
J. Appl. Prob. 50, 909–917 (2013)
Printed in England

© Applied Probability Trust 2013

NONDECREASING LOWER BOUND ON THE
POISSON CUMULATIVE DISTRIBUTION FUNCTION
FOR z STANDARD DEVIATIONS ABOVE THE MEAN

M. BONDAREVA,∗ University of Rochester

Abstract

In this paper we discuss a nondecreasing lower bound for the Poisson cumulative
distribution function (CDF) at z standard deviations above the mean λ, where z and
λ are parameters. This is important because the normal distribution as an approximation
for the Poisson CDF may overestimate or underestimate its value. A sharp nondecreasing
lower bound in the form of a step function is constructed. As a corollary of the bound’s
properties, for a given percent α and parameter λ, the minimal z is obtained such that, for
any Poisson random variable with the mean greater or equal to λ, its αth percentile is at
most z standard deviations above its mean. For Poisson distributed control parameters, the
corollary allows simple policies measuring performance in terms of standard deviations
from a benchmark.
Keywords: Central limit theorem; Poisson distribution; monotonic approximation
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1. Introduction

In this paper we study a nondecreasing lower bound for the Poisson cumulative distribution
function (CDF) at z standard deviations above the mean. Management widely uses policies that
measure performance in terms of standard deviations from a benchmark. A common assumption
is that a random control parameter is normally distributed. For normal random variables, the
CDF at z standard deviations above the mean is well known. This is not the case if the control
parameter instead has a Poisson distribution. Let Xλ be a Poisson random variable with mean
λ ≥ 0. For large values of λ, the normal distribution with mean λ and variance λ is a good
approximation to the Poisson distribution. Nevertheless, the normal CDF may underestimate
or overestimate the Poisson CDF. This is unacceptable for cases with high penalties not meeting
the target values. The lower bound on the Poisson CDF given in this paper solves the problem.

This situation arises in the following setting. Suppose that a store faces Poisson demand and
the owner would like to satisfy it at least 95% of the time. The demand rate λ is random and will
be known later. Currently, the owner would like to know what his/her expected inventory cost
will be. Let G be the prior distribution of λ. One approach is to calculate the 95th percentile
for the Poisson distribution for every possible realization of λ and compute the expectation
using G. This approach is difficult, because the question of defining a closed-form solution for
the percentiles of the Poisson distribution with an arbitrary mean is still unresolved. Another
approach is to determine the constant z based on the support of G such that λ + z

√
λ satisfies

demand at least 95% of the time, and then calculate the expected value of λ + z
√

λ. This will
be simpler and will yield an analytical expression. This is the result given in Corollary 1 below.
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Let the probability that Xλ is not greater than z standard deviations above its mean be
�P (λ, z) = P(Xλ ≤ λ + z

√
λ), z ≥ 0. As will be shown below, there exists a step function

�P (λ, z) such that, for all λ ≥ 0 and z ≥ 0, �P (λ, z) is a nondecreasing lower bound on
�P (λ, z). In addition, �P (λ, z) is the unique sharp lower bound among all nondecreasing step
functions. As an interesting corollary of the properties of �P (λ, z), for any given percent α

and parameter λ, the minimal z is obtained such that, for any Poisson random variable with the
mean greater or equal to λ, its αth percentile is at most z standard deviations above its mean.

Theorem 1 in this paper generalizes Theorem 2.3 of [2]. The nondecreasing property
of �P (λ, z) extends the conditions for the Poisson distribution under which the monotonic
approach to central limits holds.

In Section 2 we give the proofs of the theorem and the corollary. In Section 3 we discuss
the results and give one application.

2. Lower bound on �P (λ, z), z ≥ 0

Because Xλ takes integer values, it is clear that

�P (λ, z) = P(Xλ ≤ �λ + z
√

λ�) =
�λ+z

√
λ�∑

i=0

e−λλi

i! . (1)

Given z, λn(z) is defined as the value of λ such that λ + z
√

λ = n. For a fixed z, �P (λ, z) is a
right-continuous function with jumps at λn(z). In Lemma 1 below we examine λn(z) and the
discontinuity of �P (λ, z). Figure 1 shows �P (λ, 0.5) and �P (λ, 2).

Note that Xλ is the number of arrivals in the interval (0, λ] for a rate-one stochastic Poisson
process. Let Sn be the time of the nth Poisson event, and let S0 = 0. Then Sn = ∑n

i=1 Ti , where
Ti are independent, exponentially distributed random variables with mean 1. Throughout this
paper, N denotes the set of positive integers, i.e. N = {1, 2, . . . }. For n ∈ N, P(Xλ ≤ n − 1) =
P(Sn > λ), so

�P (λ, z) = P(S�λ+z
√

λ�+1 > λ). (2)

Lemma 1. Let (λn(z) : n ∈ N) be the sequence of positive-real functions defined by λn(z) =
(
√

(z/2)2 + n − z/2)2, z ≥ 0. Let λ0(z) = 0 for all z ≥ 0. Then �P (λ, z) has positive jumps
at λn(z) and is decreasing in λ in every interval [λn−1(z); λn(z)). The functions λn(z) are
decreasing in z and �P (λn(z), z) is increasing in z.

Proof of Lemma 1. Fix z ≥ 0, and consider the increasing concave function λ + z
√

λ with
the increasing convex inverse (

√
(z/2)2 + y − z/2)2, where λ ≥ 0 and y ≥ 0. Clearly, λn(z)

is the value of the inverse at y = n. Then, from (1), �P (λ, z) has jumps at λn(z) and, from (2),
�P (λ, z) decreases in λ for λ ∈ [λn(z); λn+1(z)).

Since
√

(z/2)2 + n − z/2 = n/(
√

z2/4 + n + z/2) is a decreasing function of z, λn(z)

decreases in z. If 0 ≤ z1 < z2 then

�P (λn(z1), z1) = P(Sn+1 > λn(z1)) < P(Sn+1 > λn(z2)) = �P (λn(z2), z2).

This completes the proof.

The step function �P (λ, z) constructed below is a lower bound on �P (λ, z). For z ≥ 0,
define

�P (λ, z) = P(Xλn(z) ≤ n − 1), λ ∈ [λn−1(z); λn(z)), n ∈ N. (3)

As an example, we present the graph of �P (λ, 0.5) in Figure 1.
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Figure 1: �P (λ, 2), �P (λ, 0.5), �P (λ, 0.5), and P(Xλ ≤ n) for n ∈ {0, 1, . . . , 10}.

In order to prove that �P (λ, z) is bounded below by �P (λ, z), note that �P (λ, z) =
limµ→λn(z)− �P (µ, z) for λ ∈ [λn−1(z); λn(z)), and that, from Lemma 1, �P (λ, z) is decreas-
ing in λ. As a result, for λ ∈ [λn−1(z); λn(z)),

�P (λ, z) > lim
µ→λn(z)− �P (µ, z) = �P (λ, z). (4)

From (4) and Lemma 1, �P (λ, z) is a lower bound of �P (λ, z), is right continuous, and has
jumps at λn(z). Note that the left-continuous version of �P (λ, z) would be inferior to the
right-continuous version at λn(z), n ∈ N.

Using Lemma 1, Theorem 1 below proves nondecreasing properties of �P (λ, z) and its
convergence to the standard normal CDF.

Theorem 1. (a) For λ ≥ 0 and z ≥ 0, �P (λ, z) is nondecreasing in λ and increasing in z.

(b) For z ≥ 0, limλ→∞ �P (λ, z) = �(z), where �(z) is the standard normal CDF.

Proof of Theorem 1. (a) To prove that �P (λ, z) is nondecreasing in λ, it is enough to show
that its jumps at λn(z) are positive for every nonnegative z. Let δ(n, z) denote the size of a jump
of the step function �P (λ, z) at λ = λn, that is, δ(n, z) = �P (λn(z), z) − �P (λn−1(z), z),

n ∈ N.
First, consider z = 0. Note that δ(n, 0) = P(Sn+1 ≥ n + 1) − P(Sn ≥ n), where Sn =∑n
i=1 Ti . From Theorem 2.2 of [2], P(

∑n
i=1 Ti ≥ n) is a strictly increasing function of n.

Therefore, δ(n, 0) > 0.
Second, consider z > 0. Noting that δ(n, z) = P(Xλn+1 ≤ n) − P(Xλn ≤ n − 1) and

recalling the Poisson-gamma relation as in Equation (4) of [1], it follows that

δ(n, z) = 1

n!
∫ ∞

λn+1(z)

une−u du − 1

(n − 1)!
∫ ∞

λn(z)

un−1e−u du. (5)

To simplify the notation, define δ̃(n, z) = δ(n, 2z). To show that δ(n, z) > 0 for all z > 0 and
n ∈ N, it is enough to establish that δ̃(n, z) is positive for all z > 0 and n ∈ N. Fix n ∈ N.
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Clearly, δ̃(n, 0) = δ(n, 0) > 0. Below it is proved that there exists a positive z̃ such that δ̃(n, z)

increases in z over (0; z̃] and asymptotically decreases to 0 over (z̃; ∞).
To analyze δ̃(n, z), define the following functions:

h(n, z) = e−(
√

z2+n−z)2 (
√

z2 + n − z)2n

√
z2 + n

,

w(n, z) = n
h(n, z)

h(n + 1, z)
,

b(n, z) = 4z
√

z2 + n
√

z2 + n + 1(
√

z2 + n + 1 −
√

z2 + n) − 1, n ∈ N.

Then,
∂δ̃(n, z)

∂z
= 2

n!h(n + 1, z)(1 − w(n, z)). (6)

Since h(n, z) is positive for n ∈ N, the sign of ∂δ̃(n, z)/∂z is that of (1 − w(n, z)). To
characterize w(n, z), consider its derivative

∂w(n, z)

∂z
= nz

h(n, z)b(n, z)

h(n + 1, z)(z2 + n)(z2 + n + 1)
. (7)

The sign of b(n, z) determines the sign of ∂w(n, z)/∂z. Note that b(n, 0) = −1,

lim
z→∞ b(n, z) = ∞

and
∂b(n, z)

∂z
= 4z2(

√
z2 + n + 1 −

√
z2 + n)

×
(√

(z2 + n)(z2 + n + 1)

z2 +
√

z2 + n√
z2 + n + 1

+
√

z2 + n + 1√
z2 + n

− 1

)
.

Clearly, ∂b(n, z)/∂z > 0. As a result, b(n, z) increases strictly monotonically in z and changes
sign from negative to positive at some z∗ that depends on n. Then, from (7), w(n, z) decreases
in z over (0; z∗] and increases over (z∗; ∞). According to the inequality proved by Khattri [3],
w(n, 0) = e(n/(1+n))1/2+n < 1 for all n ∈ N. In addition, limz→∞ w(n, z) = ∞. Therefore,
there exists a z̃ depending on n such that z̃ > z∗ and w(n, z̃) = 1. If z ∈ (0; z̃) then w(n, z) < 1
and if z ∈ (z̃; ∞) then w(n, z) > 1.

Consequently, from (6), δ̃(n, z) increases in z over (0; z̃] and decreases over (z̃; ∞). It was
proved that δ̃(n, 0) > 0. Also, limz→∞ δ̃(n, z) = 0 because both integrals in (5) converge to
0. It follows, for all z ≥ 0, that δ̃(n, z) > 0. Therefore, for all z > 0 and n ∈ N, δ(n, z) > 0
and the function �P (λ, z) is nondecreasing in λ.

To prove that �P (λ, z) increases in z, note that, for λ ∈ [λn−1(z); λn(z)),

�P (λ, z) = lim
µ→λn(z)− �P (µ, z) = �P (λn(z), z) − e−λn(z)(λn(z))

n

n! , n ∈ N.

For arbitrarily chosen z1 and z2 such that 0 ≤ z1 < z2, any positive λ belongs to the two
intervals λ ∈ [λi−1(z1); λi(z1)) and λ ∈ [λj−1(z2); λj (z2)), where i ∈ N and j ∈ N. From
Lemma 1, λn(z) decreases in z. Therefore, j ≥ i and λi(z2) < λi(z1).
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As proved in Lemma 1, �P (λi(z1), z1) < �P (λi(z2), z2). Note that, for λ ∈ [0; i], the
function e−λλi is increasing in λ. Recalling that λn(z) is defined as the value of λ such that
λ + z

√
λ = n, we conclude that λi(z2) < λi(z1) ≤ i. Then e−λi(z2)λi(z2)

i < e−λi(z1)λi(z1)
i .

As a result,

�P (λ, z1) = �P (λi(z1), z1) − e−λi(z1)(λi(z1))
i

i!
< �P (λi(z2), z2) − e−λi(z2)(λi(z2))

i

i!
= �P (λi−1(z2), z2). (8)

Since j ≥ i, then λi−1(z2) ≤ λj−1(z2). By (8) and the fact that �P (λ, z) is nondecreasing
in λ,

�P (λ, z1) < �P (λi−1(z2), z2) ≤ �P (λj−1(z2), z2) = �P (λ, z2).

(b) From the definition in (3), for z ≥ 0 and λ ∈ [λn−1(z); λn(z)), n ∈ N,

�P (λ, z) = P(Xλn(z) ≤ n − 1)

= P(Xλn(z) ≤ λn(z) + z
√

λn(z) − 1)

= P

(
Xλn(z) − λn(z)√

λn(z)
≤ z − 1√

λn(z)

)
.

Since, as λ → ∞, λn → ∞ and 1/(
√

λn(z)) → 0, then, by the central limit theorem,
�P (λ, z) → �(z) as λ → ∞. This completes the proof of the theorem.

The function �P (λ, z) is a unique sharp lower bound among all nondecreasing step functions
because �P (λ, z) = limµ→λn(z)− �P (µ, z) and the left-continuous version of �P (λ, z) is
inferior to the right-continuous version at λn(z), n ∈ N.

In Corollary 1 we examine z(λ, α), which is defined as the minimal z such that, for any
Poisson random variable with mean greater than or equal to λ, its αth percentile is at most z

standard deviations above its mean. That is, for λ ≥ 0 and α ∈ [0; 1],
z(λ, α) = min {y : P(Xµ ≤ µ + y

√
µ) ≥ α, for all µ ≥ λ and y ≥ 0}. (9)

Corollary 1. For λ ≥ 0, z ≥ 0, e−1 ≤ α < 1, and n ∈ N, the following statements hold.

(a) P(Xλ ≤ λ + z
√

λ) ≥ e−1.

(b) If P(Xλ ≤ n − 2) < α ≤ P(Xλ ≤ n − 1) then z(λ, α) = (n − µ)/
√

µ, where µ can be
found numerically from P(Xµ ≤ n − 1) = α.

(c) The αth percentile of a Poisson distribution is at most (1 + log α)/(
√− log α) standard

deviations above its mean.

Proof of Corollary 1. (a) From (3), �P (0, 0) = e−1. By Theorem 1(a), �P (λ, z) is non-
decreasing both in λ and z. Then, for λ ≥ 0 and z ≥ 0, �P (λ, z) ≥ �P (0, 0) and the result
follows.

(b) Let A = (λA, αA) with λA ≥ 0 and αA ∈ [e−1; 1]. The value z(λA, αA) is found by the
construction of the lower bound �P (λ, zA) going through A. Figure 2 shows the process. The
curves Ci represent P(Xλ ≤ i), i ∈ {−1, 0, 1, . . . }. Thus, C−1 = 0.

First, find curvesCn−2 andCn−1 such that pointA lies between them or belongs toCn−1. That
is, find n such that P(XλA

≤ n−2) < αA ≤ P(XλA
≤ n−1). Then there exists A+ = (λ+

A, αA)
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Figure 2: The construction of the lower bound �P (µ, zA), where zA = z(λA, αA). Points A = (λA, αA)

and A+ = (λ+
A, αA) are marked and the curves represent Ci = P(Xλ ≤ i), i ∈ {−1, 0, 1, . . . }.

such that A+ belongs to curve Cn−1. The value λ+
A can be found by numerically solving for

µ in the equation P(Xµ ≤ n − 1) = αA. Then, choose zA so that λn(zA) = λ+
A , from which

zA = (n − λ+
A)/(λ+

A)1/2.
To prove that zA = z(λA, αA), it is necessary to show that zA satisfies (9), that is,

(i) for all λ ≥ λA, �P (λ, zA) ≥ αA,

(ii) for 0 ≤ y < zA, there exists λ̃ ≥ λA for which �P (λ̃, y) < αA.

Consider claim (i). Since �P (λ, zA) > �P (λ, zA) and �P (λ, zA) is nondecreasing in λ, it
is enough to show that �P (λA, zA) ≥ αA. One of the following two cases is possible: either
λA < λ+

A and A 
= A+ or λA = λ+
A and A = A+. For λA < λ+

A , �P (λA, zA) = αA by
construction. For λA = λ+

A , point A lies on Cn−1 and �P (λA, zA) > αA because �P (λ, zA)

has a jump at λ+
A = λn(zA).

Consider claim (ii). From Lemma 1, since zA > y, it follows that λn(zA) < λn(y). In other
words, the nth jump for �P (λ, zA) occurs earlier than that for �P (λ, y). By construction,
P(Xλn(zA) ≤ n − 1) = αA. Because P(Xλ ≤ n − 1) is continuous and decreasing in λ, there
exists some λ̃ ∈ (λn(zA); λn(y)) such that

�P (λ̃, y) = P(Xλ̃ ≤ n − 1) < P(Xλn(zA) ≤ n − 1) = αA.

Since both claims are proved, zA = z(λA, αA).

(c) Clearly, the αth percentile of Xλ is at most λ + z(0, α)
√

λ. Using (b), for λ = 0, n = 1.
Solving for µ in P(Xµ ≤ 0) = α, µ = − log α. Then z(0, α) = (1 + log α)/(

√− log α). This
completes the proof of the corollary.
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3. Discussion

Theorem 1, proved in Section 2, extends the monotonicity results derived by Kane [2]. He
showed in his Theorem 2.3 that P(

∑n
j=1(Xλ)j ≥ nλ) is strictly decreasing in n, where (Xλ)j

are independent Poisson random variables with positive integer mean λ. This result is a specific
case of Theorem 1 proved in this paper for z = 0.

The nondecreasing lower bound �P (λ, z) allows the analysis of cases when the variability
of the control parameter is larger than that expected from the Poisson hypothesis.

Consider the following example. A company caters an expensive perishable product to the
clients of a hotel chain that is comprised of a large number of identical hotels. The daily product
demand for each hotel Xλ has the Poisson distribution with random demand rate λ, which is
a function of the number of people who are staying in the hotel. The hotel chain informs
the catering company about the number of people in each hotel for the next day. The daily
demand for each hotel is independent from the demand experienced by the other hotels. The
product must be delivered in the morning before the demand is known. Hotels do not share their
products. As a result, at the end of the day some of the hotels may have unsatisfied demand,
while others return the product to the catering company.

Service quality is measured in the following way. Every morning each hotel reports whether
the previous day’s demand was met to the chain management. The hotel chain requires a 95%
service level, i.e. in 95% of the reports the demand should be met completely. The performance
is measured on a yearly basis.

The company’s manager believes that the demand rate λ has a triangular distribution, i.e. there
exists the most likely demand rate λM ∈ [λL; λH ] and the values outside [λL; λH ] are not
credible. The company’s manager wants to use a simple policy to keep the inventory level
enough to meet the daily demand at z standard deviations above its mean. Therefore, z should
be chosen so that λ + z

√
λ is greater than Xλ in at least 95% of cases for all λ ∈ [λL; λH ].

For the triangular distribution, the expected daily hotel demand is

E(λ + z
√

λ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λH + λM + λL

3

+ 8

15

λ
5/2
L (λH − λM) − λM

5/2(λH − λL) + λH
5/2(λM − λL)

(λH − λL)(λH − λM)(λM − λL)
z if λM ∈ (λL; λH ),

1

3
(λH + 2λL) + 4

15

2λH
3/2 + 4λH

√
λL + 6

√
λH λL + 3λL

3/2

(
√

λH + √
λL)2

z if λM = λL,

1

3
(2λH + λL) + 4

15

3λH
3/2 + 6λH

√
λL + 4

√
λH λL + 2λL

3/2

(
√

λH + √
λL)2

z if λM = λH .

Suppose that the normal distribution is used to approximate the demand. To provide a
95% service level, z = �−1(0.95) ≈ 1.645. The normal approximation overestimates or
underestimates the service level for some values of λ. If the distribution of λ makes over-
estimation more probable, then the expected service level is less than 95%.

To guarantee the quality level for all λ ∈ [λL; λH ], z is set to be equal to z(λL, α). For
instance, if λL = 10 then, from Corollary 1(b), z(λL, 0.95) ≈ 1.883. This results in an expected
service level higher than 95% because, for λ > λL, the daily demand is met at least in 95% of
cases.
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Table 1: Service quality estimates (in percentages) for the demand met at the levels �−1(0.95) and
z(λL, 0.95) standard deviations above the mean.

λM
Level λH

10 15 30 60 90 120 135 150

�−1(0.95) 15 94.24 94.31
30 94.24 94.29 94.35
60 94.42 94.44 94.48 94.53
90 94.38 94.49 94.61 94.66 94.66

120 94.60 94.61 94.53 94.70 94.67 94.66
135 94.55 94.55 94.60 94.63 94.70 94.67 94.69
150 94.61 94.57 94.64 94.73 94.71 94.70 94.72 94.71

z(λL, 0.95) 15 96.32 96.38
30 96.25 96.41 96.40
60 96.40 96.45 96.50 96.56
90 96.62 96.54 96.53 96.63 96.63
120 96.54 96.59 96.56 96.70 96.64 96.68
135 96.55 96.59 96.55 96.61 96.72 96.66 96.71
150 96.56 96.53 96.60 96.71 96.67 96.71 96.68 96.75

The following simulation built in RISK SOLVER illustrates the service quality overesti-
mation and underestimation effects. Service quality is estimated as the fraction of time when
the daily demand is not greater than the inventory. In Table 1 we present the results for two
inventory levels: λ + �−1(0.95)

√
λ and λ + z(λL, 0.95)

√
λ. The top and the bottom halves

of the table are the estimates of service quality given by P(Xλ ≤ λ + �−1(0.95)
√

λ) and
P(Xλ ≤ λ + z(λL, 0.95)

√
λ), correspondingly.

The distribution for the daily demand Xλ is set as the Poisson distribution with random
demand rate λ. Table 1 summarizes the results for 35 different triangular distributions of λ.
The lowest rate λL is fixed at 10 items per day. The highest rate λH varies from 15 to 150
items per day and the most likely rate λM varies from λL to λH . 10 000 trials are run for every
parameter combination.

As can be seen in this particular example, the normal approximation results in service quality
lower than 95%. In this case, service under-provisioning is under 1%. At the same time, the
usage of z(λL, 0.95) consistently leads to service quality higher than the target value by between
1% and 2%. When the penalty for service under-provisioning is significantly higher than the
cost of over-provisioning, the usage of z(λL, α) is justified.

To conclude, in this paper we presented the step function �P (λ, z), a lower bound for the
Poisson CDF at z standard deviations above mean λ. In Theorem 1 we proved that �P (λ, z)

is nondecreasing in both λ and z, which is an extension to the monotonicity results derived by
Kane [2]. As an interesting corollary of the bound’s properties, we constructed the function
z(λ, α), the minimal z such that, for any Poisson random variable with the mean greater or equal
to λ, its αth percentile is at most z standard deviations above its mean. As a practical application
of the results, we considered an inventory management problem, where the demand has the
Poisson distribution with random rate λ. We compared two policies defining the inventory level
necessary to provide target service quality α; one to keep the inventory level at �−1(α) and
another to keep it at z(λ, α) standard deviations above the demand mean λ. In the simulation
for this problem, the normal approximation consistently resulted in service under-provisioning,
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while z(λ, α) led to the service quality being higher than the target value. As a result, z(λ, α)

is useful when overestimating the expected service quality involves high penalties. Future
research could focus on exploring the tightness of the constructed lower bound �P (λ, z).
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