A REMARK ON MINIMAL LAGRANGIAN DIFFEOMORPHISMS AND THE MONGE-AMPÈRE EQUATION

JOHN URBAS

We construct a counterexample to a theorem of Jon Wolfson concerning the existence of globally smooth solutions of the second boundary value problem for Monge-Ampère equations in two dimensions, or equivalently, on the existence of minimal Lagrangian diffeomorphisms between simply connected domains in \mathbb{R}^2 .

In [6] Wolfson studied minimal Lagrangian diffeomorphisms between simply connected domains in \mathbb{R}^2 . He derived several conditions guaranteeing the existence and nonexistence of such maps.

Given two bounded, connected, simply connected domains D_1 and D_2 in \mathbb{R}^2 with smooth boundaries ∂D_1 and ∂D_2 , Wolfson calls the pair (D_1, D_2) pseudoconvex if

(1)
$$\min_{\partial D_1} \kappa_1 + \min_{\partial D_2} \kappa_2 > 0,$$

where κ_1, κ_2 denote the curvatures of $\partial D_1, \partial D_2$ respectively relative to the inner normals.

One of his results states that if (D_1, D_2) is a pseudoconvex pair of domains with equal areas, then there is a minimal Lagrangian diffeomorphism $\phi : \overline{D}_1 \to \overline{D}_2$, smooth up to the boundary ([6, Theorem 5.1]).

An equivalent statement is that there is a solution $w \in C^{\infty}(\overline{D}_1)$ of the second boundary problem for the Monge-Ampère equation

(2)
$$\det \nabla^2 w = 1 \quad \text{in} \quad D_1,$$
$$\nabla w \text{ is a diffeomorphism from } \overline{D}_1 \text{ onto } \overline{D}_2,$$

([6, Corollary 6.2]).

These two statements are equivalent in the sense that if ϕ is a minimal Lagrangian diffeomorphism from \overline{D}_1 onto \overline{D}_2 , then after a suitable choice of Lagrangian angle, ϕ can be written as ∇w where w solves (2), and vice versa.

The existence of globally smooth solutions of (2) was proved by Delanoë [4] under the assumption that both ∂D_1 and ∂D_2 have positive curvatures. The higher dimensional analogue of Delanoë's result was proved by Caffarelli [3] and the author [5].

Received 18th December, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

Here we construct a counterexample to Wolfson's existence result.

THEOREM. There is a smooth, pseudoconvex pair of domains (D_1, D_2) in \mathbb{R}^2 with equal areas such that there is no solution $w \in C^2(\overline{D}_1)$ of (2). Consequently, there is no globally smooth minimal Lagrangian diffeomorphism from \overline{D}_1 onto \overline{D}_2 .

REMARK. It will be clear from the construction that $\min_{\partial D_1} \kappa_1 + \min_{\partial D_2} \kappa_2$ can be made arbitrarily large.

The key to this construction is the following "obliqueness condition", the proof of which we defer to the end of the paper.

LEMMA. Let ν_1 and ν_2 denote the inner unit normal vector fields to ∂D_1 and ∂D_2 respectively. Let $w \in C^2(\overline{D}_1)$ be a solution of (2). Then

$$\nu_1(x) \cdot \nu_2(\nabla w(x)) > 0 \quad \text{for all} \quad x \in \partial D_1. \tag{3}$$

PROOF OF THEOREM: Consider the spiral γ in \mathbb{R}^2 given in polar coordinates (r, θ) on \mathbb{R}^2 by r(t) = 1 + t, $\theta(t) = t$ for $t \in [0, \infty)$. This is a convex curve that starts at (1, 0)and spirals in the anticlockwise direction around the origin. The curvature of γ relative to the inward pointing normal vector field ν (that is, towards the origin) is bounded between 0 and $3/\sqrt{8} < 2$. For L > 0 to be fixed later let

$$\Gamma_L = \operatorname{Image}(\gamma|_{[0,L]}).$$

For small $\varepsilon > 0$, also to be fixed later, let

$$D_{\varepsilon,L} = \left\{ x \in \mathbf{R}^2 : \operatorname{dist}(x, \Gamma_L) < \varepsilon \right\}$$

be the ε -neighbourhood of Γ_L . The area of $D_{\varepsilon,L}$ is approximately $2\varepsilon \tilde{L} + \pi \varepsilon^2$, where

$$\widetilde{L} = \int_0^L \sqrt{1 + (1+t)^2} dt$$

is the length of Γ_L . Furthermore, $\partial D_{\varepsilon,L} \in C^{1,1}$ and the curvature of $\partial D_{\varepsilon,L}$ with respect to the inner normal vector field is bounded from below by $-2 + O(\varepsilon)$. By smoothing $\partial D_{\varepsilon,L}$ near the two semicircular parts of its boundary we obtain a connected, simply connected domain $\widetilde{D}_{\varepsilon,L}$ with $\partial \widetilde{D}_{\varepsilon,L} \in C^{\infty}$ and such that

$$\operatorname{area}(\widetilde{D}_{\varepsilon,L}) = 2\varepsilon \widetilde{L}, \quad \text{curvature of } \partial \widetilde{D}_{\varepsilon,L} \ge -3.$$

We now fix $L \ge 4\pi$, so that Γ_L winds around the origin at least twice and the Gauss map of Γ_L covers every point in S^1 at least twice. We then let $B = B_r(0)$ with r > 0chosen so that

$$\operatorname{area}(B) = \operatorname{area}(D_{\varepsilon,L}).$$

Obviously $r \to 0$ as $\varepsilon \to 0$ for fixed L, so by making ε small enough we can make the curvature of ∂B as large as we want, say greater than 4. Then $(D_1, D_2) := (\tilde{D}_{\varepsilon,L}, B)$ is a pseudoconvex pair.

We now claim that there is no C^1 diffeomorphism ψ from \overline{D}_1 onto \overline{D}_2 such that

(4)
$$\nu_1(x) \cdot \nu_2(\psi(x)) > 0 \text{ for all } x \in \partial D_1.$$

Suppose on the contrary that there is such a diffeomorphism, and let $\xi = (-r, 0)$, $\eta = (r, 0)$ where r > 0 is as above. Let γ^+ and γ^- denote the closed upper and lower semicircles of ∂D_2 . Let $\hat{\xi} = \psi^{-1}(\xi)$, $\hat{\eta} = \psi^{-1}(\eta)$ and $\hat{\gamma}^+ = \psi^{-1}(\gamma^+)$, $\hat{\gamma}^- = \psi^{-1}(\gamma^-)$. From the construction of D_1 and the fact that $\psi|_{\partial D_1}$ is a diffeomorphism from ∂D_1 onto ∂D_2 , we see that the Gauss map of at least one of the curves $\hat{\gamma}^+$ and $\hat{\gamma}^-$ must cover \mathbf{S}^1 . If this curve is $\hat{\gamma}^+$, then (4) implies that (0, -1) does not belong to $\nu_1(\hat{\gamma}^+)$, while if the curve is $\hat{\gamma}^-$, then (4) implies that (0, 1) does not belong to $\nu_1(\hat{\gamma}^-)$. In either case we obtain a contradiction.

PROOF OF LEMMA: This result is proved in [5]. Since the proof is short we include it here for the convenience of the reader.

Let $w \in C^2(\overline{D}_1)$ be a solution of (2). Since D_1 is connected, either $\nabla^2 w > 0$ everywhere or $\nabla^2 w < 0$ everywhere; in either case $\nabla^2 w$ is invertible. Let $h \in C^1(\overline{D}_2)$ be a function such that h > 0 in D_2 and h = 0, $|\nabla h| = 1$ on ∂D_2 . Then $H = h(\nabla w)$ is positive in D_1 and zero on ∂D_1 , so

$$\nabla_{\tau} H = h_{p_k} \nabla_{k\tau} w = 0 \quad \text{on} \quad \partial D_1$$

for any tangential vector field τ on ∂D_1 , and

$$\nabla_{\boldsymbol{\nu}} H = h_{\boldsymbol{p}_{\boldsymbol{k}}} \nabla_{\boldsymbol{k}\boldsymbol{\nu}} w \ge 0 \quad \text{on} \quad \partial D_1,$$

where to simplify notation we write ν rather than ν_1 for the inner unit normal vector field to ∂D_1 . Thus

(5)
$$\nabla_i H = h_{p_k} \nabla_{ik} w = (\nabla_{\nu} H) \nu_i \quad \text{on} \quad \partial D_1.$$

Since $\nabla^2 w$ is invertible, we see that

(6)
$$\chi := h_{p_k} \nu_k = (\nabla_{\nu} H) w^{\nu \nu} \quad \text{on} \quad \partial D_1,$$

where $w^{\nu\nu} = w^{ij}\nu_i\nu_j$ and $[w^{ij}] = [\nabla^2 w]^{-1}$. From (5) we also see that

$$h_{p_i}h_{p_k}\nabla_{ik}w = \chi\nabla_{\nu}H.$$

Combining this with (6) we obtain

$$\chi = \sqrt{w^{ij} \nu_i \nu_j \nabla_{kl} w h_{p_k} h_{p_l}} \quad \text{on} \quad \partial D_1,$$

217

which is positive since $w \in C^2(\overline{D}_1)$ with either $\nabla^2 w > 0$ or $\nabla^2 w < 0$ in \overline{D}_1 . Finally, we observe that $\nabla h|_{\partial D_2} = \nu_2$, so $\chi(x) = \nu_1(x) \cdot \nu_2(\nabla w(x))$ and (3) follows.

REMARK. Brenier [1] has shown that given any two bounded domains $D_1, D_2 \subset \mathbb{R}^n$ with $|D_1| = |D_2|$ and $|\partial D_1| = |\partial D_2| = 0$ (where $|\cdot|$ denotes Lebesgue measure in \mathbb{R}^n), there is a convex function u (unique up to constants) such that

(7)
$$\det \nabla^2 u = 1 \quad \text{in} \quad D_1, \qquad \nabla u(D_1) = D_2,$$

in a suitable generalised sense, where the equation is interpreted in an integral sense and ∇u is interpreted in the almost everywhere sense. Moreover, Caffarelli [2] has proved the interior regularity of convex Brenier solutions of (7) if D_2 is convex. Thus our example shows that it is the global regularity, not the existence or interior regularity, that may fail under Wolfson's pseudoconvexity condition.

References

- Y. Brenier, 'Polar factorization and monotone rearrangement of vector valued functions', Comm. Pure Appl. Math. 44 (1991), 375-417.
- [2] L. Caffarelli, 'The regularity of mappings with a convex potential', J. Amer. Math. Soc. 5 (1992), 99-104.
- [3] L. Caffarelli, 'Boundary regularity of maps with convex potentials II', Ann. of Math. 144 (1996), 453-496.
- [4] P. Delanoë, 'Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator', Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 443-457.
- J. Urbas, 'On the second boundary value problem for equations of Monge-Ampère type', J. Reine Angew. Math. 487 (1997), 115-124.
- [6] J. Wolfson, 'Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation', J. Differential Geom. 46 (1997), 335-373.

Centre for Mathematics and its Applications Mathematical Sciences Institute Australian National University Canberra ACT 0200 Australia e-mail: urbas@maths.anu.edu.au