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Abstract

Let F be a field of characteristic p ≥ 0 and G any group. In this article, the Engel property of the group of
units of the group algebra FG is investigated. We show that if G is locally finite, thenU(FG) is an Engel
group if and only if G is locally nilpotent and G′ is a p-group. Suppose that the set of nilpotent elements
of FG is finite. It is also shown that if G is torsion, then U(FG) is an Engel group if and only if G′ is a
finite p-group and FG is Lie Engel, if and only ifU(FG) is locally nilpotent. If G is nontorsion but FG
is semiprime, we show that the Engel property of U(FG) implies that the set of torsion elements of G
forms an abelian normal subgroup of G.
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Keywords and phrases: group algebra, Engel group, Lie Engel ring.

1. Introduction

Let F be a field of characteristic p ≥ 0 and G a group. Group identities on the group of
units of the group algebra FG, U(FG), are of interest to many authors. The most
famous result, known as Hartley’s conjecture, asserts that if G is a torsion group
and U(FG) satisfies a group identity, then FG satisfies a polynomial identity. The
affirmative answer to his conjecture has been given in a series of papers [3–5, 7, 8].
We recommend the reader to refer to Lee’s book [6], a good survey on group identities
on units (and symmetric units) of group algebras.

Among other identities, the bounded Engel property is of much interest. If char F =

0 or char F = p > 0 and G has no p-elements, then the solution was found by Bovdi
and Khripta in [2, Theorem 1.3] by showing that if U(FG) is (bounded) Engel, then
the torsion elements of G form a (normal) abelian subgroup of G. They also presented
solutions for other special cases. Subsequently, Riley solved the problem for torsion
groups in [13]. He showed that if G is torsion and char F = p > 0, then the bounded
Engel property of U(FG) implies that G is nilpotent and G has a p-abelian normal
subgroup of finite p-power index (recall that for any prime p ≥ 0, a group G is said to
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be p-abelian if its commutator subgroup G′ is a finite p-group and that 0-abelian means
abelian). The general result, showing that if G has a p-element andU(FG) is bounded
Engel, then FG is bounded Lie Engel, was presented in Bovdi [1]. The converse had
already been established in a much more general setting by Shalev in [16].

In this paper, instead of bounded Engel unit groups, we consider Engel unit groups
and extend some earlier results. Our first result is for locally finite groups G such that
U(FG) is Engel.

Theorem 1.1. Let G be a locally finite group and F a field of characteristic p ≥ 0. Then
U(FG) is an Engel group if and only if G is locally nilpotent and G′ is a p-group.

Here, by 0-group we mean the identity group. Thus, if G is locally finite and F is
of characteristic 0, thenU(FG) is an Engel group if and only if G is abelian.

As indicated above, if F is a field and G is a torsion group, thenU(FG) is bounded
Engel if and only if FG is bounded Lie Engel (see [6, Corollary 5.2.13]). Our second
main result is as follows.

Theorem 1.2. Let G be a torsion group and F a field of characteristic p ≥ 0. If the set
of nilpotent elements of FG is finite, then the following conditions are equivalent:

(1) U(FG) is Engel;
(2) G is p-abelian and FG is Lie Engel;
(3) U(FG) is locally nilpotent.

Finally, if G is nontorsion, we also have a partial result when FG is semiprime.

Theorem 1.3. Let G be a group, T the set of torsion elements of G, and F a field such
that FG is a semiprime ring. If the set of nilpotent elements of FG is finite andU(FG)
is Engel, then T is an abelian normal subgroup of G.

Note that, recently, in [10], the local nilpotency of the group of units of the group
algebra FG was investigated by the author. He showed that if U(FG) is locally
nilpotent, then the set of p-elements of G forms a subgroup P and the torsion elements
of G/P form an abelian group. If, in addition, the set of nilpotent elements of FG is
finite, every idempotent in F(G/P) is central; a converse version was also indicated.
As a result, it showed that if G is torsion, then U(FG) is locally nilpotent if and only
if G is locally nilpotent and G′ is a p-group, if and only if FG is Lie Engel and G is
locally finite.

2. The proofs
In this section we prove the above results. Occasionally, we borrow our methods

from [6].
Let G be a group. For x, y in G, define

(x, 1y) = (x, y) = x−1y−1xy, (x, n+1y) = ((x, ny), y).

The group G is an Engel group if for each x, y ∈ G, there exists an integer n = n(x, y),
depending on x and y, such that (x, ny) = 1.
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Lemma 2.1. Let D be a division ring with dimZ(D) D < ∞ and n a natural number. If
GLn(D) is an Engel group, then n = 1 and D is a field.

Proof. See [11, Theorem 1.3]. �

Lemma 2.2. Let F be a field of characteristic p ≥ 0 and G a torsion group. Then
U(FG) is nilpotent if and only if FG is Lie nilpotent, if and only if G is nilpotent and
p-abelian.

Proof. See [6, Corollary 4.2.7] and [15, Theorem V.4.4]. �

For any ring R, by J(R) we mean the Jacobson radical of R. We now prove our first
result.

Proof of Theorem 1.1. First, assume that U(FG) is an Engel group. Then, clearly,
G is an Engel group. But, by a famous result of Zorn, every finite Engel group
is nilpotent, so G is locally nilpotent. Now let g ∈ G′ and assume that g =

(x1, y1)n1 · · · (xs, ys)ns , where xi and yi are in G and ni ∈ Z. Let H denote the subgroup of
G generated by all the xi and yi, 1 ≤ i ≤ s. Then H is a finite group andU(FH); hence,
U(FH)/(1 + J(FH)) is Engel. Now we can apply the Wedderburn–Artin theorem to
deduce that

U(FH)/(1 + J(FH)) ' U(FH/J(FH)) '
r⊕

i=1

GLni (Di),

where each ni ≥ 1 and each Di is a division ring. Since each Di is a finite-dimensional
division algebra over F, Lemma 2.1 yields that each ni = 1 and Di is a field.
Consequently, U(FH/J(FH)) is abelian. If p = 0, then J(FH) = 0, so H is abelian
and hence g = 1; that is, G is abelian and the result follows. Let p > 0. Then we have
g ∈ 1 + J(FH), so g − 1 is nilpotent. Hence, g is a p-element, so G′ is a p-group, as
desired.

Conversely, let G′ be a p-group and G be locally nilpotent. Let α, β ∈ U(FG),
and let H be the subgroup of G generated by the supports of all of the α, β, α−1 and
β−1. Then H is a finite nilpotent group. Thus, U(FH) is nilpotent by Lemma 2.2.
Therefore, (α, nβ) = 1 for some positive integer n; that is, U(FG) is an Engel group,
and the proof is completed. �

To prove Theorem 1.2, we need several lemmas. If G is a group and p ≥ 0 a prime
number, we let P be the set of all p-elements of G (here, of course, if p = 0, we let
P = 1).

Lemma 2.3. Let G be a group and F a field such that the set of nilpotent elements of
FG is finite. Suppose that FG is semiprime and, for all α, β, γ ∈ FG with α2 = βγ = 0,
we have βαγ = 0. If U(FG) is an Engel group, then the set of torsion elements of G
forms a normal abelian subgroup T of G.
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Proof. First we claim that P = 1. To prove this, let p > 0 and g, h ∈ P. Then
(g − 1)pt

= 0 for some t ≥ 0. Also, (1 − h)ĥ = 0, where ĥ = 1 + h + · · · + ho(h)−1. Thus,
by [6, Lemma 1.2.11], (1 − h)(g − 1)ĥ = 0. As (1 − h)ĥ = 0, we have (1 − h)gĥ = 0,
so gĥ = hgĥ. Since g ∈ supp(gĥ), we have g = hghi for some i. That is, g−1hg ∈ 〈h〉
and hence 〈h〉 is normal in 〈P〉 and, similarly, so is 〈g〉. Thus, gh ∈ 〈g〉〈h〉, which
is a subgroup of order dividing o(g)o(h) and therefore a p-group. That is, P is a
(normal) subgroup of G. But, for any g ∈ P, g − 1 is nilpotent; thus, P is finite since
the set of nilpotent elements of FG is finite. Consequently, by [9, Theorem 4.2.13],
semiprimeness of FG implies P = 1 and the claim is established.

Take any g ∈ T . Since p - o(g), we have an idempotent (1/o(g))ĝ and, by
[6, Lemma 1.2.10], this idempotent is central. That is, 〈g〉 is normal in G, so T is
a normal subgroup of G. By the Dedekind–Baer theorem (see [14, Theorem 5.3.7]),
either T is abelian or T ' Q8 × E ×O, where Q8 is the quaternion group of order eight,
E is an elementary abelian 2-group, and O is an abelian group in which every element
has odd order. Since T is also torsion, in either case, this implies that T is locally finite,
and then the result follows from Theorem 1.1. �

It is easy to see that if n ≥ 2, then

(x, ny) = y1−nx−1y · · · y−1xyn,

and the number of terms appearing in the right-hand side is 2n+1 + 1.

Lemma 2.4. Let F be a field and R an F-algebra whose unit group is Engel. If the set
of nilpotent elements of R is finite, then there exists a nonzero polynomial f (t) ∈ F[t]
such that for every a and b in R satisfying a2 = b2 = 0, we have f (ab) = 0.

Proof. First notice that for any integer z, (1 + a)z = 1 + za, and similarly for b, so, in
particular, 1 + a and 1 + b are units. Thus, there exists a natural number n = n(a, b) ≥ 2
so that

1 = (1 + a, n1 + b)

= (1 + b)1−n(1 + a)−1(1 + b) · · · (1 + a)(1 + b)n

= (1 + (1 − n)b)(1 − a)(1 + b) · · · (1 + a)(1 + nb).

As R has only finite nilpotent elements, we can choose n so large such that the above
equations hold for all such a and b. Define a polynomial

g(x, y) = (1 + (1 − n)y)(1 − x)(1 + y) · · · (1 + x)(1 + ny) − 1.

Then we can write g(x, y) = g1(x, y) + g2(x, y) + g3(x, y), where g1 is the sum of all
of the monomials in g in which either x2 or y2 appears, g2 is the sum of the other
monomials starting with y and ending with x, and g3 is the sum of the remaining terms.
Now g2 is a linear combination of terms of the form (yx)i for various i (otherwise,
an x2 or a y2 must appear) and, indeed, the unique term of highest degree in g2 is
±(1 − n)(yx)2n

.
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Assume that the characteristic of F is such that ±(1 − n)(yx)2n
, 0, that is, g2 is

not a zero polynomial. Now xg2(x, y)y is a polynomial in xy, so let us take f (t)
such that f (xy) = xg2(x, y)y. Notice that g1(a, b) = 0, since a2 or b2 will appear,
and both are zero. Also, ag3(a, b)b = 0, since each monomial in g3 starts with x
or ends with y; hence, we will have a2 at the beginning or b2 at the end. Thus,
f (ab) = ag2(a, b)b = ag(a, b)b = 0, as required.

Now let the characteristic of F be such that ±(1 − n)(yx)2n
= 0; then we surely have

±n(yx)2n
, 0. But we also have

1 = (1 + b)−1(1 + a, n1 + b)(1 + b)
= (1 − nb)(1 − a)(1 + b) · · · (1 + a)(1 + (n + 1)b),

and a similar argument works. �

Lemma 2.5. Let R be an F-algebra, and suppose that R contains a right ideal I
such that I satisfies a polynomial identity of degree n, but In , 0. Then R satisfies
a nondegenerate multilinear generalized polynomial identity.

Proof. See [6, Lemma 1.2.16]. �

For any group G, we write ∆(G) for the FC center; that is, the subgroup of G
consisting of elements with only finitely many conjugates.

Lemma 2.6. Let G be a torsion group and F a field of characteristic p ≥ 0 such that
FG is semiprime. If the set of nilpotent elements of FG is finite andU(FG) is an Engel
group, then G is abelian.

Proof. Take α, β, γ ∈ FG such that α2 = βγ = 0. Now (γρβ)2 = 0 for all ρ ∈ FG; thus,
by Lemma 2.4, there exists a nonzero polynomial f (t) ∈ F[t] such that f (αγρβ) = 0.
Therefore, β f (αγρβ)αγρ = 0, and this is a nonzero polynomial in βαγρ. That is, the
right ideal I = βαγFG satisfies a nonzero polynomial of degree n. If In = 0, then
semiprimeness of FG implies that I = 0; thus, βαγ = 0, and Lemma 2.3 does the jobs.
So, assume that In , 0; then, by Lemma 2.5, FG satisfies a nondegenerate multilinear
generalized polynomial identity.

Now, by [9, Theorem 5.3.15], (G : ∆(G)) <∞ and |∆(G)′| <∞. Now ∆(G)/∆(G)′,
as a torsion abelian group, is locally finite. Hence, ∆(G) and so G is locally finite and,
by Theorem 1.1, we obtain that G′ is a p-group and, since FG has a finite number of
nilpotent elements, G′ is finite. But, then, by [9, Theorem 4.2.13], G′ = 1 and thus G
is abelian. �

Lemma 2.7. Let F be a field of characteristic p > 0, G a group, and H a finite normal
p-subgroup of G. If the set of nilpotent elements of FG is finite and U(FG) is an
Engel group, then the set of nilpotent elements of F(G/H) is finite andU(F(G/H)) is
an Engel group, too.
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Proof. Let I be the kernel of the natural ring homomorphism FG −→ F(G/H).
By [6, Lemma 1.1.1], I is a nilpotent ideal. Therefore, the number of nilpotent
elements of F(G/H) is also finite.

On the other hand, let ᾱi ∈ U(FG/I) for i = 1, 2. Then, if β̄i = (ᾱi)−1, we can lift
ᾱi and β̄i up to αi and βi in FG. If we let ui = αiβi − 1, then ūi = 0, so ui ∈ I and
therefore 1 + ui = αiβi ∈ U(FG). Thus, αi has a right (and similarly left) inverse; so
αi ∈ U(FG). Now there exists a natural number n = n(α1, α2) so that (α1, nα2) = 1
and, therefore, (ᾱ1, nᾱ2) = 1; that is,U(F(G/H)) is Engel. �

For any prime p, we write ∆p(G) for the subgroup generated by the p-elements
in ∆(G).

Lemma 2.8. Let G be a torsion group and F a field of characteristic p > 0 such that
∆p(G) is finite. If the set of nilpotent elements of FG is finite and U(FG) is an Engel
group, then G is p-abelian.

Proof. Letting H = CG(∆p(G)), we first show that H is p-abelian. Since (G : CG(a)) <
∞ for each a ∈ ∆p(G), and ∆p(G) is finite, we have (G : H) < ∞. Now, if h ∈ ∆p(H)
is a p-element, then h has finitely many conjugates in H. As H has finite index in G,
there can be only finitely many conjugates in G as well. Thus, ∆p(H) ≤ ∆p(G). Also,
H centralizes ∆p(H), so ∆p(H) is abelian and hence a finite p-group.

Now, by Lemma 2.7, the set of nilpotent elements of F(H/∆p(H)) is finite and
U(F(H/∆p(H))) is an Engel group. But, F(H/∆p(H)) is semiprime. So, H/∆p(H) is
abelian by Lemma 2.6; thus, H′ ⊆ ∆p(H) is a finite p-group. This implies that H is
p-abelian, as desired.

Now H/H′, being an abelian torsion group, is locally finite. Thus, H is a locally
finite group and, since (G : H) < ∞, G is also locally finite. Now Theorem 1.1
completes the proof. �

For any ring R, let N(R) denote the nilpotent radical of R; that is, the sum of all
nilpotent ideals in R.

Lemma 2.9. Let G be a torsion group and F a field of characteristic p ≥ 0. If the set of
nilpotent elements of FG is finite andU(FG) is an Engel group, then G is p-abelian.

Proof. If p = 0, the result follows from Lemma 2.6; so let p > 0. If N(FG) is a
nilpotent ideal, then ∆p(G) is finite by a result of Passman [9, Theorem 8.1.12].
Thus, by Lemma 2.8, we may assume that N(FG) is not nilpotent. Since for each
nilpotent element a ∈ FG, 1 + a ∈ U(FG) and, since there exists a finite number of
such nilpotent elements, we can fix a natural number n such that for each pair of
nilpotent elements a, b ∈ FG, we have (1 + a, n1 + b) = 1.

We use similar methods to those used in the proof of [6, Lemma 1.2.26]. Let
F{x1, x2} be the free algebra on noncommuting indeterminates x1 and x2, and let
R = F{x1, x2}[[z]] be its power series ring. Then it is known that 1 + x1z and 1 + x2z
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generate a free subgroup of U(R). Thus, 0 , (1 + x1z, n1 + x2z) − 1. Expanding this
expression,

0 , (1 + x1z, n1 + x2z) − 1 =
∑
i≥1

fi(x1, x2)zi,

where each fi is a homogeneous polynomial of degree i. Let r be the smallest integer
such that fr is not the zero polynomial. Since N(FG) is not nilpotent, we can choose a
nilpotent ideal I of FG and s ≥ r such that I s , 0, but I s+1 = 0 (see [6, Lemma 1.2.24]).
Choose any α1, α2, α3 ∈ I. Then

0 = (1 + α1, n1 + α2) − 1 =

s∑
i=r

fi(α1, α2)

and therefore
s∑

i=r

fi(α1, α2)αs−r
3 = 0.

Also, as I s+1 = 0, the above equation shows that

fr(α1, α2)αs−r
3 = 0.

That is, fr(x1, x2)xs−r
3 is a polynomial identity of degree s for I. But I s , 0, so,

by Lemma 2.5, FG satisfies a nondegenerate multilinear generalized polynomial
identity. Now the same argument as in the second paragraph of the proof of Lemma 2.6
completes the proof. �

Lemma 2.10. Every left (right) Artinian Lie Engel ring is Lie nilpotent.

Proof. See [12, Theorem 6]. �

Let R be a ring and let x, y ∈ R. Define the generalized Lie commutators as follows:
[x, 0y] = x and [x, ny] = [x, n−1y]y − y[x, n−1y], n = 1, 2, . . . . We are ready to prove
Theorem 1.2.

Proof of Theorem 1.2. LetU(FG) be an Engel group. By Lemma 2.9, G is p-abelian
and, being torsion, G is locally finite. Given α and β in FG, let H be the subgroup
of G generated by the supports of these elements. Since every finite Engel group is
nilpotent, H is nilpotent and p-abelian. Therefore, FH is Lie nilpotent by Lemma 2.2
and, since α, β ∈ FH, we have [α, nβ] = 0 for some positive integer n. Consequently,
FG is Lie Engel; thus, (1) implies (2).

Suppose that G is p-abelian and FG is Lie Engel. Then, again, G is locally finite.
Let α1, . . . , αn be a finite number of elements of U(FG). We have to show that
the subgroup U = 〈α1, . . . , αn〉 of U(FG) is nilpotent. Let H be the subgroup of G
generated by the supports of all of the αi and α−1

i . Since G is locally finite, H is a finite
group and thus FH is an Artinian ring. Thus, by Lemma 2.10, FH is Lie nilpotent.
Thereby, U(FH) is nilpotent by Lemma 2.2 and thus U ⊆ U(FH) is also nilpotent.
Thus, (2) yields (3) and, clearly, (3) implies (1). We are done. �
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The proof of Theorem 1.3 relies on the following lemma.

Lemma 2.11. Let G be a group containing an element of infinite order and F a
field. Suppose that FG satisfies a nondegenerate multilinear generalized polynomial
identity. Then there exists α ∈ FG so that F[α] is an infinite central subring of FG
containing no zero divisors in FG.

Proof. See [6, Lemma 1.4.6]. �

Now our last result can be proved.

Proof of Theorem 1.3. Take α, β, γ ∈ FG such that α2 = βγ = 0. We claim that
βαγ = 0. Otherwise, by a similar argument as in the first paragraph of the proof
of Lemma 2.6, FG satisfies a nondegenerate multilinear generalized polynomial
identity and then Lemma 2.11 implies that FG is a D-algebra, where D is an infinite
commutative F-algebra having no zero divisors in FG. In particular, as in the proof
of Lemma 2.6, if λ ∈ D, then 0 = f (αγλρβ) = f (λαγρβ). Since there are infinitely
many such λ, we may apply the Vandermonde argument to conclude that (αγρβ)n = 0.
Thus, (βαγρ)n+1 = 0, that is, βαγFG is a nil right ideal of bounded exponent. Thus,
by a known result of Herstein and Levitzki, FG contains a nonzero nilpotent ideal,
contracting semiprimeness, and thus βαγFG = 0, so βαγ = 0, as claimed. Now the
result follows from Lemma 2.3. �
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