a simple reduction for pj • • • p2P\(a) where j = 1 , . . . ,q — 1. Here we say that a 
reduces to pqpq-\ • • • p\(a). If pt is determined by (A;, Ui,f, vt) we say that/ i , . . . ,fq are 
the subdivisors for the reduction. When each subdivisor is a member of a subset S of R 
we declare that the reduction is over S. 

LEMMA 8 (SEE LEMMA 3). Ifh, g eR and g reduces to h, then h < g. 

PROOF. We need only check the lemma when h = p(g) for a simple reduction p. 
Suppose p is determined by (A,w,/, V). If e G supp(/) and e ^ TIP(/*), then wev < 
w TIP(f )v by (M4). The result now follows from Lemma 2. • 

By transplanting the proof of Theorem 5 we obtain 

THEOREM 9. If G is an (algebra) Grobner generating set for I then every element in 
R can be algebra reduced over G to its (vector space) normal form modulo I. m 

This time we have the immediate corollary that / is generated as a two-sided ideal 
by a Grobner generating set. There is also a refinement of sharpness. A sharp vector in 
/ is minimal sharp provided its tip is divides-minimal among tips of vectors in /. The 
collection of all such algebra elements is denoted MINSHARP(T). In the commutative 
theory, this set has been called the reduced Grobner basis. 

THEOREM 10 (SEE THEOREM 6). MINSHARP(T) is a Grobner generating set for I 
such that no member reduces over another. 

PROOF. Let e be the tip of some element in /. Among all elements in /, there is one 
whose tip, e', is divides-minimal with respect to e'\e. (Apply (M3).) The sharp vector 
with tip e' is minimal sharp. This proves MINSHARP(T) is a Grobner generating set. 
The second part follows from sharpness and the definition of minimal sharp. • 

We are left with the issue of finding sufficient, easily verifiable conditions which guar
antee that a generating set for the ideal / is a Grobner generating set. The assumption that 
no member algebra reduces over another, is not enough. 

Consider the path algebra where T is the graph 

b 

c 

The order is induced byl<2<a<b<c<d. Set / = abcabca — a2 and let 
/ be the ideal generated by/ . Then {/} is not a Grobner generating set for /. Indeed, / 
contains 

fbca — abcf — abca2 — a2bca. 

Its tip, abca2, is certainly not divisible by TIP(/). What has occurred is that a difference 
of multiples of/ has lost its tip because/ "overlapped" itself, 

abcabcabca. 
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More formally, if w, v G B, a (u,v)-overlap occurs when one can factor u — u\\v, 
v = wvi where u\ ^ u and vi ^ v. Different factorizations in B describe different 
overlaps. Suppose/,g G R such that TlP(f) = u appears i n / with coefficient a and 
TIP(g) = v appears in g with coefficient /?. When a («, v)-overlap occurs, we say that 
/ and g overlap and that (3fv\ — au\f is the overlap difference for the factorization. To 
examine/ and g for all overlaps is to consider every (w, v)- and (v, w)-overlap. 

We need one more concept before providing a description of when a set is 
MINSHARP(T). We say that two (nonzero) elements b\ and bi in B are uniform-
equivalent provided that for all JC, y G B 

xb\y = 0 <=• jc£2.y = 0. 

Notice that uniform-equivalence is compatible with multiplication in B: if «, v G B and 
&i is uniform-equivalent to £2 then w&iv is uniform-equivalent to ubjv assuming both 
products are nonzero. 

IfR is the polynomial ring or the free associative algebra and B is the set of the mono
mials then any two elements are uniform-equivalent. On the other hand, if R is the path 
algebra AT, then two paths in B are uniform-equivalent if and only if they have the same 
origin vertices and the same terminus vertices. 

A nonzero element of/ G R is uniform provided all of the elements in its support are 
uniform-equivalent to each other. If/ is an arbitrary nonzero element of R then we can 
decompose it uniquely 

/ = / i + / 2 + • '•+/« 

where the supports of the f belong to distinct (uniform) equivalence classes. We re
fer t o / , . . . ,fn as the uniform projections off. We say that an ideal / of R is uniform-
homogeneous if whenever a nonzero element lies in / then so do all of its uniform pro
jections. 

For instance, when B is closed under multiplication (e.g., for the free algebra or poly
nomial algebra), all ideals are uniform-homogeneous. In the case of path algebras, if 
{ea I a G Ji} is the collection of vertices regarded as idempotents in AT, then for 
feKT 

f= E eofep 

is the decomposition of/ into uniform projections. It follows that every ideal in a path 
algebra is uniform-homogeneous. 

The following observation is immediate. 

LEMMA 11. A sharp element for a uniform-homogeneous ideal ofR is uniform, m 

The next result is essential to our generalization to path algebras. 

LEMMA 12. Suppose that S is a set of uniform elements ofR and u,v£B.Ifr£R 
is a uniform element which reduces to 0 over S then urv reduces to 0 over S. 

PROOF. Suppose/ G R is uniform and w, v G B are such that ufv ^ 0. Then uxv ^ 0 
for each x in the support of/. Let p = (\,a,g, b) be a simple reduction for/ with g G S. 
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By the compatibility of uniform-equivalence with multiplication, Xagb is uniform. Next 
let upv denote the simple reduction (A, ua, g, bv). Notice that ua ^ 0 and bv ^ 0 because 
ua TlP(g)bv G w(supp/)v. Moreover, upv is a simple reduction for ufv and 

(upv)(ufv) = u[p(f))v. 

Finally, p(f) is uniform since a TlP(g)b is uniform-equivalent to members of both the 
support off and of Xagb. 

The lemma follows by induction on the number of simple reductions it takes to reduce 
r to 0. • 

Notice that if r is not uniform and r is reduced over a set of uniform elements then 
each simple reduction in the sequence perturbs exactly one uniform projection. As a 
consequence, if r is reduced to zero over a set of uniform elements, then so are all of its 
uniform projections. It is easy to find examples of sets of non-uniform elements in a path 
algebra where the conclusion of Lemma 12 is false. 

THEOREM 13. Let S be a subset of nonzero uniform elements in R which generates 
the ideal I. Assume that 

(i) the coefficient of the tip of each member of S is 1, 
(ii) no member of S reduces over any other, and 

(Hi) every overlap difference for two (not necessarily distinct) members of S always 
reduces to zero over S. 

Then S = MINSHARP(T). 

PROOF. According to Bergman's Diamond Lemma ([2]), there is exactly one out
come which can be obtained from an element of R by applying any maximal sequence 
of simple reductions over S; there is a unique complete reduction. (In his language, (ii) 
implies that all inclusion ambiguities are resolvable vacuously and (iii) states that over
lap ambiguities are resolvable.) As a consequence, the map which sends an element to 
its complete reduction is additive. Let 

J = {r G R | r reduces to 0 over S} U {0}. 

By the remark following Lemma 12, J is closed under taking uniform projections. If we 
apply Lemma 12 to a uniform element r G J then we see that urv reduces to 0 for every 
M , V G B . Hence J is an ideal of R. Since every element of S trivially reduces to 0 over S, 
we see that I Q J. On the other hand, J Ç / by the nature of reduction over S. 

Thus I = J. 
We claim that S is a Grôbner generating set for /. Any 0 ^ / G / reduces to 0 over S; 

at some point in the reduction, the tip off disappears. Thus TlP(f) is divisible by the tip 
of some member of S. 

Suppose s G S and e\ TlP(s) where e = TW(f) for some/ G /. 
Since S is a Grôbner generating set we can find s' G S such that TlP^Ok- Hence 

TIP^7)! TIP(s). By condition (i), s' = s, and so e = s (Lemma 7A). Thus TIP(s) is 
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divides-minimal among tips of elements in /. A similar argument shows that s is sharp. 
Therefore S C MINSHARP(Z). 

If g G MINSHARP(Z) then Tl?(s)\ TIP(g) for some s G S. But s and g are both 
minimal sharp. Thus s = g. We have shown that S — MINSHARP(T). • 

We conclude this section with some remarks on constructing a Grôbner generating 
set. When it is known that there is a finite Grôbner generating set (see the next section), 
the work of Mora [6] can easily be adapted to provide an algorithm for constructing 
MINSHARP(T). If there is no assurance of finiteness, the problem of constructing bet
ter and better approximations of a Grôbner generating set is quite subtle and will be 
addressed in a future paper. 

3. Finite generation. Much of the literature is devoted to algebras whose ideals are, 
a priori, known to have a finite Grôbner generating set. We continue with the notation 
and hypothesis of the previous sections: R is an algebra which satisfies (M1)-(M5). 

The project which inspired this paper is concerned with finite dimensional algebras. 

LEMMA 14. Let S be a finitely generated semigroup and let T be a nonempty subset 
such that ST Ç T. If S \T is finite then there exists a finite set W Ç T such that T = 

wusw. 
PROOF. Let V be the finite generating set for S. If a G S let 1(a) denote the smallest 

length of a product of generators equal to a. Set N = max{/(z) | z $ T} and W = {b G 
T | 1(b) < N + 1}. Since TV and V are finite, W is finite. 

We claim that T = W D SW. If not, choose x e T of minimal length such that x does 
not lie in the union. Certainly l(x) > 1. Write x = vi V2 • • • v/ where / = l(x) and v, G V. 

By the minimal choice of JC, we have V2 • • • v/ $ T. Moreover /(v2 • • • v/) = /— 1 ; hence 
/ — 1 < N. Therefore l(x) < N + 1. By definition, x G W—a contradiction. • 

THEOREM 15. Assume that R is a finitely generated algebra and I is a nonzero ideal 
ofR. IfR/l is finite dimensional then I has a finite Grobner generating set. 

PROOF. It is not difficult to see that the finite algebra generation of R implies the 
finite generation of B U {0} as a semigroup. Set 

T = i°} U(^ £ B I b = T ip(#) for s o m e S € !}• 

Properties (M2) and (M4) show that ST Ç T. Also, B\T = NONTIPS(T) which, by 
Theorem 4, is finite. Now the reflexivity of "divides" and the lemma imply that there is 
a finite set W Ç T such that 

T = BWBU{0}. 

Suppose/ G MINSHARP(T). Then there exists w G W Ç T such that w\ TlP(f). The 
definition of minimal sharpness yields w = TlP(f). 

Thus the finiteness of W forces MINSHARP(T) to be finite. • 
Significantly more is true. Every finite dimensional algebra over an algebraically 

closed field has the "same" representation theory as a basic algebra ([10, Chapter 2, 
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§2.1]). Any such basic algebra is a finite dimensional homomorphic image of a path 
algebra so that the kernel contains all sufficiently long paths ([10, Chapter 2, §2.1]). 

Suppose that C is a semigroup ideal of B U {0}. (In the presence of (M2) this means 
0 G C and BCB Ç C.) If KC is the linear span of C then KC is a two-sided ideal of R and 
NONTIPS(*:C) = B\C. Recall the vector space splitting 

IX 

0-^KC-> R^-RlKC -+ 0. 
v 

It is not difficult to see that, via the identification v, R/ KC satisfies (M1)-(M5) with < 
the restriction of the original well-ordering to B \ C. 

THEOREM 16. Let C be semigroup ideal of BU {0}. If I is an ideal ofR such that 
CCI then 

MINSHARP(T) = Z/(MINSHARP(TT/)) U (CH MINSHARP(T)). 

PROOF. Suppose/ G MINSHARP(T). If TlP(f) G C then/ G C since sharp vectors 
are minimal among vectors in / with the same tip (Theorem 6). If TIP(/) $ C then no ele
ments of C are in its support: i/ir(f) = / . We have shown the inclusion of MINSHARP(T) 
in the union. The reverse inclusion follows from the following simple observation. Be
cause C is a semigroup ideal, if b G B \ C and b'\b then b' E B\C. m 

Let us return to finite dimensional algebras. R is a path algebra and / is an ideal of 
R which contains C(N), the semigroup ideal consisting of 0 and all paths of length Af or 
greater. Every member of C(N) nMINSHARP(T) is a path of length N. Therefore, if TTN+\ 

and i/N+i give the vector space splitting for R/ KC(N+ 1) then 

MINSHARP(T) = z/yv+1(MINSHARP(7ryv+i/)). 

In other words, to calculate MINSHARP(T) whenever a path of length N + \ or greater 
appears in the support of an element, we can replace that path with 0. 

4. Graphs. In the preceding discussion, we took some pains to isolate those prop
erties of our examples which appeared to be fundamental. In this section we look more 
closely at these attributes as axioms and show that the path algebra can be viewed as a 
universal example. 

Let S be a semigroup with 0 and assume that B = S \ {0} is a well-ordered set 
satisfying (M1)-(M5). 

LEMMA 17. If a — uv G B then u\a and v\a. 

PROOF. Since "divides" is reflexive, we can find b and c in B such that u = buc. 
Then a = bucv. Thus u\a. Similarly, v\a. • 

If a G B we let its origin set be 

0(a) = {r G # | a — ras for some s G B} 
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and its terminus set be 

T(tf) = {s G B | a — ras for some r G B}. 

LEMMA 18. 0(a) and T(a) are finite semigroups inside B. 

PROOF. Both sets are nonempty by the reflexivity of "divides". If a — r\asx = r2as2 

then r\r2as2S\ — a. Hence 0(a) and T(a) are each semigroups. Finiteness follows from 
Lemma 17: the union of 0(a) and T(#) consists of divisors of a and there are only finitely 
many of them. • 

THEOREM 19. 0(a) and T(#) each consist of a single idempotent. 

PROOF. We present the argument for 0(a). Suppose u, v, w G 0(a). Since v| uvw, we 
have that v < uvw. If v < uvw then v < uvw < u2vw2 < u3vw3 < • • •. (No product 
is zero by Lemma 18.) But there cannot be infinitely many elements in the semigroup 
0(a). It follows that v = uvw for all u, v, w G 0(a). Obviously 

(1) u — u3 for all u G 0(a). 
Hence u = (u2)(u)(u) implies 

(2) u = u2 for all u G 0(a). 
Now if u, v G 0(a) then u = vu2, so u = vu. Similarly, v = v2u implies v = vu. 
Therefore 

(3) u = v for all u, v G 0(a). m 
Observe that if e G B happens to be an idempotent then e = 0(e) = CT(e). We next 

relate idempotents to each other. 

THEOREM 20. If e andf are distinct idempotents then ef = 0. 

PROOF. Suppose ef ^ 0. If e < f then (e)(e)(f) < (e)(f)(f), a contradiction. Like
wise, iff < e we reach the contradiction (e)(f)(f) < (e)(e)(f). m 

LEMMA 21. Let e be an idempotent in B. If x G B and ex ^ 0 then e = 0(x). If 
xe ^ 0 then e = *T(x). 

PROOF. Write x = axb where a = 0(x) and b = T(x). Since ex ^ 0 we have 
ea ^ 0. Apply the previous theorem. • 

THEOREM 22. If e is an idempotent in B then its only divisor is itself. 

PROOF. Suppose uv — e. Then (vuvu)2 = v(uv)3u = v(uv)u. That is, / = vuvu is 
also an idempotent. 

It follows from Lemma 21 that/ = 0(v) = 'T(w). Thus e = uv = ufv. Consequently 
f\e. But e\f by direct inspection. We conclude that e = f. In particular, e = uev. Therefore 
u = 0(e) and v = TO). By the remark preceding Theorem 20, u = e = v. m 

We shall say that a nonidempotent element b in B is irreducible if its only divisors are 
0(b), <T(b) and b itself. 
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THEOREM 23. Every nonidempotent in B is a product of irreducible elements. 

PROOF. Let u be a minimal counterexample. It cannot be an irreducible element or 
an idempotent. Hence we can find w $ {0(u), T(w), "} such that u — awb for some 
a,b G B. By Lemma 17, each of a, w and b is a divisor of u. In this case, (M5) asserts 
that 

a < u, w < u, and b < u. 

"Induction" tells us that there must be at least one equality. By assumption w ^ u. If 
a — u then 

u = uwb = 0(u)u(wb), 

so wb = CT(w). By Theorem 22, w — ^(u), a contradiction. Similarly, b ^ u. m 
The theorems we have proved can be summarized quite neatly. We have constructed 

a graph F(S) whose vertices are the nonzero idempotents of S and whose arrows are its 
irreducible elements. The origin and terminus of an arrow are determined in the obvious 
fashion. Each member of S \ {0} can be identified with at least one path, according to 
Theorem 23. 

Let T(5)* denote the path semigroup with zero derived from T(S). Then T(S)* may 
differ from S in that two distinct paths in T(S) may represent the same element of S or a 
path in T(S) may represent 0 in S. Nonetheless, we have already established the following 
omnibus result. 

THEOREM 24. Let S be a semigroup with zero which satisfies (M1)-(M5). Then there 
is a graph T(S) and a semigroup homomorphism IT: V(SY —> S (sending 0 to 0) such that 
the inverse image of an idempotent (or an irreducible) consists of a single idempotent 
(resp. irreducible). m 

By Theorem 23, the map IT is surjective. Also, as a consequence of Theorem 22, the 
graph T(S) is finite whenever S is finitely generated. 

In some sense we have explained the natural appearance of path algebras in the the
ory of Grobner bases. (Of course, a free algebra is a path algebra whose underlying 
graph has a single vertex and one loop for each free generator). The polynomial alge
bra K[x\,... ,xn] can be obtained from the free algebra K(x\,. ..,xn) by collapsing the 
finitely many monomials with the same number of occurrences of each letter, to a single 
monomial. This reflects a general phenomenon. 

THEOREM 25. Assume the notation of Theorem 24. If s G S is not zero then ir~x(s) 
is finite. 

PROOF. Suppose not. Choose s / 0 minimal in S subject to TT~[(S) being infinite. 
Set 

A — {x G T(5)* | there exists y G ir~x (s) with JC|_V and x ^ y}. 

We claim, first, that A is infinite. By the fidelity of TT on irreducible elements, s is not irre
ducible. Thus we can factor y G TT~1(S) as y — x\X2X^ with-Xi,.^,-^ G A. Consequently, 
if A is finite so is TT~1(S). 
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We next argue that A D 7r_1 (S) = 0. Indeed, if z lies in the intersection then there is a 

y G 7T~l(s) such that z ^ y and z\y. Writer = uzv. Then s = ir(z) = 7r(w)7r(z)7r(v). By 

the characteristic property of idempotents, ir(u) — O(s) and 7r(v) = T(.s). The fidelity of 

ix on idempotents implies that u and v are idempotents in T(S)*, and so y = z. This is a 

contradiction. 

For each x G A we have 7T(JC)|5 and 7T(JC) ^ 5. But s has only finitely many divisors. 

That is, 7r(A) is a finite set consisting of nonzero members of S, each less than s. By the 

minimal choice of s, we conclude that A is finite. However, we have already established 

that A is infinite. • 
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