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Abstract. R is called a right WV -ring if each simple right R-module is injective
relative to proper cyclics. If R is a right WV -ring, then R is right uniform or a right V -
ring. It is shown that a right WV -ring R is right noetherian if and only if each right cyclic
module is a direct sum of a projective module and a CS (complements are summands,
a.k.a. ‘extending modules’) or noetherian module. For a finitely generated module M
with projective socle over a V -ring R such that every subfactor of M is a direct sum
of a projective module and a CS or noetherian module, we show M = X ⊕ T , where
X is semisimple and T is noetherian with zero socle. In the case where M = R, we
get R = S ⊕ T , where S is a semisimple artinian ring and T is a direct sum of right
noetherian simple rings with zero socle. In addition, if R is a von Neumann regular
ring, then it is semisimple artinian.

2000 Mathematics Subject Classification. 16D50, 16D70, 16D80.

1. Introduction and preliminaries. The question of studying homological
properties on modules that guarantee the noetherian property dates back to the 1960s,
when Bass and Papp showed that a ring is right noetherian iff direct sums of injective
modules are injective. Since then, there has been continuous work on finding properties
on classes of modules that guarantee the ring to be right noetherian (or some other
finiteness condition). For instance, if each cyclic right module is an injective module
or a projective module [5], a direct sum of an injective module and a projective module
[12, 14], or a direct sum of a projective module and a module Q, where Q is either
injective or noetherian [6], then the ring is right noetherian. It is also known that if
every finitely generated right module is CS, then the ring is right noetherian [7]. A
celebrated theorem of Osofsky–Smith states that if every cyclic module is CS, then R
is a q f d-ring [12]. In this paper, we will consider rings over which every cyclic right
module is a direct sum of a projective module and a CS or noetherian module.

∗Dedicated to Patrick F. Smith on his 65th birthday.
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In Section 2, we first introduce a slight generalization of V -rings, which we
call WV -rings (weakly V -rings). Recall that rings over which all simple modules are
injective are known as V -rings [11]. A ring R is called a right WV -ring if every simple
right R-module is R/A-injective for any right ideal A of R such that R/A �∼= R. Detailed
study as to how WV -rings differ from V -rings is provided in Section 2. Indeed, if R is
a right WV -ring but not a right V -ring, then R must be right uniform.

In Section 3, we introduce the property (*) for an R-module M, and say that M
satisfies (*) if we can write M = A ⊕ B, where A is either a CS-module or a noetherian
module, and B is a projective module. Theorem 18(a) shows that if R is a V -ring and
M is a finitely generated R-module with projective socle such that each subfactor of
M satisfies (*), then M = X ⊕ T , where X is semisimple and T is noetherian with
zero socle. In particular, if R is a V -ring such that each cyclic module satisfies (*),
then R = S ⊕ T , where S is semisimple artinian and T is a finite direct sum of simple
noetherian rings with zero socle. Theorem 18(b) shows that a WV -ring R is noetherian
iff each cyclic R-module satisfies (*). The property (*) has been studied in [13] for
finitely generated, as well as 2-generated, modules. The proofs of the main results
depend upon a series of lemmas.

We will say a module has fud whenever it has finite uniform dimension.
Throughout, we assume that all rings are associative rings with identity, and all
modules are right R-modules. Thus, in our results, we shall omit the word ‘right’ when
we want to say right noetherian, right WV -ring, etc. We shall use ⊂e to denote an
essential submodule and ⊂⊕ to denote a direct summand. For any undefined notation
or terminology, we refer the reader to [9].

2. WV-rings. A ring R is called a WV -ring if each simple R-module is R/A-
injective for any right ideal A such that R/A �∼= R (i.e. R/A is proper). Such rings need
not be V -rings, as, for example, the ring �p2 for any prime p is a WV -ring which is not
a V -ring. Let us remark that Wisbauer [16, p. 190] called a module M co-semisimple if
every module in the category σ (M) is M-injective. Following Wisbauer’s definition of
co-semisimple modules, a right WV -ring is a ring for which every proper cyclic right
module is co-semisimple.

Let us first compare V -rings and WV -rings.

LEMMA 1. Let R be a WV-ring, and R/A and R/B be proper cyclic modules such
that A ∩ B = 0. Then R is a V-ring.

Proof. Since R is a WV -ring, any simple module is R/A × R/B-injective. Since RR

embeds in R/A × R/B, any simple module is RR injective, i.e. R is a V -ring. �

THEOREM 2. Let R be a WV-ring which is not a V-ring. Then R must be uniform.

Proof. Suppose R is a WV -ring. If R is of infinite uniform dimension, then R
contains a direct sum A ⊕ B where both A and B are infinite direct sums of nonzero
right ideals. If R/A ∼= R, then R/A is projective, and hence there exists a right ideal
C of R such that R = C ⊕ A. But then the cyclic module R/C is isomorphic to an
infinite direct sum of nonzero modules, which is a contradiction. Thus, R/A is proper.
Similarly R/B is proper, and so R is a V -ring by Lemma 1.

Assume now that u · dim(R) = n > 1 is finite. Then there exist closed uniform right
ideals Ui such that

⊕n
i=1 Ui ⊂e R. Now u · dim(R/U1) = n − 1 = u · dim(R/U2), and

so R/U1 and R/U2 are proper. Hence, R is a V -ring by Lemma 1.
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So if R is a WV -ring but not a V -ring, we must have u · dim(R) = 1, i.e. R is
uniform. �

The proofs of Propositions 3 and 5 are straightforward and closely follow the
classical ones given by Lam [9, Lemma 3.75 p. 99] or Wisbauer [16, 23.1, p. 190].

PROPOSITION 3. Let R be a ring such that R/I is proper for any nonzero right ideal
I. Then the following are equivalent:

(a) R is a WV-ring.
(b) J(R/I) = 0 for any nonzero right ideal I.
(c) Any nonzero right ideal I �= R is an intersection of maximal right ideals.
(d) If a simple R-module is contained in a cyclic module R/I where I �= 0, then it is a

direct summand of R/I.
In particular, the above statements are equivalent when R is uniform or local.

COROLLARY 4. If R is a WV-ring, then R/J(R) is a V-ring.

Proof. Let J = J(R). We note that R is a V -ring iff each right ideal ( �= R) is an
intersection of maximal right ideals. If R is a WV -ring which is not uniform, then R is
a V -ring (Theorem 2), and hence, J = 0. So the result is clear in this case.

Thus, we may assume R is uniform. By Proposition 3, every nonzero right ideal
( �= R) is an intersection of maximal right ideals. If J = 0, then the zero ideal is also
an intersection of maximal right ideals, and so R(= R/J) is a V -ring. If J �= 0, then in
R/J all right ideals ( �= R/J) are intersections of maximals, and so R/J is a V -ring. �

PROPOSITION 5. If R is a WV-ring, then the following statements hold:
(a) If I is a right ideal of R, then either I2 = 0 or I2 = I.
(b) If R is a domain, then R is simple.
(c) If a nonzero right ideal I of R contains a nonzero two-sided ideal, then every

simple R-module is R/I-injective.
(d) If R is a von Neumann regular ring, then R is a V-ring.
(e) If R is a local ring and is not a V-ring, then R has exactly three right ideals.

Proof. (a) If R is a V -ring, it is well known that I2 = I for every right ideal of R.
Assume that R is not a V -ring. Then R is uniform (Theorem 2).

Let I �= R be a right ideal and suppose I2 �= 0. By Proposition 3, both I and I2 are
intersections of maximal right ideals. If I2 �= I , there must exist a maximal right ideal
M such that I2 ⊆ M but I �⊆ M. We thus have R = I + M and we can write 1 = x + m
for some x ∈ I, m ∈ M. This gives I = (x + m)I ⊆ xI + mI ⊆ I2 + M = M, which is
a contradiction. Hence, I2 = I .

(b) Let 0 �= a ∈ R. Since R is a domain, (aR)2 �= 0, so part (a) gives us (aR)2 = aR,
i.e. aRaR = aR. Since R is a domain, this gives that RaR = R.

(c) Let us first remark that if T is a nonzero two-sided ideal of R, then, since
( R

T )T = 0, R/T is a proper cyclic module.
Let I be a nonzero right ideal of R and T a nonzero two-sided ideal contained in

I . Since R is a WV -ring, any simple module is R/T-injective, and hence, any simple

module is injective relative to R/I ∼= R/T
I/T

.

(d) Follows from Corollary 2.4, since J(R) = 0.
(e) If I �= 0 and I �= R, then I is an intersection of maximal right ideals (Propo-

sition 3). So I = J(R). Thus, R has at most three right ideals. �
COROLLARY 6. If R is a WV-domain, then R is a V-domain.
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It is known that the property of R being a V -ring is not left–right symmetric, and
hence, neither is the property of being a WV -ring. In fact, the property of being a
WV -ring that is not a V -ring is not left–right symmetric either, as evidenced by the
following example, given by Faith [3, p. 335].

EXAMPLE 7. Let R =
[ a b

0 σ (a)

]
, where a, b ∈ �(x), and σ is the �-endomorphism

of �(x) such that σ (x) = x2.

In this ring there are only three left ideals, and hence, it is a left WV -ring. It cannot
be a left V -ring because J(R) �= 0. This ring is local and is not right noetherian, and
thus, it cannot be a right WV -ring (Proposition 5(e)).

3. Cyclics being (CS or noetherian) ⊕ projective. Recall that an R-module M
satisfies (*) if we can write M = A ⊕ B, where A is either a CS-module or a noetherian
module, and B is a projective module. It was shown in [13] that a ring R is noetherian iff
every 2-generated R-module satisfies (*). We remark that it is not sufficient to assume
that every cyclic satisfies (*) in order for R to be noetherian, as may be seen from the
following example [10].

EXAMPLE 8. Let R be the ring of all formal power series
{∑

aixi|ai ∈ F, i ∈ I
}

,

where F is a field, and I ranges over all well-ordered sets of non-negative real numbers.

This ring is not noetherian, but every homomorphic image is self-injective, and
hence, satisfies (*).

We begin with a result that is used throughout the paper. We would like to thank a
referee for drawing our attention to the Shock’s result [15], which shortens the proof.

PROPOSITION 9. Let C be a cyclic R-module such that each cyclic subfactor of C
satisfies (*), and let S = Soc(C). Then C/S has fud . Furthermore, if R is a WV-ring,
then C/S is noetherian.

Proof. Let E ⊆e C and X
D be a cyclic subfactor of C

E , where E ⊆ D ⊆ X ⊆ C. Then
by (*), X

D = B
D ⊕ A

D with B
D projective and A

D CS or noetherian. Since D splits from
B, essentiality shows that B = D. Theorem 1.3 of [2] then applies to give that C

E has
fud . Since E was arbitrary such that E ⊆e C, this implies that, in particular, C

E has
qfd . Then C

soc(C) is fud by [2, Lemma 2.9]. Now assume that R is a WV -ring and let
Z ⊂ Y ⊆ C/E, where, as above, E ⊆e C. If 0 �= x ∈ rad(Y/Z), let K be maximal in
xR. Since C

E is singular, it is proper cyclic and the simple module xR
K is C

E -injective,
so it splits in Y/Z

K , which is a contradiction since xR
K ⊆ rad( Y/Z

K ). We conclude that
rad( Y

Z ) = 0. Then [15, Theorem 3.8] implies that C
E is noetherian. Now, [1, Theorem

5.15(1)] shows that C
soc(C) is noetherian. �

For the convenience of the reader, we state below a well-known lemma (cf. [1,
Lemma 9.1, p. 73]).

LEMMA 10. If M is a finitely generated CS-module and ⊕Mi is an infinite direct sum
of nonzero submodules of M, then M/ ⊕ Mi cannot have finite uniform dimension.
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Under a stronger assumption on a cyclic module C than the condition (*), namely,
if every cyclic subfactor of C is projective, CS or noetherian, we show that C is
noetherian when R is a WV -ring. This will play a key role later as we work towards
the general result.

THEOREM 11. Let C be a cyclic R-module such that each cyclic subfactor of C is
either CS, noetherian or projective.

(a) Then C has fud .
(b) If R is a WV-ring, then C is noetherian.

Proof. (a) Let S = Soc(C). By Proposition 9, C/S has fud . We show S is finitely
generated.

Suppose S is infinitely generated. Let*** S = S1 ⊕ S2, where S1 and S2 are both
infinitely generated. Now by hypothesis, C/S1 is either CS or noetherian or projective.
If projective, then S1 ⊂⊕ C and hence S1 is cyclic, which is a contradiction as S1 is
infinitely generated. If noetherian, then so is S/S1

∼= S2, which is a contradiction as
S2 is infinitely generated. So C/S1 is CS. Furthermore, (S1 ⊕ S2)/S1

∼= S2 is infinitely

generated. Since C/S ∼= C/S1

(S1 ⊕ S2)/S1
, we get a contradiction by invoking Lemma 10.

Hence, S is finitely generated and so C has fud .
(b) Since C/S is noetherian (Proposition 9), and S has fud , it follows that C is

noetherian. �
Although the proof of the next lemma is straightforward, we believe that the reader

will appreciate the simple technique used in the proof.

LEMMA 12. Let C be an R-module and S = Soc(C). If C/S is a uniform R-module,
then for any two submodules A and B of C with A ∩ B = 0, either A or B is semisimple.

Proof. Let K be a complement submodule of A in C containing B. Then A ⊕
K ⊂e C. This yields Soc(A ⊕ K) = S. Thus, (A ⊕ K)/(Soc(A ⊕ K)) ⊆ C/S. Since (A ⊕
K)/(Soc(A ⊕ K)) ∼= A/Soc(A) × K/Soc(K) and C/S is uniform as an R-module, either
A/Soc(A) or K/Soc(K) is zero. So A = Soc(A) or K = Soc(K). In other words, either
A or K (and hence B) is semisimple. �

LEMMA 13. If C is an R-module, and if C/I = A/I ⊕ B/I is a direct sum with B/I
a projective module, then C = A ⊕ B′, where B = B′ ⊕ I.

Proof. From the decomposition C/I = A/I ⊕ B/I , we have C = A + B, where
A ∩ B = I . Since B/I is projective, B = B′ ⊕ I for some B′. Then C = A + (B′ ⊕ I) =
A + B′. We claim that A ∩ B′ = 0.

Let x ∈ A ∩ B′ ⊆ A ∩ B = I . Then x ∈ B′ ∩ I = 0. Thus, C = A ⊕ B′. �
LEMMA 14. Let R be a WV-ring. Let C be a cyclic module with a projective socle

(equivalently S = Soc(C) is embeddable in R). If C/S is a uniform R-module and each
cyclic subfactor of C satisfies (*), then C is noetherian.

Proof. First assume R is a V -ring. Let C′/I be a cyclic subfactor of C and
C′/I = A/I ⊕ B/I be a direct sum of a CS or noetherian module and a projective
module, respectively. Then, by Lemma 13, C′ = A ⊕ B′, where B = B′ ⊕ I . Since

C′
Soc(C′) = C′

C′∩S
∼= C′+S

S ⊆ C
S is uniform, either A or B′ is semisimple (Lemma 12). Note

that both A and B′ are cyclic.
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Case 1: A is semisimple. Since A/I is semisimple cyclic and R is a V -ring, A/I is
injective. Moreover, A/I embeds in A ⊆ Soc(C′) ⊆ Soc(C) = S. The hypothesis that S
embeds in R yields that A/I and hence C′/I are projective.

Case 2: B′ is semisimple. Since B/I ∼= B′ is semisimple and cyclic, it is a finite
direct sum of simple injective modules. If A/I is noetherian, then clearly C/I will also
be noetherian. Recall that a direct sum of a CS module and a simple module is a CS
module (cf. [1, Lemma 7.10]). Hence, if A/I is CS, then A/I ⊕ B/I is also CS.

Thus, any cyclic subfactor of the cyclic module C is either CS or noetherian or
projective. Therefore, C is noetherian by Theorem 11.

Now if R is not a V -ring, then it is uniform (Theorem 2). Since S embeds
in R, S is trivially noetherian. So C is noetherian because C/S is noetherian
(Proposition 9). �

PROPOSITION 15. Let R be a V-ring. Let C be a cyclic R-module with essential and
projective socle. Suppose each cyclic subfactor of C satisfies (*). Then C is semisimple.

Proof. Let S = Soc(C). We know by Proposition 9 that C/S has fud . Suppose
C/S �= 0. Then C/S contains a nonzero cyclic uniform submodule. Thus, we can find
u ∈ C with U = (uR + S)/S ∼= uR/Soc(uR) uniform. Since Soc(uR) ⊆⊕ S, we know
that Soc(uR) is projective. Moreover, every cyclic subfactor of uR also satisfies (*).
Thus, Lemma 14 implies that uR is noetherian. Soc(uR) is then a finite direct sum of
simple modules, and hence, it is injective. Since Soc(uR) ⊂e uR, uR = Soc(uR). This
yields U = 0, which is a contradiction. Thus, C/S = 0, that is, C = S, which completes
the proof. �

REMARK 16. We note that the above proposition does not apply to a WV -ring R
which is not a V -ring. In this case, RR is uniform and the only projective submodule
of a cyclic R-module is the zero submodule.

THEOREM 17. Let R be a von Neumann regular WV-ring such that each cyclic
R-module satisfies (*). Then R is semisimple artinian.

Proof. By Proposition 5(d), R is a V -ring. Let S = Soc(R). Then R/S has fud ,
and hence, it is semisimple artinian [8]. Let T be a complement of S. Then T embeds
essentially in R/S. Thus, T = 0. Hence, S ⊂e R. So by Proposition 15, R is semisimple
artinian. �

Finally, we prove the following general result.

THEOREM 18. (a) Let R be a V-ring and M be a finitely generated R-module with
projective socle. Suppose each cyclic subfactor of M satisfies (*). Then M is noetherian,
and M = X ⊕ T, where X is semisimple and T is noetherian with zero socle.
In particular, if R is a V-ring such that each cyclic module satisfies (*), then R = S ⊕ T,
where S is semisimple artinian and T is a finite direct sum of simple noetherian rings with
zero socle.
(b) A WV-ring R is noetherian iff each cyclic R-module satisfies (*).

Proof. (a) First, assume M is cyclic. Let S0 = Soc(M) and let T0 be a complement
of S0 in M. Consider the cyclic module X0 = M/T0. Then S0 is essentially embeddable
in X0. Since Soc(X0) ∼= S0, X0 is semisimple by Proposition 15. So X0, and hence S0, is
a finite direct sum of simples. In particular, S0 is injective and we have M = S0 ⊕ T0.
Since M/S0 is noetherian (Proposition 9), T0 is noetherian and obviously it has zero
socle.
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In general, M = ∑n
i=1 xiR. By above, each xiR is noetherian, and hence, M is

noetherian. X = Soc(M) is finitely generated and injective by hypothesis. Therefore,
M = X ⊕ T , where X is semisimple and T is noetherian with zero socle.

Finally, let S = Soc(R), which is clearly projective in a V -ring and let T be its
complement. Then, as shown above, R is a right noetherian V -ring. Therefore, R is a
direct sum of simple noetherian rings [4, p. 70]. So R = S ⊕ T , where S is semisimple
artinian and T is a finite direct sum of simple noetherian rings with zero socle.

(b) Note that if R is a WV -ring and not a V -ring, then R is uniform (Theorem 2).
In this case, Soc(R) is either zero or a minimal right ideal. Since R/Soc(R) is noetherian
(Proposition 9), we conclude that R is noetherian. The converse is obvious. �

REMARK 19. (a) Although Theorem 17 is a consequence of Theorem 18, the short
proof given for Theorem 17 is of independent interest. More generally, if R is a WV -
ring in which each non-nil right ideal contains a nonzero idempotent and every cyclic
R-module satisfies (*), then R is semisimple artinian [8].

(b) Readers familiar with the Wisbauer category σ [M] may observe that the results
in this paper can be more generally stated in σ [M], where M is a finitely generated
module.
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