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LENGTH FUNCTIONS AND PREGROUPS

by I. M. CHISWELL*

(Received 10th August 1985)

The idea of a pregroup was introduced by Stallings and provides an axiomatic setting
for a well-known argument, due to van der Waerden, used to prove normal form
theorems. Details are provided in [7], Section 3.

The normal form theorem for a pregroup ([7], 3.A.4.5) gives a corresponding notion
of length on its universal group, which will be described later. In [8], Question Bl, p.
372, it was asked whether or not this length satisfied the axioms of Lyndon [4] for a
length function, the main point being whether or not Lyndon's axiom A4 is satisfied (we
shall list all axioms used later). We show that A4 holds if and only if the pregroup
satisfies an extra axiom, called P6. This result was obtained independently and at about
the same time by Nesayef ([5], Theorem (2.10)). In Section 2 we given an example of a
pregroup not satisfying P6, so that Axiom A4 need not be satisfied by the length
associated to a pregroup.

Originally, our argument involved showing that if P6 was satisfied, then one obtained
a "normal form structure" in the sense of Hurley [3] and one could then appeal to his
results to see that A4 was satisfied. Indeed, this was how we were led to Axiom P6.
However, motivated by some of the lemmas in a recent paper by Promislow [6], we
have investigated exactly what axioms are satisfied by the length associated to a
pregroup, using arguments which are essentially contained in [1]. In the course of this
investigation, we give a fairly simple argument, closely related to some of the results in
[6], that P6 implies A4. These results are presented in Section 3. Finally, some examples
are given to clarify the logical relationships between the new axioms which are
introduced.

We should like to thank A. H. M. Hoare for several helpful conversations concerning
this paper.

2.

We consider sets with a partial multiplication, that is sets P, together with a subset D
of PxP and a mapping D->P,(x,y)r-*xy. Instead of saying that (x,y)eD, we shall say
that xy is defined.

A pregroup is a set P with a partial multiplication, together with a distinguished
element denoted by 1 (and called the identity element of P) and a map P->P,x-+x~l,

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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58 I. M. CHISWELL

satisfying five axioms:

(PI) for all xeP, xl and lx are defined and equal to x;
(P2) for all xeP, xx"1 and x~*x are defined and equal to 1;
(P3) if xy is defined, then so is y~1x~1 and y~lx~* =(xy)~1;

(P4) suppose xy and yz are defined; then (xy)z is defined if and only if x(yz) is defined,
in which case they are equal;

(P5) if wx, xy and yz are all defined, then either w(xy) or (xy)z is defined.

If G is a group and P is a subset of G closed under taking inverses and containing 1,
let D = {(x,y)ePx P\xyeP} the partial multiplication being obtained by restricting
multiplication on G to D. Then Axioms (PI) to (P4) are automatically satisfied.

We introduce some additional conditions on a pregroup P:

(P6) if (x,y)$D, but xa and a~iy are both defined, then au and ua are defined for all
ueP.

(P7) ax is defined for all xeP if and only if xa is defined for all xeP.

Proposition 1. In a pregroup P, Axiom P7 is equivalent to:

(P7') if ax is defined for all xeP, then xa is defined for all xeP

and to

(P7") if xa is defined for all xeP, then ax is defined for all xeP.

Proof. It follows easily from PI, P2 and P4 that (x"1)~1=x for all xeP. It then
follows from P3 that (P7') and (P7") are equivalent, so both are equivalent to P7.

Proposition 2. In a pregroup P, Axiom P6 is equivalent to:

(P6') if(x,y)$D but xa and a~ly are both defined, then au is defined for all ueP

and also to

(P6") if (x,y)$D but xa and a~1y are both defined, then ua is defined for all ueP.
Moreover, P6 implies P7.

Proof. It suffices to show (P6') implies (P7') and (P6") implies (P7"). Assume (P6'),
and suppose ax is defined for all xeP . Assume va is not defined for some veP. Since
av~l is defined, va'1 is defined by P3. Also, aa is defined, so by (P6'), a~lu is defined
for all ueP, in particular, a~lv~l is defined. By P3, va is defined, a contradiction. Hence
xa is defined for all xeP , and (P7') holds. The proof that (P6") implies (P7") is similar.

The following equivalent statement of P6 was given by Nesayef ([5], Theorem (2.7)).

In a pregroup, P6 holds if and only if: if (x, y) $ D and (ax)y is defined, then (ax)z
and z(ax) are defined for all zeP.

The reason for this is that x(ax)"1 is always defined, while if xa and a~ly are defined,
then b = a~lx~l is defined by P3 and (bx)y is defined. In view of Proposition 2, we can
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obtain two further equivalent statements of this axiom, replacing the conclusion by
"then (ax)z is defined for all z e P" and by "then z(ax) is defined for all z e P".

We now exhibit a pregroup not satisfying P7, so not satisfying P6. Let G be a free
group of rank 2 with basis {a, b). Define

D = {(x,y)sPxP\xyeP}.

As we observed after listing the axioms for a pregroup, (P1)-(P4) are satisfied since
1 e P and P is closed under taking inverses. Note that

D = {(amb±1an,ak)\m^0,n^0 and n + fc^

u{(a*,amft±1aB)|m^0,n^0and

u {(amb±lan,a-nb*lak)\m-£0, n^O and k^

Lemma 1. Suppose uv and vw are defined. Then u(vw) is defined if and only if(uv)w is
defined. They are both undefined if and only if v = a" for some n e Z and one of the
following holds:

(1) u = am,w = alb±1ak with m + n + l>0,

(2) w = am,u = a!b±1ak with k + n + m<Q,

(3) u = amb±lak,w = a'b±lap, where either b occurs with the same sign in u and w, or

Proof. This is a routine verification and is left to the reader.

It follows easily from the lemma that P is a pregroup. To establish (P5), the only case
not taken care of by the lemma is where the sequence w,x,y,z, has the form
amb±1an,ak,a',apb±la" with n + k + l<0 and k + l + p>0. But n^O, so k + l<0 and p^O,
so fc + />0, and this case cannot occur. However, (P7) is not satisfied; for xa is defined
for all x e P but, for instance, (a,b)£D.

The results in the next section give many examples of pregroups satisfying P6. To
complete the picture, we give an example of a pregroup which satisfies P7 but not
P6. First, let G = (u) be an infinite cyclic group, let Pl = {l,u,u~1} and define
D1 = {x,y)ePxP\xyeP}. As has been noted, (P1)-{P4) a r e automatically satisfied and
it is easy to see that P5 holds, so (P^Di) is a pregroup. Let (P2,D2) be a pregroup in
which P6 does not hold (we have just shown that such pregroups exist). We can assume
that P1 and P2 have the same identity element and P 1 n P 2 = {l}. Let P = P j u P 2 ,
D = £>i <oD2. It is easily checked that the mappings D,—»P( (i=l,2) giving multiplication
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on P; extend to a mapping D-*P, and (P,D) becomes a pregroup. In P, if xa is defined
for all x, then a= 1, so P7 holds. However, P6 does not hold in P since it does not hold
in P2.

We note that P is the coproduct of Px and P2 in the category of pregroups and this
construction of coproduct works for any pair of pregroups Pt and P2. (See [7], 3.A.4.2,
for the definition of morphism in this category.)

3.

We shall use the terminology of [6] and call a function p:G-*Z, where G is a group,
a Z-semigauge on G if the following three axioms hold (with the original numbering of
[4]);

Al'.

A2. p(x) = p(x~1) for all xe G;

A3. p(xy) ^ p(x) + p(y) for all x and y in G.

It is easy to see that Ker(p) = {xeG|p(x) = 0} is a subgroup of. G.
The term length function will be used to mean a normalised integer-valued length

function, that is, a Z-semigauge p satisfying:

A4. d(x,y)^m and d(y,z)^.m implies that d(x,z)^m,

for any meU and x,y,z in G, where d(x,y)=%(p(x)+p(y)—p(xy~1)).
An alternative way of stating A4 is:

d(x, y) > d{x, z) implies that d{x, z) = d(y, z), for all x,y and z in G.

Thus, of the three numbers d(x, y), d(x, z), d(y, z), at least two of them are equal, and not
greater than the third. Note that A3 is equivalent to:

and it is easy to see that this follows from AT, A2 and A4.
From the identity d(xy,y) + d(x,y~1)=p(y) and A2, it follows that d(x, y) ̂  p(y) for any

x,y,eG, where p is any semigauge. Since d(x, y) = d(y, x), we have
Q^d(x,y)^min{p(x),p(y)}. Hence, if either x or y is in Ker(p),d(x,y) = 0, from which we
obtain the following simple but useful lemma (see also [6], Lemma (2.1) (c)).

Lemma 2. If p:G-*Z is a semigauge and aeKer(p), then p(au)=p(u) = p(ua) for all
ueG.

We shall use the notation <a,fc> to mean d(a, b'1), that is,

https://doi.org/10.1017/S001309150001796X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001796X


LENGTH FUNCTIONS AND PREGROUPS 61

We shall also need an axiom introduced in [3]:

Nl*. G is generated by {xeG\p(x)<^ 1}.

The universal group U(P) of a pregroup P is defined in [7], 3.A.4.2, and we shall view
P as embedded in U(P) in accordance with [7], 3.A.4.6. It is then an easy consequence
of the universal property of U(P) that P generates U(P). Suppose P is a pregroup, define

B = {a e P | ua and au are defined for all ueP}

and let X = P\B. If (au...,an) is a reduced word in the sense of [7],3.A. 1.2, define:

n if n> 1,

1 if ^ e X and n= l ,

0 if ajeB and n= l .

Then by [7], Theorem 3.A.4.5, /i induces a mapping p:C/(F)-»Z which is clearly a Z-
semigauge on U(P). Since P generates U(P), p satisfies Nl*. We call p the semigauge
associated with the pregroup P. Another condition satisfied by p is:

A6. <a, b} = <b, c> = 0 implies that either p(b) = 0 or <ab, c> = 0.

For <a,b>=0 means that either p(a)=0, or p(b)=0, or else, if (al5...,am) and (bi,...,bn)
are reduced words representing a and b respectively, then (a1,...,am,b1,...,bn) is also
reduced, and A6 follows easily. These conditions Nl* and A6 are sufficient to ensure
that a semigauge is associated with some pregroup.

Proposition 3. Let p be a Z-semigauge on a group G, satisfying A6 and Nl*.

LetP={geG\p(g)S>l},D = {(g,h)<=PxP\p(gh)£l}.

Then (P,D) is a pregroup, with G isomorphic to U(P).

Proof. As noted in Section 2, P1-P4 are automatically satisfied and only P5 needs
verification. Suppose w,x,y,z are in P and wx,xy,yz are all in P. Let X — {geG\p(g)= 1}.
By Lemma 2, to verify P5, we may assume w,z,wx,xy,yz are all in X. The argument
is then like that of Lemma 7 in [1], but is short enough to be repeated here. Suppose
that wxy$P and xyz$P. By A3, p(wxy)^p(w) + p(xy) = 2, and since wxy £ P, p(wxy) = 2,
hence (w,xy}=0.

Similarly, <xy,z>=0. By A6 (with a = w,b—xy,c=z), <wxy,z>=0, that is, p(wx_yz) = 3.
Hence, <wx,_yz>= —\, contradicting A3, and so P5 holds.

The inclusion map P-*G induces a group homomorphism <t>:U(P)-*G by the
universal property of U(P); if ueU(P) is represented by a reduced word (u\,...,un), then
<t>(«) = u,. . .un (see [7L3.A.4.2 to 3.A.4.6). Since p satisfies Nl*, <S> is onto. If (uu...,un)
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is a reduced word with n>\, then p{ut) = \ for l^i^n, and p(u;Mi+1)^2, so <U(,u1+1>
= 0 for l ^ i ^ n - 1 by A3. Now if <ux.. .«(_i, M,-> = 0, where 2?Si5£n—1, it follows from
A6 that <u 1 . . .« j _ 1 u , ,u i + 1 > = 0. By induction on i, (u1...ui_1,ui} = 0 for 2 g i ^ n , and
p[ut... u,) = i for 1 ^ i : ^n . Thus p(ut ...un) = n, and it follows that O is one-to-one.

Note. If p is the semigauge associated with P, the proof shows that pO=p, so we
may identify (G,p) with (l/(P),p), justifying the assertion immediately before Proposition
3.

Next, we consider when the pregroup P in Proposition 3 satisfies P6. This involves a
new axiom:

A7. if <a, b} = 0 and p(c) ^ p(b), then <a, be} = 0.

We begin by showing that A7 and N l * imply A6. To do this we state a simple lemma
which will also he useful later.

Lemma 3. Let p be a semigauge on group G, satisfying Nl* and A7. Then

(a) if (w! , . . . ,u j is a sequence of elements of G with p(u,)=l for l ^ i ^ n then
p{ul ...un) = n if and only if <u;, wi + 1>=0 for l^i^n;

(b) if ueG and p ( u ) > 0 , there exist elements ul,...,un in G such that u = ul...un,
p(Ui) = 1 for l^i^n, and n = p(u).

Proof. The proof is omitted; part (a) is similar to the proof of [1], Lemma 4 using
A7 and the identity of [1], Lemma 2, in place of [1], Lemma 3. Likewise, the proof of (b)
is very similar to that of [1], Lemma 5.

We shall call a decomposition u = ul...un as in part (b) of Lemma 3 a reduced
decomposition of u.

Proposition 4. If p:G-*Z is a semigauge satisfying A7 and Nl*, then p satisfies A6.

Proof. Assume A7 and Nl*, suppose (a,b} = 0, (b,c} = 0 but p(b)^O. If p(a) = 0 or
p(c) = 0 then <ab, c>=0 by Lemma 2, so we may assume p(a)>0 and p(c)>0. Then
a, b, c have reduced decompositions:

a = av..am, b = bi...bn, c = cl...ck.

Since <a,fc> = 0, p(ab)=p(al ...ambl ...bn) = m + n, and by Lemma 3(a),<am,fc1> = 0.
Similarly <fcn,Ci> = 0, and again by Lemma 3(a), p(abc) = p(al...ambl...bncl...ck) =
m + n + k, so <ab,c>=0, as required.

To prove our result on when the pregroup {P,D) of Proposition 3 satisfies P6, we
shall use the notion of a regular semigauge ([6], Section 4). A semigauge on a group G is
regular if <x,>>> = 0 implies that, for all zeG, either <x,z>=0 or <y"1,z> = 0. A simple
argument shows that a regular semigauge satisfies A7 (see [6], Lemma 4.3(b)).
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Remark. If p is the semigauge associated with a pregroup P, then it is an easy
consequence of the definition of p that, if x,yeP then xy is undefined if and only if
P(x) = p(y)=l and <x,y> = 0, also that if (xu...,xm), (yu...,yn) are reduced words (in
the sense of [7], 3.A. 1.2) representing elements x,y, respectively, of U(P) then (x,y} is
greater than 0 if and only if p(x)>0, p(y)>0 and x , ^ is defined.

Proposition 5. / / p is the semigauge associated with a pregroup P, then P satisfies P6
if and only if p satisfies A7.

Proof. Assume P satisfies P6; it is enough to show that p is regular. Suppose
<x,y> = 0. We have to show that, for all ze U{P), either <x,z> = 0 or <y~1,z> = 0. In view
of Lemma 2, we may assume p(x),p(y) and p(z) are all non-zero. Then x,y and z are
represented by reduced words (x,,...,xm), {yi,...,yn) and (zt,...,zk) where each xhyi
and z; is in X, and Ar = P\Ker(p) = {ue U{P)\p(u) = 1}.

If <x,z>=/:0, then by the preceding remark, xmz, is defined. If also <_y"1,z>^0, then
yi1zl is defined, so z f V i is defined (using the axioms for a pregroup). Since <x,y> = 0,
xmyl is not defined, so by P6, p(z!) = 0, a contradiction since zleX.

Conversely, assume p satisfies A7. Suppose x,yeP and xy is undefined, so <x,y) = 0,
and suppose aeP and (ax)y is defined. Then (y~l,x~i) = 0 and p ( a - 1 ) ^ l =p(x~') so
by A7, <>'"1,x"1a"1> = 0, that is, <ax,y> = 0. Thus p((ax)y) = p(ax) + p(y) ̂  1, and since
p(_y)= l,p(ax) = 0, so axeB = {beP\bu and ub are defined for all ueP}. By the
observations after Proposition 2, P6 holds.

Remark. It follows from Propositions 3, 4 and 5, that a Z-semigauge p is the
semigauge associated to some pregroup satisfying P6 if and only if p satisfies Nl* and
A7.

Lemma 4. Let p be a length function on a group G. Then p satisfies A6 and A 7.

Proof. It is clear that p is a regular semigauge on G and so this follows from [6],
Lemma (4.3) (a) and (b).

Suppose x = xnxn_1 . . .x2Xj , where p(x,)=l for l ^ i ^ n , the x, being elements of a
group G equipped with a semigauge p. Then, using A3 and induction on n,p{x)^n.
Recall that this is a reduced decomposition if p(x) = n. The next lemma could be
deduced from the proof of [6], Lemma (4.7)(a), but we include a direct argument. The
proof of Proposition 6 below is likewise related to [6], Lemma 6.1.

Lemma 5. Suppose p is a Z-semigauge on a group G, satisfying Nl* and A7, and let
x,y be elements o/G\Kerj(p). Suppose that k is a non-negative integer, with d(x,y)^k, and
x = xn...xl is a reduced decomposition of x (so n = p(x)), and let m — p{y). Then if m>k,
y has a reduced decomposition y=ym...yk+iXk...xl (the yt depending on k), while ifm = k,
y=axk... x i for some a e Ker(p).

Proof. We use induction on k, the result being trivial if k=0. Assume true for k,
and suppose d(x,y)^k+l. Inductively we can write a reduced decomposition y =
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ym---yk + ixk.-.*i, so that x y - 1 = x , . . . x t + j ; +
1

1 . . j n " 1 . If <xk+uyk^y = 0, then by
Lemma 3(a), p(xy~1) = m + n — 2k, so d(x,)>) = k, a contradiction. Therefore (xk+uyk+ly
is greater than zero, that is, p(xn+iJ'»+i) = l' If n>k+l, then <x4 + 2,xk + 1 > = 0 by
Lemma 3(a), so by A7, (xk + 2,xk+lyk+iyi=0. Similarly, if m>k+l, then
<Xk + i.Vik+1i>J;ic+2> = 0. It follows from Lemma 3(a) that, if pfo+iyt+i) —1> then
p(xy~l) = n + m — 2k — 1, so d(x,y) = k + j , a. contradiction. Hence p{xk+1yk + 1) = 0. If
m = fc+l, d e f i n e a = xJk + 1 jv4 . 1 i> s o .y = axik+i - X i . a n d if m>k+l, d e f i n e 3 ' J B = y m ,
y'm-i=ym-i,---,y'k+2=yk + 2(yk+iXk-+\). Then p(yi+2) = 1 by Lemma 2, clearly
y = y^ . . .y i^ 2

x *+ i •••*!> and this is a reduced decomposition since p(y) = m.

Proposition 6. / / p is the semigauge associated to a pregroup P, the following are
equivalent:

(1) P satisfies P6;

(2) p satisfies A7;

(3) p satisfies A4.

Proof. The equivalence of (1) and (2) is asserted in Proposition 5, and (3) implies (2)
by Lemma 4, so it remains to show that (2) implies (3). Assume A7, and take x, y, z in
U(P). We have to show that d{x,y)^m and d(x,z)^.m implies that d(y,z)^m. Since
d(x,y) is always a non-negative integer or half-integer, we can assume m is also a non-
negative integer or half-integer. If any of x, y, z are in Ker(p) then the desired conclusion
follows from Lemma 2 {m must be zero) so we assume p(x), p(y), p(z) are all non-zero.

Case 1: m = keZ. Replacing y by cy for some ceKer(p) if necessary, and similarly
changing z (which by Lemma 2 does not change d(x,_y), d(x,z) or d(y,z)), we can use
Lemma 5 to write reduced decompositions

X = X r . . . X j

where O^k^s,t. Then p(yz~1) = piys...yk+lzk~+1...z,)^s + t-2k, so d(y

Case 2: m = k+%,keZ. Again we may write reduced decompositions as in Case 1.
(Notice that, in this case, s = piy)^d(x,y)^.m, so s^fe+1, and similarly t^k+l). Now
xy'1=xr...xk+1yk^l...y~1, and if d{xk+l,yk+1)=0 then p(xy~l) = r + s-2k by
Lemma 3(a), so d(x,y) = k, a contradiction. Hence d(xk+l,yk+1)>0, and similarly

Suppose that d(yk+1,zk + l) = 0, that is, <3'*+i,z4"+
1i>=0. Since d(xk+uzk+1)>0,

pizk+1xk^)^l. By A7 (with a = yk+1,b = zkju c = zk+lxk^l), <3't+i,x»"+
1i> = 0, that is,

d(yk+l,xk+l) = d(xk+l,yk+l)=0, a contradiction. Hence d(yk+1,zk+l)>0, and so
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Since yz ' = ] yk + 2(yk+iZk+i)zk+2---zt \ we have p(yz *)g
s +1 — 2k — 1 (see the remark after Lemma 4), hence d(y, z) ^ k 4- \.

Proposition 6 gives a negative answer to Question Bl (p. 372) in [8], since we have
shown that there exist pregroups not satisfying P6. On the other hand, given a group
with a length function satisfying Nl*, there is, by Propositions 3, 4, 5 and Lemma 4, a
corresponding pregroup satisfying P6. Examples of such length functions are the usual
length functions on free groups, free products and HNN extensions (see [1] and [2]),
giving examples of pregroups satisfying P6.

We conclude by giving some examples to show there is no further logical dependence
between axioms A6, A7 and A4 for a semigauge.

First, note that, if X is a metric space with an integer-valued metric d, and G is a
group acting on X as isometries, then choosing v e X and defining (for g e G):

p{g) = 5(v,gv)

gives a Z-semigauge on G. This applies when X is the vertex set of a connected graph F,
G is acting as graph automorphisms on F and distance in X is given by:

5(x, y) = length of a shortest path from x to y in F.

(We view a path as a sequence of edges, {elt...,en) and the length of such a path is n).
Note that <g,/i>=0 means that gv lies on a shortest path from v to ghv in F (where
g,heG).

We give an example of a Z-semigauge which, by contrast with Proposition 4, satisfies
A7 but not A6. Let F be the graph indicated in Figure 1, choose a vertex v as indicated
and take G = Aut(F). Thus, for geG,

p{g)~graph distance from v to gv.

Let a, b, c be elements of G taking v to the indicated vertices (with the embedding of F
in the plane suggested by Figure 1, a, b, c can be accomplished by obvious Euclidean
transformations, in particular, b by reflection in the vertical dotted line and a by a
translation).

abcv

> <

bcv

<> 1

CD

<

c

> c

)

1 (

o
abv bv

FIGURE 1
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Clearly p(a)=4, p(b) = l, p(c) = 2, p(bc) = 3, p(ab) = 5 and p(abc) = 5. Hence <a,fe> =
<fe,c> = 0 but <afc,c> = l, so A6 fails. Now the stabilizer of v is trivial (by comparing
degrees of vertices adjacent to v) from which one can deduce that the following relations
hold in G:

b2 = c2 = l and a = (bc)2.

It follows that G is the infinite dihedral group <fc) * <c> with p given by:

p(b) = l

p((bcy)=p((cby) = n + 2 (n>0)

)") = n + 3 (n>0)

and, of course, p(l) = 0. One can take these equations as a definition of p on the infinite
dihedral group and check directly that p is a semigauge on. G. If one does so, the
following facts emerge:

(1) if g, h are in G\{1} and <g,/i> = 0, then either g = b or h = b;
(2) <6,g> = 0 if and only if either g = (cfc)" for some n^Oor g=c{bc)n for some n^O.

We leave the geometric interpretation of (1) and (2) to the reader; using (1) and (2), it is
routine to verify that A7 holds.

By Proposition 6, any semigauge associated with a pregroup not satisfying P6 gives
an example of a Z-semigauge satisfying A6 and Nl*, but not A7. For an example of a
Z-semigauge satisfying neither A6 nor A7, take G = Z x Z and F to be the Cayley
diagram of G with respect to the obvious generators (1,0) and (0,1) for G, to obtain the
semigauge given as an example in [6], Example 4.2 (3), namely p(m,ri) = \m\ + \n\(m,neZ).
To see that A6 and A7 fail, take a = (l,0), fc = (0,1), and c = ( - I, 0).

Finally, in part 2 of Example 4.2 in [6], there is an example of a Z-semigauge
satisfying A6 and A7, but not A4. Essentially, we may take G = Z and define p by
p(x) = 2 if x is odd, p(x) = 3 if x is even, and p(0) = 0. Then p is a trivial semigauge in
the sense of [6], Example 2.4 (1), so is regular, hence satisfies A6 and A7 by [6],
Lemma (4.3) (a) and (b). However, d( l ,3)=i d(l,2) = d(2,3)=%, so A4 fails. We give yet
another example of a trivial semigauge not satisfying A4.

Let F be the graph indicated in Figure 2, and let G = Aut(F). The element a
interchanges v and av and leaves all other vertices fixed, c is the obvious translation,
and b = c~2a.

Let p be the semigauge determined by the basepoint v. Then it is easy to calculate
that d(a,b) = d(a,c) = 1, while d(b,c)—\, so A4 fails. If geG, any shortest path from v to
gv passes through just two vertices in the G-orbit of v, namely v and gv. Thus if
<g,|j> = 0, which means gv is on a shortest path from v to ghv, either gv = v or gv=ghv,
that is, either p(g) = 0 or p(h) = 0. It follows that p is trivial, as claimed.
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To obtain non-trivial semigauges satisfying A6 and A7 but not A4, we can take free
products of the examples just given, using [6], Theorem 4.8 and the fact that a regular
semigauge satisfies A6 and A7 ([6], Lemma (4.3)(a) and (b)).
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