NOTE ON ALMOST PRODUCT MANIFOLDS AND THEIR TANGENT BUNDLES

Chorng Shi Houh¹

(received May 16, 1966)

Let M^n be an n-dimensional manifold of differentiability class C^∞ with an almost product structure ϕ_i^j . Let ϕ_i^j have eigenvalue +1 of multiplicity p and eigenvalue -1 of multiplicity p and eigenvalue -1 of multiplicity p where p+q=n and $p\geq 1$, $q\geq 1$. Let $T(M^n)$ be the tangent bundle of M^n . $T(M^n)$ is a 2n dimensional manifold of class C^∞ . Let x^i be the local coordinates of a point P of M^n . The local coordinates of $T(M^n)$ can be expressed by 2n variables (x^i, y^i) where x^i are coordinates of the point P and y^i are components of a tangent vector at P with respect to the natural frame constituted by the vectors $\partial/\partial x^i$ at P. For convenience's sake we put

$$x^{i} = x^{n+i} = i$$

We assume that all indices i, j, k, ... run through 1, 2, ..., n. So all indices i, j, k, ... run through n+1, n+2, ..., 2n. The indeces A, B, C, ... are supposed to run through 1, 2, ..., 2n.

In § 1 we prove that if M^n has constant curvature and its metric connection is a ϕ -connection then M^n is locally flat. (Theorem 1). In § 2 we introduce an almost product structure ϕ_i^j in $T(M^n)$ and prove that it is integrable if and only if M^n

Part of this work was done when the author was a fellow of the Summer Research Institute, Can. Math. Congress, 1965.

Canad. Math. Bull. vol. 9, no. 5, 1966

is locally flat. Also it is proved that an infinitesimal transformation of M^n is affine if and only if its extension to $T(M^n)$ is almost decomposable. (Theorem 2). In § 3 we use the metric on $T(M^n)$ introduced by S. Sasaki [3] and prove that the metric connection is a ϕ -connection if and only if M^n is locally flat. (Theorem 3). Finally we suppose M^n is locally flat and show that an extension to $T(M^n)$ of a given infinitesimal transformation on M^n is affine if and only if the extension is almost decomposable. (Theorem 4). Theorems 1,2 correspond to known theorems in a manifold with an almost complex structure. (Remarks to § 1, 2). Some tensor calculus are omitted in § 2, 3 and 4. Those are straight calculation though lengthy.

1. In an almost product manifold, an affine connection is called a ϕ -connection if the almost product structure ϕ_j^i is covariant constant with respect to that connection. (Yano [6], p. 255). It is known that we can introduce a positive definite Riemannian metric g_{ij}^i , which satisfies $g_{ij}^i \phi_h^i \phi_k^j = g_{hk}^i$, over $M^n \cdot \{j_k^i\}$ are the Christoffel symbols constructed by g_{ij}^i . The Riemann-Christoffel curvature tensor is given by

$$R_{ijk}^{h} = \partial_i \begin{Bmatrix} h \\ j k \end{Bmatrix} - \partial_j \begin{Bmatrix} h \\ i k \end{Bmatrix} + \begin{Bmatrix} h \\ i l \end{Bmatrix} \begin{Bmatrix} l \\ j k \end{Bmatrix} - \begin{Bmatrix} h \\ j l \end{Bmatrix} \begin{Bmatrix} l \\ i k \end{Bmatrix},$$

where θ_i denotes the partial differentiation with respect to \mathbf{x}^i .

THEOREM 1. If the almost product manifold M^n has constant curvature and its metric connection $\{i \} k$ is a ϕ -connection, then M^n is locally flat.

<u>Proof.</u> Let $\phi^{lh} = g^{lk}\phi_k^h$, $\overline{H}_{ji} = \phi^{lh}R_{hjil}$, $\overline{H} = \phi^{ji}\overline{H}_{ji}$; $R = g^{ij}R_{ij}$ be the curvature scalar. If $\{j_k\}$ is a ϕ -connection then (Hsu [2] proposition 5.3)

$$R = \overline{H}$$
.

Now M has constant curvature K, then

$$R = n(n-1)K$$
.

But

$$\begin{split} \overline{H} &= \phi^{ji} \phi^{lh} R_{hjil} \\ &= \phi^{ji} \phi^{lh} K(g_{hl} g_{ji} - g_{hi} g_{jl}) \\ &= K((\phi_i^{\ i})^2 - n) = K[(q-p)^2 - n]. \end{split}$$

So $\overline{H} = R$ implies K = 0.

Remark. This theorem corresponds to a known theorem in a Kähler manifold. (Yano [6] pp. 69-70).

2. Now we introduce an almost product structure in T(Mⁿ) as follows:

$$\phi_{j}^{i} = -\{i_{j}^{i}\} y^{l},$$

$$\phi_{j*}^{i} = -\delta_{j}^{i},$$

$$\phi_{j}^{i*} = -\delta_{j}^{i} + \{i_{l}^{i}\} \{i_{j}^{l}\} y^{l},$$

$$\phi_{j*}^{i*} = \{i_{j}^{i}\} y^{l}.$$

It is easy to show that

$$\phi_{\rm B}^{\ A}\phi_{\rm C}^{\ B}=\delta_{\rm C}^{\ A},$$

so ϕ_B^A is an almost product structure on $T(M^n)$.

The Nijenhuis tensor of the almost product structure (1) is:

$$N_{BC}^{A} = \phi_{B}^{D} (\partial_{D} \phi_{C}^{A} - \partial_{G} \phi_{D}^{A}) - \phi_{C}^{D} (\partial_{D} \phi_{B}^{A} - \partial_{B} \phi_{D}^{A}),$$

where ∂_D denotes the partial differentiation with respect to \mathbf{x}^D .

After some tensor calculations we have the following result:

$$\begin{split} N_{jk}^{i} &= (\{ \{ \}_{jm}^{t} \} \ R_{tkl}^{i} - \{ \{ \}_{km}^{t} \} \ R_{tjl}^{i}) y^{m} y^{l} \\ \\ N_{jk}^{i*} &= -R_{jkm}^{i} y^{m} - \{ \{ \}_{js}^{t} \} \{ \{ \}_{km}^{t} \} \ y^{s} y^{m} R_{lht}^{i} y^{t} \\ \\ &- \{ \{ \}_{st}^{i} \} \ y^{t} (\{ \{ \}_{jk}^{l} \} \ y^{h} R_{lkm}^{s} y^{m} - \{ \{ \}_{kk}^{l} \} y^{h} R_{ljm}^{s} y^{m}), \end{split}$$

(2)
$$N_{jk*}^{i} = R_{jkl}^{i} y^{l},$$

$$N_{j*k*}^{i} = 0,$$

$$N_{j*k*}^{i*} = - \{ t \} y^{l} R_{tkm}^{i} y^{m} - \{ t \} y^{t} R_{jkm}^{l} y^{m},$$

$$N_{j*k*}^{i*} = -R_{jkt}^{i} y^{t},$$

where R h is the Riemann-Christoffel curvature tensor.

Let v^i be an infinitesimal transformation of M^n and V^A be the extension of v^i . V^A is an infinitesimal transformation of $T(M^n)$ and defined by (S. Sasaki [3] § 2)

$$V^i = v^i$$
, $V^{i*} = y^r \partial_r v^i$.

We call v^i an <u>almost contravariant decomposable</u> vector field of M^n if it satisfies

$$\xi_{\mathbf{v}}\phi_{\mathbf{j}}^{\mathbf{i}}=0$$

where \mathcal{L}_{v} denotes the operator of Lie derivation with respect to v^{i} . If M^{n} is a locally product manifold which satisfies stronger conditions than the almost product manifold, then the v^{i} satisfying (3) turns out to be a contravariant decomposable vector field. (K. Yano [6] pp. 222-223).

Making use of (1) and the following formula for Lie derivation:

$$\mathcal{L}_{V} \phi_{B}^{A} = V^{C} \partial_{C} \phi_{B}^{A} - \phi_{B}^{C} \partial_{C} V^{A} + \phi_{C}^{A} \partial_{B} V^{C} ,$$

we have the following result:

$$\begin{cases}
\xi \phi_{j}^{h} = -y^{r} t_{jr}^{h}, \\
\xi \phi_{j*}^{h} = 0, \\
\xi \phi_{j}^{h*} = (\{\frac{1}{j}\} t_{lm}^{h} + \{\frac{h}{l}\} t_{jn}^{l}) y^{m} y^{n}, \\
\xi \phi_{j*}^{h*} = y^{r} t_{jr}^{h}
\end{cases}$$

where t_{ji}^{h} is given by (K. Yano [6] p.17)

$$\mathbf{t_{ji}}^{h} = \nabla \nabla \nabla \mathbf{v}^{h} + \mathbf{v^{r}} \mathbf{R_{rji}}^{h} = \mathbf{x_{ji}^{h}}$$

 $\nabla_{\underline{j}}$ being the Riemannian covariant derivation in \underline{M}^n .

From (2) and (4) we have the following theorem:

THEOREM 2. In order that the almost product structure (1) of T(Mⁿ) is integrable, it is necessary and sufficient that the Riemannian manifold Mⁿ is locally flat. In order that an infinitesimal transformation of a Riemannian manifold Mⁿ is affine, it is necessary and sufficient that its extension in T(Mⁿ) with an almost structure (1) is almost decomposable.

<u>Proof.</u> The almost product structure (1) is integrable if and only if $N_{AB}^{\ \ C} = 0$. (K. Yano [5] Theorem 1). Hence the first part of the theorem is the conclusion of (2). v^i is affine if and only if $\{x_i^t\}_{i=1}^h = 0$. (K. Yano [6], p. 17). Hence the second part of this theorem is the conclusion of (4).

Remark. This theorem is an analogue of theorems in an almost complex manifold. (Hsu [1] Theorem 1.1, Tachibara and Okumura [4], Theorems 1,2).

3. Let $G_{\mbox{AB}}$ be the Riemannian metric defined by S. Sasaki [3] § 3 on $T(\mbox{M}^n)$, namely

$$G_{jk} = g_{jk} + g_{st} \{ \begin{cases} s \\ j \end{cases} \} \{ \begin{cases} t \\ k \end{cases} \} y^{l} y^{m},$$

$$G_{jk*} = g_{kl} \{ \begin{cases} 1 \\ j \end{cases} \} y^{r},$$

$$G_{j*k*} = g_{jk}.$$

Then for $\phi_{AB} = \phi_A^C G_{CB}$ we have by (1) and (5):

$$\phi_{ij} = -\partial_{1}g_{ij}y^{1},$$

$$\phi_{ij*} = \phi_{j*i} = -g_{ij},$$

$$\phi_{i*j*} = 0$$

and

$$G_{AB} \phi_C^A \phi_D^B = G_{CD}.$$

The Christoffel symbols ${A \choose B C}$ of the metric G_{AB} of $T(M^n)$ are (S. Sasaki [3] § 7).

$$\left\{ \frac{A}{j * k *} \right\} = 0,
 \left\{ \frac{i}{j * k} \right\} = \left\{ \frac{i}{j * k} \right\} + \frac{1}{2} \left(R_{khl}^{i} \left\{ \frac{h}{m j} \right\} + R_{jhl}^{i} \left\{ \frac{h}{m k} \right\} \right) y^{l} y^{m},
 \left\{ \frac{i}{j * k} \right\} = \frac{1}{2} R_{kjl}^{i} y^{l},
 \left\{ \frac{i}{j * k} \right\} = \frac{1}{2} \left(R_{jlk}^{i} + R_{klj}^{i} + 2 \partial_{l} \left\{ \frac{i}{j * k} \right\} \right) y^{l} + \frac{1}{2} \left\{ \frac{i}{p * h} \right\} \left(R_{kml}^{i} \left\{ \frac{l}{n j} \right\} \right) y^{n} y^{m} y^{p},$$

$$\frac{\overrightarrow{i*}}{\left\{\begin{matrix} i*\\ j* k\end{matrix}\right\}} = \left\{\begin{matrix} i\\ j k\end{matrix}\right\} - \frac{1}{2} \left\{\begin{matrix} i\\ m h\end{matrix}\right\} R_{kjl}^{h} y^{l} y^{m}.$$

Let $\overline{\nabla}$ denote the covariant differentiation with respect to the metric connection $\{\frac{\overline{A}}{B}C\}$ on $T(M^n)$. We will prove the following theorem:

THEOREM 3. The connection $\{\frac{A}{B}C\}$ is a ϕ -connection, where ϕ is an almost product structure on $T(M^n)$ given by (1), if and only if M^n is locally flat.

 $\frac{\text{Proof.}}{B} \quad \text{Suppose } \{\frac{A}{B}C\} \quad \text{is a ϕ-connection, then} \\ \overline{\nabla}_{A}\phi_{C} = 0, \text{ also } \overline{\nabla}_{A}\phi_{CB} = 0. \quad \text{Making use of (1), (6), (7) we have}$

$$\overline{\nabla}_{k} \phi_{j*}^{i} = \frac{1}{2} (-R_{khl}^{i} \{ m_{j}^{h} \} - R_{jhl}^{i} \{ m_{k}^{h} \} + R_{ksl}^{i} \{ m_{j}^{s} \}) y_{y}^{l} m$$
,

$$\overline{\nabla}_{\mathbf{k}}\phi_{\mathbf{i}*\mathbf{j}} = \frac{1}{2}(\mathbf{R}_{\mathbf{likh}}\{^{\mathbf{h}}_{\mathbf{j}} + \mathbf{R}_{\mathbf{lijh}}\{^{\mathbf{h}}_{\mathbf{m}}\} + \mathbf{R}_{\mathbf{kils}}\{^{\mathbf{s}}_{\mathbf{j}}\})\mathbf{y}^{\mathbf{l}}\mathbf{y}^{\mathbf{m}}.$$

So $\nabla_k \phi_{i*}^i = 0$ yields

$$(-R_{likh}\{\frac{h}{m_{j}}\}-R_{lijh}\{\frac{h}{m_{k}}\}+R_{liks}\{\frac{s}{j_{m}}\})y^{l_{m}}y=0.$$

Combining with $\overline{\nabla}_k \phi_{i*i} = 0$ we have

$$(R_{liks} + R_{kils}) \{ \begin{cases} s \\ j \end{cases} y^l y^m = 0.$$

Substituting this relation to the right of the above $\overline{\nabla}_k \phi_{i * j}$ we have

(8)
$$R_{lijh} \{ {1 \atop m} {k} \} y^l y^m = 0.$$

Computing $\nabla_{k^*} \phi_j^{i^*}$ and making use of (1), (7) and (8) we have

$$\overline{\nabla}_{k*} \phi_{j}^{i*} = \frac{1}{2} R_{jks}^{i} y^{s}.$$

 $\overline{\nabla}_{k^*} \phi_j^{i^*} = 0$ implies $R_{jks}^i = 0$. So M^n is locally flat.

Conversely suppose M^n is locally flat, then $R_{jks}^{i} = 0$.

(7) turns out to be

$$\left\{ \begin{array}{c}
A \\
j * k *
\end{array} \right\} = 0, \quad \left\{ \begin{array}{c}
i \\
j k
\end{array} \right\} = \left\{ \begin{array}{c}
i \\
j k
\end{array} \right\}, \quad \left\{ \begin{array}{c}
i \\
j * k
\end{array} \right\} = 0$$

$$\left\{ \begin{array}{c}
i * \\
i k
\end{array} \right\} = \left\{ \begin{array}{c}
i \\
j k
\end{array} \right\}, \quad \left\{ \begin{array}{c}
i \\
j * k
\end{array} \right\} = \left\{ \begin{array}{c}
i \\
j k
\end{array} \right\}.$$

Then from (6) and (5)

$$\begin{split} & \overline{\nabla}_{\mathbf{k}} \phi_{\mathbf{i}\mathbf{j}} = -\partial_{\mathbf{k}} \partial_{\mathbf{l}} g_{\mathbf{i}\mathbf{j}} y^{\mathbf{l}} + (\partial_{\mathbf{p}} [\mathbf{i}\mathbf{k}, \mathbf{j}] + \partial_{\mathbf{p}} [\mathbf{j}\mathbf{k}, \mathbf{i}]) y^{\mathbf{p}} = 0, \\ & \overline{\nabla}_{\mathbf{k}*} \phi_{\mathbf{i}\mathbf{j}} = -\partial_{\mathbf{k}} g_{\mathbf{i}\mathbf{j}} + \{ \begin{matrix} \mathbf{l} \\ \mathbf{i} & \mathbf{k} \end{matrix}\} g_{\mathbf{l}\mathbf{j}} + \{ \begin{matrix} \mathbf{l} \\ \mathbf{j} & \mathbf{k} \end{matrix}\} g_{\mathbf{l}\mathbf{i}} = 0, \\ & \overline{\nabla}_{\mathbf{A}} \phi_{\mathbf{i}*\mathbf{j}} = -\overline{\nabla}_{\mathbf{A}} g_{\mathbf{i}\mathbf{j}} = -\overline{\nabla}_{\mathbf{A}} G_{\mathbf{i}*\mathbf{j}*} = 0, \\ & \overline{\nabla}_{\mathbf{k}} \phi_{\mathbf{i}*\mathbf{j}*} = 0, \\ & \overline{\nabla}_{\mathbf{k}*} \phi_{\mathbf{i}*\mathbf{j}*} = 0. \end{split}$$

Hence $\left\{\begin{matrix} A \\ B \end{matrix}\right\}$ is a ϕ -connection. This completes the proof of the theorem.

Remark. It was known that an almost product manifold is integrable if and only if it is possible to introduce a symmetric affine connection with respect to which the structure tensor is covariantly constant. (Yano [6], p. 254). So by Theorem 2 we knew that we can introduce a symmetric affine ϕ -connection in $T(M^n)$ if and only if M^n is locally flat. Theorem 3 exhibits such a metric ϕ -connection.

4. Suppose M^n be locally flat and have an almost product structure ϕ . Let V^A be an extension of an infinitesimal transformation v^i of M^n . That is $V^i = v^i$, $V^{i*} = y^r \partial_r v^i$. Then

$$\overline{t}_{BC}^{A} = \partial_{B} \partial_{C} V^{A} + V^{D} \partial_{D} \{\overline{A}_{BC}\} + \{\overline{A}_{CD}\} \partial_{B} V^{C} + \{\overline{A}_{BD}\} \partial_{C} V^{D}$$
$$- \{\overline{B}_{C}\} \partial_{D} V^{A}.$$

Breaking down the indeces and making use of (7) and the fact that M^{n} is locally flat, we have

$$\overline{t}_{jk}^{i} = t_{jk}^{i},$$

$$\overline{t}_{jk}^{i*} = y^{r} \partial_{r} t_{jk}^{i}$$

$$\overline{t}_{j*k}^{i} = 0,$$

$$\overline{t}_{j*k}^{i*} = 0,$$

$$\overline{t}_{j*k}^{i*} = t_{jk}^{i},$$

$$\overline{t}_{j*k}^{i*} = 0.$$

THEOREM 4. Suppose M^n is locally flat, v^i is a vector field on M^n , V^A is the extension of v^i on $T(M^n)$. Then V^A is an affine infinitesimal transformation on $T(M_n)$ if and only if V^A is almost decomposable with respect to the almost product structure (1) in $T(M^n)$.

<u>Proof.</u> By (9) $\overline{t}_{BC}^{\quad A} = 0$ if and only if $t_{jk}^{\quad i} = 0$. So V^A is an affine infinitesimal transformation if and only if v^i is an affine infinitesimal transformation. Then by Theorem 2 it is necessary and sufficient that V^A is almost decomposable.

REFERENCES

1. C. J. Hsu, On some structures which are similar to the quaternion structure. Tôhoku Math. J. 12, (1960), pages 403-428.

- 2. C. J. Hsu, Remarks on certain almost product spaces. Pacific J. Math., 14, (1964), pages 163-176.
- 3. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10, (1958), pages 338-354.
- 4. S. Tachibana and M. Okumura, On the almost-complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J. 14, (1962), pages 156-161.
- 5. K. Yano, Affine connections in an almost product space. Kōdai Math. Sem. Rep. 11, (1959), pages 1-24.
- 6. K. Yano, Differential geometry on complex and almost complex spaces. Pergamon Press, (1965).

University of Manitoba