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Abstract

Background: Whole-genome sequencing (WGS) shotgun metagenomics (metagenomics) attempts to sequence the entire genetic content
straight from the sample. Diagnostic advantages lie in the ability to detect unsuspected, uncultivatable, or very slow-growing organisms.

Objective: To evaluate the clinical and economic effects of using WGS and metagenomics for outbreak management in a large metropolitan
hospital.

Design: Cost-effectiveness study.

Setting: Intensive care unit and burn unit of large metropolitan hospital.

Patients: Simulated intensive care unit and burn unit patients.

Methods: We built a complex simulation model to estimate pathogen transmission, associated hospital costs, and quality-adjusted life years
(QALYs) during a 32-month outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB). Model parameters were determined using
microbiology surveillance data, genome sequencing results, hospital admission databases, and local clinical knowledge. The model was cali-
brated to the actual pathogen spread within the intensive care unit and burn unit (scenario 1) and compared with early use ofWGS (scenario 2)
and early use of WGS and metagenomics (scenario 3) to determine their respective cost-effectiveness. Sensitivity analyses were performed to
address model uncertainty.

Results: On average compared with scenario 1, scenario 2 resulted in 14 fewer patients with CRAB, 59 additional QALYs, and $75,099 cost
savings. Scenario 3, compared with scenario 1, resulted in 18 fewer patients with CRAB, 74 additional QALYs, and $93,822 in hospital
cost savings. The likelihoods that scenario 2 and scenario 3 were cost-effective were 57% and 60%, respectively.

Conclusions: The use of WGS and metagenomics in infection control processes were predicted to produce favorable economic and clinical
outcomes.

(Received 16 August 2021; accepted 25 October 2021)

Acinetobacter baumannii is an opportunistic pathogen commonly
associated with bacteremia, pneumonia, and urinary tract infec-
tions in patients admitted to intensive care units (ICUs) and burn

units.1 The persistence of A. baumannii in hospital environments,
and the ability of the organism to readily acquire or develop resis-
tance to a wide range of antibiotics, has led to high rates of carba-
penem-resistant A. baumannii (CRAB), a frequent cause of
hospital outbreaks,2 with rates reportedly 2- to 5-fold higher in
ICUs.3 Aqueous reservoirs, such as drains, sinks and toilets, have
been identified as a pathway for spreading A. baumannii to
patients.4 Approximately 5%–30% of surfaces can remain contami-
nated because existing detergent and disinfectant formulations
cannot disrupt biofilms.5 An enhanced focus on cleaning practices
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have been shown to be effective at reducing contamination and are
cost-effective.6 Identifying environmental contamination early in
outbreaks is critical to limiting their spread.

Hospital infection control teams use microbiological screening
to identify pathogens, their susceptibility in patients and for envi-
ronmental screening. This process takes 1–3 days for bacteria that
are cultured on routine media, with antimicrobial susceptibility
testing adding 1–2 days.7 Whole-genome sequencing (WGS) has
higher precision compared with conventional typing methods
and is used to detect outbreaks,8 monitor the evolution of drug re-
sistance,9 and reconstruct transmission routes.10 WGS requires the
sample to be cultured beforehand, whereas WGS shotgun metage-
nomics (metagenomics) attempts to sequence the entire genetic
content straight from the sample. Metagenomics can characterize
the subtypes, antimicrobial resistance, and pathogenic gene car-
riage of the microbial population.11 Turnaround times for metage-
nomics range from 2 to 7 days from sample collection to results.12

Because time to diagnosis is not always shortened, the diagnostic
advantages lie in the ability to detect unsuspected, uncultivatable,
or very slow-growing organisms, which produce negative results
with standard assays.7 The overwhelming amount of host DNA
present in primary clinical specimens collected from patients poses
a major challenge in metagenomics, but this is not an issue when it
is used on environmental samples.7

The importance of WGS in limiting multidrug-resistant organ-
ism (MDRO) nosocomial infections has been identified in
outbreak13 and nonoutbreak settings.14 Significant cost savings
could be realized as the reduction in cases, and subsequent resour-
ces used for contact precautions, outweigh the additional cost of
sequencing,13–15 but more evidence on the economic impact of
WGS within infection control is needed. To our knowledge, the
economic impact of metagenomics has not been studied, specifi-
cally in environmental contamination screening.

To address this gap, we performed a cost-effectiveness analysis
of WGS and metagenomics of environmental samples to inform
future resource use of WGS based on a hospital CRAB outbreak.

Methods

In the intensive care and burn units of a largemetropolitan hospital
in Brisbane, Australia, we used a hybrid agent-based and discrete-
event simulation model to assess the management of a CRAB
outbreak, and we incorporated background MDRO nosocomial
infections and environmental screening. This study was approved
by the QIMR Berghofer Medical Research Institute Human
Research Ethics Committee (P2353) and the Queensland
Government Public Health Act Human Research Ethics
Committee (RD007427).

The outbreak

The hospital is a 978-bed, tertiary-care facility in Queensland,
Australia, comprised of open-ward, 4-bed, 2-bed, and single-bed
accommodation combinations. The outbreak predominantly
affected a 34-bed ICU and an 18-bed burn unit over a 32-month
period. Active transmission of 17 cases of sequence type (ST) 1050
(ST1050) CRAB were identified between May and August 2016; 6
cases were identified between December 2016 and August 2017;
and 8 cases were identified between May and August 2018
(Fig. 1).16 Monthly WGS reporting starting in June 2016 identified
environmental contamination as the likely source of the ongoing

outbreak. Environmental metagenomics was introduced in
November 2017 but had reduced sensitivity due to low DNA yields
from sampling. Instead, areas of high bacterial load, such as drains
and burn baths, were targeted in 2018, which revealed 4 areas pos-
itive for CRAB. Immediate reporting ofWGS results were available
when the CRAB outbreak resurfaced in May 2018. Additional
details about the outbreak, implementation ofmetagenomics, envi-
ronmental swabbing, and sequencing outcomes are discussed in
the Supplementary Materials and by Roberts et al.16

Comparison groups

We evaluated the cost-effectiveness of 3 screening scenarios as
follows:

Scenario 1: The observed outbreak described above with initially
no WGS, no metagenomics and environmental swabbing con-
centrating on high touch areas. WGS, metagenomics and envi-
ronmental swabbing of high load areas were introduced later as
described above (Fig. 1).

Scenario 2: Hypothetically testing immediateWGS use prior to the
start of the outbreak. This would lead to identifying the need for
environmental swabbing to focus on high bacterial load areas.
As in Scenario 1, metagenomics was introduced in November
2017.

Scenario 3: Hypothetically testing WGS and metagenomics use
prior to the start of the outbreak.

Model structure

Using AnyLogic dynamic simulation modeling software
(AnyLogic, Chicago, IL), the evaluation combined methods of
cost-effectiveness analysis,17 infectious disease modeling and sys-
tem dynamics.18 A network approach was taken to connect the
hospital environment, the dynamics of pathogen transmission,
environmental pathogen contamination, patient movements,
and decisions by the hospital infection control team. The intensive
care and burns units were modeled; 29 of the 31 ST1050 CRAB
cases were detected in these units. The model ran for 32 months

Fig. 1. Outbreak timeline with investigation strategy changes. Each colored box rep-
resents a distinct outbreak of ST1050 CRAB. The red box consisted of 17 cases, the
green box represents 8 cases and the orange box represents 11 cases. Each black
arrow indicated initiation of environmental screening. To improve specimen collection
the focus of environmental swabbing changed from high-touch areas to high bacterial
load areas in July 2018. High-touch areas were defined as places commonly touched
such as nurse keyboards, trolleys and door handles. High bacterial-load areas were
defined as areas of high biomass such as floor drains, plumbing and inside burns bath
drains. WGS was implemented as part of outbreak control in May 2018 and metage-
nomics in November of 2017. Note. WGS, whole-genome sequencing.
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(January 4, 2016, through January 1, 2019) in hourly units. The
spread of CRAB was calibrated to outbreak data to obtain
both patient and environmental transmission rates (see
Supplementary Material, section ST1050 CRAB spread’). The
spread of other MDROs through the intensive care and burns
units were based on surveillance data between April 2016 and
January 2019. The 3 main interacting components in the model
were patient flow dynamics, pathogen transmission dynamics,
and outbreak control team decisions. Full model details are pro-
vided in the Supplementary Materials (detailed description of
model structure).

Pathogen transmission dynamics were modeled daily at the
ward level through patient-to-patient transmission and contami-
nated room-to-patient transmission using a discrete-time event
model. The daily probability a susceptible patient was colonised/
infected was calculated using the frequency-dependent transmis-
sion formula (1� exp �βCNf g).19 We modeled new daily coloni-
zation and/or infections with the binomial distribution formula
(NC X � PX 1� Pð Þ n�xð Þ), where x is the number of transmissions
(limited to 3), n is the number of susceptible patients, and P is the
probability. Daily incident probabilities of other MDROs detected
were included, and information on cluster spread was derived
from the WGS results (Supplementary Table S2). Decisions by
the infection control team, like outbreak designation and initiating
environmental screening, were initially based on microbiological

cultures before transitioning to WGS and metagenomics
information (Fig. 2).

Model parameters

Patient hospital episode information was obtained from the hos-
pital-based corporate information system (HBCIS) for all patients
who spent time in either the intensive care or burns units between
April 1, 2016, and January 1, 2019. HBCIS routinely collects all
patient separations and patient days (or occupied bed days) that
occur in public hospitals. Hospital daily admission rate, ward
admission probability, ward transfer proportions, and ward length
of stay were estimated empirically from the HBICS data set
(Supplementary Tables S4–S8). Ward stays were estimated as
independent γ distributions for all observed ward pair combina-
tions using the methods of moments approach.20

The sensitivity of detecting environmental CRAB contamina-
tion with microbiology cultures was estimated at 40% and metage-
nomics at 80% (Table 1). These estimates were calculated from
5 positive environmental samples from 50 sequenced samples.
Due to the uncertainty of samples not being detected, these values
were varied in sensitivity analysis (Table 1).

The daily incidences of common MDROs were extracted from
3 years (April 2016 to January 2019) of MDRO surveillance data
and converted to probabilities (Supplementary Table S2).
ICD-10 codes from the HBICS data set identified the bloodstream,
respiratory, and urinary tract infection rates for each of the
MDROs (Table S3). The frequency of deaths in hospital from
patients infected with any of the MDROs were obtained from
published reports21 and ranged from 0.7% for Clostridioides diffi-
cile infection to 36.6% for vancomycin-resistant Enterococcus
(Table S2).

Genetic relatedness was determined by examining the number
of core-genome single-nucleotide polymorphisms (SNPs) that dif-
fer between any 2 isolates (pairwise core-genome SNP distance).
Genetically related isolates were subdivided into clusters when
the SNP distances between them were under a 5 SNPs per mega-
base threshold.22 Two years (December 2017 to December 2019) of
processed MDRO WGS results identified clusters of extended
spectrum β-lactamase (ESBL)–producing Escherichia coli and
ESBL-producing Klebsiella pneumoniae.

Health utilities are cardinal values that represent the strength of
an individual’s preferences for specific health-related outcomes.
They are scored on a scale between 0, worst health to 1, perfect
health. Health utilities are used to calculate QALYs, a measure
of patient benefit, where the length of time in a health state is

Fig. 2. Introduction of WGS and metagenomics
into microbiology culture infection control proc-
ess. Note. micro, microbiology; enviro, environ-
mental; WGS, whole-genome sequencing; HTA,
high-touch area.

Fig. 3. Scatterplot of incremental costs and QALYs (all patients) for scenario 3 versus
scenario 1. Each dot represents an incremental cost and incremental QALY pairing,
using the assigned distributions around each model parameter, selected randomly
during 5,000 iterations. Dots falling below the diagonal line (the willingness-to-pay
threshold of AU$50,000 per QALY) are considered cost-effective. The proportion of sim-
ulations considered cost-effective was 60.1%. Note: QALYs, quality-adjusted life years.
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Table 1. Parameter Description, Values, and Sources Used in the Hybrid Simulation Model

Parameter
Value

(Sensitivity Analysisa) Source

Initialization

Initial starting population, no. 106 HBCIS data

Ward Burns, ICU, ID, other, readmission Building floor plans

Population entry rate, average patients per day 7.40 HBCIS data

Ward admission, transfers and LOS see Supplementary Tables S4–S8 HBCIS data

Outbreak spread

Transmission patient parameter �1 0.65 Calibration

Transmission patient parameter �2 0.014 Calibration

Transmission env. parameter �1 0.045 Calibration

Transmission env. parameter �2 0.019 Calibration

�1 to �2 change date 1/10/2016 Assumption based on outbreak data

Infection control

Microbiology test processing time, d 2 Clinical data

Genome sequencing processing time, d (range) 7 (3–10) Clinical data

Outbreak trigger test 3 cases in 5 days Clinical data

Outbreak ceases 0 cases within 7 days Clinical data

Environmental swab test 1þ cases in week after screening

Prob. effective swab returns positive result when contaminatedd 0.40 (0.34, 0.46)a

(α= 189.23, β= 283.84)2
Clinical data

Prob. metagenomics returns positive result when contaminatedd 0.80 (0.68, 0.92)a

(α= 252.04, β= 63.01)b
Clinical data

Environmental contamination

Prob. of contaminating HTA of single bed 0.14 Ng 2018,37 Lerner 202038

Prob. of contaminating HTA of multi bed 0.09 Ng 2018,37 Lerner 202038

Prob. of contaminating drainage of en suite bathroom 0.17 Calibration

Costs

Microbiology test cost, AU$ $82 Elliott (2020)13

WGS cost, AU$ $150 (120,180)a

(α= 44.44, β= 3.38)c
Study cost

Basic bedroom cleaning cost, AU$ $70 Elliott (2020)13

Advanced bedroom cleaning cost, AU$ $140 Assumption of double basic cost

Bed closure, AU$ $231 Page (2017)26

Bed closure in ICU, AU$ $466 Page (2017)26

Environmental screening swab, AU$ $3 Fishersci (2020)29

Environmental screening culture, AU$ $34 Elliott (2020)13

Metagenomics, AU$e $355 (251,459)a

(α= 44.44, β= 7.99)c
Ace Sequencing quote

PPE, AU$ $52 Otter (2016)28

CRAB infection parameters

Sepsis rate 0.77 AGAR report

RTI rate 0.50 ICD-10 (OGN)(S) (Table S3)

UTI rate 0.27 ICD-10 (OGN)(R) (Table S3)

Mortality rate 0.08 (0.06, 0.15)a

(α= 10.73, β= 128.65)b
ICD-10 (OGN)(U) (Table S3)

Cost of antibiotic treatment per patient, AU$

CRAB (colistin þ tigecyclinef or colistin þ meropenemg) $3,199 Viehman (2014)27 and hospital pharmacy pricing

(Continued)
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adjusted to reflect the quality of life (health utility score). Health
utilities were used in the model to estimate the health impact of
sepsis (0.53), urinary tract infection (0.73), respiratory tract infec-
tion (0.58), and an uninfected health state (0.82)6,23 (Table 1). We
applied a negative health utility when patients were isolated.24

Healthcare costs, which were calculated in 2020 Australian
dollars (1 AU$ = 0.68 USD25), were assigned to WGS (AU$150,
US$102), metagenomics (AU$355, US$241), microbiology culture
tests (AU$82, US$56), cleaning (AU$70/AU$140, US$48/US$95),
closed bed days (AU$216/AU$466, US$147/US$317), personal
protective equipment (PPE) (AU$52, US$35), environmental
screening (AU$3, US$2) and antibiotic treatments (AU$176–AU
$4,585, US$120-US$3,118) (Table 1 and Supplementary Table
S3).26–29 TheWGS andmetagenomics costs comprised of sequenc-
ing and bioinformatics costs. Metagenomics was more expensive
than WGS due to samples having ∼5 times more genetic content.

Analysis

The main outcomes were number of MDRO cases, hospital costs,
and QALYs. Model outcomes were aggregated from events that
emerged from the interacting processes of ‘patient flow dynamics,’
‘pathogen transmission dynamics,’ and ‘outbreak control team
decisions.’ These outcomes were averaged>5,000 stochastic model
simulations and presented as means and interquartile range
(IQRs). Future costs and QALYs were discounted at 5% per year
to provide present values. Incremental cost-effectiveness ratios
were calculated as the difference in costs between 2 groups divided
by the difference in QALYs.17 Probabilistic sensitivity analyses
were undertaken to assess the likelihood of the scenario being
cost-effective, considered at a willingness-to-pay threshold of
AU$50,000 (US$34,000) per QALY gain and AU$28,033 (US
$19,062) per QALY gain. One-way sensitively analyses were per-
formed on the costs of WGS, cost of metagenomics, mortality rate
of CRAB, WGS turnaround time, and the sensitivity of environ-
mental swab culture and metagenomics. Outbreak fadeouts are a
hazard of stochastic simulations; therefore, a supplementary analy-
sis was performed which only included simulations where a CRAB
outbreak occurred. Access to the full working model is available
via the AnyLogic cloud at https://cloud.anylogic.com/model/
72981523-81b1-4f31-b152-06bc9a906b7f?mode=SETTINGS.

Results

In scenario 1, the infection control team detected on average 30
(IQR, 3–39) patients with CRAB, accrued total hospital costs of
AU$1,608,571 (US$1,093,828) (IQR, AU$1,421,564, AU
$1,677,308; US$966,664, US$1,140,569) and 6,578 QALYs (IQR,
6,476, 6,707) (Table 2). This compares with Scenario 2 outcomes
of 14 fewer patients with CRAB, 59 additional QALYs and AU
$75,099 (US$51,067) cost savings. When scenario 3 was compared
with scenario 1, there were 18 fewer patients with CRAB, 74 addi-
tional QALYs and AU$93,822 (US$63,799) cost savings (Table 2).
Both scenario 2 and scenario 3 were cost saving and improved
patient QALYs compared with scenario 1. The increase in
QALYs was primarily driven by increases in patient quality of life.

Microbiology culture tests were a major driver of total costs
with 66.3%, 72.0%, and 72.6% of total costs for scenario 1, scenario
2 and scenario 3, respectively (Supplementary Fig. S2).
Metagenomics and WGS are relatively small fractions of total hos-
pital costs (∼<2%).

Plots of incremental cost-effectiveness ratios identified 58%
(scenario 2 vs 1), 60% (scenario 3 vs 1) and 53% (scenario 2 vs
3) of iterations were cost-effective at AU$50,000 per QALY
(Fig. 2). This changed to 57% (scenario 2 vs 1), 60% (scenario 3
vs 1), and 52% (scenario 2 vs 3) of iterations at willingness-to-
pay threshold of AU$28,033 per QALY. QALYs and total costs
both decreased in ∼13% of iterations. Cost savings were identified
in 50% (scenario 2 vs 1), 47% (scenario 3 vs 1), and 48% (scenario 2
vs 3) of iterations.

When plausible alternative values for critical parameters were
used in the model, hospital cost savings and increases in QALYs
were retained (Supplementary Table S9). When only simulations
where a CRAB outbreak occurred were analyzed, the percentage
of cost-effective iterations increased to 64% (Supplementary
Table S10).

Discussion

Our results showed the joint use of WGS and metagenomics were
associated with smaller outbreaks, lower hospital costs, and an
increase in accrued QALYs. Cost savings accrued from avoided
treatments and fewer contact precautions resulting from fewer
CRAB cases. We highlight the relatively small cost of WGS

Table 1. (Continued )

Parameter
Value

(Sensitivity Analysisa) Source

Health utility valuesh

Sepsis infection 0.530 Lee (2010)23

Respiratory infection 0.580 Lee (2010)23

Urinary tract infection 0.730 Lee (2010)23

Non infected patient 0.820 White (2020)6

Isolated patient multiplicative reduction factor 0.895 Mac (2019)24

Note. ICU, intensive care unit; SD, standard deviation; LOS, length of stay; Prob, probability; HTA, high-touch area; PPE, personal protective equipment; HBCIS, hospital-based corporate
information system; ID, infectious disease; WGS, whole-genome sequencing; CRAB, carbapenem-resistant Acinetobacter baumannii.
aThese values were used in one-way sensitivity analysis.
bThese values were used for a β distribution in the probabilistic sensitivity analysis.
cThese values were used for a γ distribution in the probabilistic sensitivity analysis.
dThese values were calculated from 5 positive environmental samples (4 of 5 by metagenomics and 2 of 5 by culture) out of 50 total sequenced samples.
eMetagenomics cost entails $25 for a DNA extraction, $40 for the library preparation, $190 for sequencing and $100 for bioinformatics.
fColistin administered at 275 mg for 14 d and tigecycline administered at 100 mg followed by 50 mg every 12 h for 14 d.
gColistin administered at 275 mg for 14 d and meropenem administered at 1.0–2 g 3 times daily for 14 d.
hPatient health utility was assumed to change for 14 d after diagnosis, unless leaving hospital first.
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Table 2. Projected Health and Economic Outcomes Over the Outbreak by Scenario

Variable
Scenario 1 (Calibrated),

Mean (IQR)
Scenario 2 (WGS),

Mean (IQR)
Scenario 3 (WGS & Metagenomics),

Mean (IQR)
S1 vs S2,

Mean Diff (%)
S1 vs S3,

Mean Diff (%)
S2 vs S3,

Mean Diff (%)

No. infections and colonizations

CRAB ST1050 30 (3–39) 15 (3, 18) 11 (3–13) −14 (−49) −18 (−62%) −4 (−25%)

Microbiology costs, AU$a,b $1,067,165
($1,055,634–$1,080,028)

$1,104,117
($1,082,526–$1,121,067)

$1,099,269
($1,082,536–$1,112,690)

$36,952 (3) $32,104 (3) $−4,848 (0%)

Enviro. sampling costs, AU$c $1,005
($0–$147)

$1,884
($39–$2,171)

$105
($6–$137)

$879 (87) $−900 (−90) $−1,779 (−94)

Metagenomics costs, AU$ $15,905
($0–$13,552)

$3,642
($0–$0)

$13,343
($605–$17,195)

$−12,262 (−77) $−2,561 (−16) $9,701 (266)

WGS costs, AU$b $5,178
($4,267–$5,947)

$23,146
($19,990–$25,793)

$22,642
($19,747–$25,184)

$17,968 (347) $17,464 (337) $−505 (−2)

PPE costs, AU$b $287,596
($242,741–$316,662)

$255,594
($228,459–$275,694)

$248,919
($226,492–$267,233)

$−32,002 (−11) $−38,678 (−13) $−6,675 (−3)

Other costs, AU$b,d $49,578
($210–$3,494)

$6,910
($210–$2,064)

$4,848
($210–$1,540)

$−42,669 (−86) $−44,730 (−90) $−2,062 (−30)

Treatment costs, AU$

CRAB ST1050 $91,217
($9,597–$139,291)

$46,977
($9,597–$69,654)

$35,047
($9,597–$47,985)

$−44,240 (−48) $−56,171 (−62) $−11,931 (−25)

Total hospital costs, AU$b $1,608,571
($1,421,564–$1,677,308)

$1,533,471
($1,437,392–$1,586,882)

$1,514,748
($1,439,823–$1,557,703)

$−75,099 (−5) $−93,822 (−6) $−18,723 (−1)

QALYs 6,578
(6,476–6,707)

6,637
(6,543–6,738)

6,652
(6,566–6,744)

59 (1) 74 (1) 15 (0%)

Note. IQR, interquartile range; WGS, whole-genome sequencing; CRAB, carbapenem-resistant Acinetobacter baumannii; ST1050, subtype 1050; Q, quartile; enviro, environmental; MDROs, multdrug-resistant organisms; QALYs, quality-adjusted life years; PPE,
personal protective equipment; diff, difference; PCR, polymerase chain reaction assay.
aMicrobiological culture and PCR.
bCosts attributed to MDROs arising in addition to the ST1050 CRAB outbreak were included; however, no differences were observed across scenarios.
cEnvironmental swabs and microbiological cultures.
dCleaning costs and closed bed-day costs.

6
Thom

as
M
.Elliott

et
al

https://doi.org/10.1017/ash.2021.233 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/ash.2021.233


surveillance across 8 MDRO species (WGS cost AU$22,642 (US
$15,397) and metagenomics cost AU$13,343 (US$9,073) and
how they are dwarfed by microbiology culture costs (AU
$1,099,269, US$747,503), antibiotic treatment costs (AU
$125,622, US$85,423), and cost of PPE (AU$248,919, US
$169,265). Sensitivity analyses indicated that WGS and metage-
nomics use was cost-effective in this context with a high degree
of confidence when model inputs varied from their base values.

Several studies report on the economic benefits of WGS; how-
ever, to the best of our knowledge, this is the first economic evalu-
ation on the use of metagenomics for infection control. Our
previous work on an ESBL E. coli outbreak in 5 extended-stay
wards predicted significant cost savings if WGS was implemented
early30 and a budget impact analysis reported that statewide WGS
surveillance targeting 6 MDROs could be cost saving.31

Furthermore, removing contact precautions for MDROs at low
risk of spreading, confirmed from WGS data, may reduce hospital
costs further.14 International studies have identified cost savings
from WGS through interventions targeting transmission routes15

and reducing the spread of MRSA.32

Within our model, the stochastic processes created significant
variance in the number of patients with CR-Ab across the scenarios
that heavily drive the subsequent costs savings (−AU$781,840 to
AU$264,347; −US$531,651 to US$179,756) and QALYs gained
(−287 to 479). Approximately 20% of simulations resulted in no
outbreaks occurring. Outbreak fadeouts are a hazard of stochastic
outbreak simulations.33 When the ∼20% of iterations without an
outbreak were removed, the likelihood of cost-effectiveness
increased to 61% and 64% for scenario 2 and scenario 3 respec-
tively (Supplementary Table S10). Understanding how and why
stochastic simulations deviate from deterministic simulations is
being viewed with increasing importance.34 For an outbreak to
start, the pathogen must lie undetected long enough to spread
to another patient or environmental object, which is influenced
by stochastic parameters such as the patient’s length of stay, the
regularity of screening, and ward transfer locations. The highly
surveilled nature of the intensive care unit and burn unit added
to the possibility that no outbreak occurs because patients would
remain undetected for no longer than a few days. Several models
are suitable for analyzing infection diseases. The trade-offs between
compartmental models, agent-based simulation, and network-
driven models are well documented.35 We chose an individual-
based structure due to the data and computational software avail-
able to us, along with this level of detail being required tomodel the
impact of WGS interventions and believe this is a valid choice.

The excessive cost and time to return a result has in the past
been perceived as a limiting factor of implementingWGS into hos-
pital practice.8 The cost of pathogen WGS continues to decrease,
with international studies quoting the price between US$70,15

£10032 and AU$350 (US$238).30 The WGS cost of AU$150 (US
$102) used in this study, the current operating price by our
sequencing partners, consists of AU$124 (US$84) for the sequenc-
ing of the pathogen and AU$26 (US$18) for the bioinformatics.
The bioinformatics costs dropped from AU$75 (US$51)30 due to
the recently established pipeline creating a more automated analy-
sis. Because WGS was not a dominant cost in the model, changing
the cost of sequencing in sensitivity analysis did not change the
outcomes. A 7-day WGS turnaround time is too long, although
our model found little impact in reducing it to 3 days. This could
be due to the outbreak occurring in already highly surveilled wards
of the hospital. Reducing WGS turnaround time would likely have
greater impact on outbreak size outside the ICU.15

This study had several limitations. This retrospective evaluation
was based on a single hospital outbreak, which limits the general-
izability of these findings. The results were dependent on decisions
during model construction and several input parameters, which in
line with the nature of infectious disease modeling, led to substan-
tial uncertainty. Healthcare worker-to-patient transmission was
not directly modeled, although spread to other rooms within the
ward represents this type of transmission due to limited patient
mobility. It was not possible to collect health utility scores directly
from patients in this study, and scarce evidence was available in the
literature. In the absence of other evidence, the sensitivity of meta-
genomics and microbiology cultures on detecting environmental
CRAB contamination were estimated from 5 cases; however, sen-
sitivity analyses on these values did not change the favorable incre-
mental cost per QALY ratios. Parameters used in the model, like
the environmental contamination values, did not have strong sup-
porting evidence. Targeted metagenomics was used in this study
because untargeted metagenomics as a surveillance tool has not
been fully explored and would likely have lower sensitivity.
Balanced against these limitations, is the use of a detailed simula-
tion model, informed by accurate outbreak data, historical
sequencing data, and 3 years of MDRO surveillance data. Our
modeling incorporated the stochastic nature of outbreaks by limit-
ing outbreak pathways through techniques like blocking, which
removes unnecessary variation.36 Limiting the maximum number
of transmissions to 3 in the binomial distribution formula was an
example of blocking. On balance, based on our analysis and using
realistic model parameters, targeted metagenomics, as used in this
hospital, yielded good value for the money spent.

In conclusion, introducing WGS and metagenomics into infec-
tion control was likely to have favorable economic and clinical out-
comes. The low proportion of costs attributed to sequencing all
MDROs within the ICU and burns unit (<2%) highlights the
manageable ongoing costs and encourages further sequencing
studies in other hospital settings. Implementing these sequencing
technologies is likely to yield decreased hospital costs, decreased
infections, and increased QALYs.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ash.2021.233
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