J. Aust. Math. Soc. **101** (2016), 244–252 doi:10.1017/S1446788716000094

GROUP ALGEBRAS WITH ENGEL UNIT GROUPS

M. RAMEZAN-NASSAB

(Received 15 September 2014; accepted 14 January 2016; first published online 16 March 2016)

Communicated by D. Chan

Abstract

Let *F* be a field of characteristic $p \ge 0$ and *G* any group. In this article, the Engel property of the group of units of the group algebra *FG* is investigated. We show that if *G* is locally finite, then $\mathcal{U}(FG)$ is an Engel group if and only if *G* is locally nilpotent and *G'* is a *p*-group. Suppose that the set of nilpotent elements of *FG* is finite. It is also shown that if *G* is torsion, then $\mathcal{U}(FG)$ is an Engel group if and only if *G'* is a finite *p*-group and *FG* is Lie Engel, if and only if $\mathcal{U}(FG)$ is locally nilpotent. If *G* is nontorsion but *FG* is semiprime, we show that the Engel property of $\mathcal{U}(FG)$ implies that the set of torsion elements of *G* forms an abelian normal subgroup of *G*.

2010 *Mathematics subject classification*: primary 16R50; secondary 16S34, 20C07, 20F45. *Keywords and phrases*: group algebra, Engel group, Lie Engel ring.

1. Introduction

Let *F* be a field of characteristic $p \ge 0$ and *G* a group. Group identities on the group of units of the group algebra *FG*, $\mathcal{U}(FG)$, are of interest to many authors. The most famous result, known as Hartley's conjecture, asserts that if *G* is a torsion group and $\mathcal{U}(FG)$ satisfies a group identity, then *FG* satisfies a polynomial identity. The affirmative answer to his conjecture has been given in a series of papers [3–5, 7, 8]. We recommend the reader to refer to Lee's book [6], a good survey on group identities on units (and symmetric units) of group algebras.

Among other identities, the bounded Engel property is of much interest. If char F = 0 or char F = p > 0 and G has no p-elements, then the solution was found by Bovdi and Khripta in [2, Theorem 1.3] by showing that if $\mathcal{U}(FG)$ is (bounded) Engel, then the torsion elements of G form a (normal) abelian subgroup of G. They also presented solutions for other special cases. Subsequently, Riley solved the problem for torsion groups in [13]. He showed that if G is torsion and char F = p > 0, then the bounded Engel property of $\mathcal{U}(FG)$ implies that G is nilpotent and G has a p-abelian normal subgroup of finite p-power index (recall that for any prime $p \ge 0$, a group G is said to

This research was in part supported by a grant from IPM (No. 94160040).

^{© 2016} Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

be *p*-abelian if its commutator subgroup G' is a finite *p*-group and that 0-abelian means abelian). The general result, showing that if *G* has a *p*-element and $\mathcal{U}(FG)$ is bounded Engel, then *FG* is bounded Lie Engel, was presented in Bovdi [1]. The converse had already been established in a much more general setting by Shalev in [16].

In this paper, instead of bounded Engel unit groups, we consider Engel unit groups and extend some earlier results. Our first result is for locally finite groups G such that $\mathcal{U}(FG)$ is Engel.

THEOREM 1.1. Let G be a locally finite group and F a field of characteristic $p \ge 0$. Then $\mathcal{U}(FG)$ is an Engel group if and only if G is locally nilpotent and G' is a p-group.

Here, by 0-group we mean the identity group. Thus, if G is locally finite and F is of characteristic 0, then $\mathcal{U}(FG)$ is an Engel group if and only if G is abelian.

As indicated above, if F is a field and G is a torsion group, then $\mathcal{U}(FG)$ is bounded Engel if and only if FG is bounded Lie Engel (see [6, Corollary 5.2.13]). Our second main result is as follows.

THEOREM 1.2. Let G be a torsion group and F a field of characteristic $p \ge 0$. If the set of nilpotent elements of FG is finite, then the following conditions are equivalent:

- (1) $\mathcal{U}(FG)$ is Engel;
- (2) *G* is *p*-abelian and *FG* is Lie Engel;
- (3) $\mathcal{U}(FG)$ is locally nilpotent.

Finally, if G is nontorsion, we also have a partial result when FG is semiprime.

THEOREM 1.3. Let G be a group, T the set of torsion elements of G, and F a field such that FG is a semiprime ring. If the set of nilpotent elements of FG is finite and $\mathcal{U}(FG)$ is Engel, then T is an abelian normal subgroup of G.

Note that, recently, in [10], the local nilpotency of the group of units of the group algebra FG was investigated by the author. He showed that if $\mathcal{U}(FG)$ is locally nilpotent, then the set of *p*-elements of *G* forms a subgroup *P* and the torsion elements of G/P form an abelian group. If, in addition, the set of nilpotent elements of FG is finite, every idempotent in F(G/P) is central; a converse version was also indicated. As a result, it showed that if *G* is torsion, then $\mathcal{U}(FG)$ is locally nilpotent if and only if *G* is locally nilpotent and *G'* is a *p*-group, if and only if *FG* is Lie Engel and *G* is locally finite.

2. The proofs

In this section we prove the above results. Occasionally, we borrow our methods from [6].

Let G be a group. For x, y in G, define

$$(x, _1y) = (x, y) = x^{-1}y^{-1}xy, \quad (x, _{n+1}y) = ((x, _ny), y).$$

The group *G* is an Engel group if for each $x, y \in G$, there exists an integer n = n(x, y), depending on *x* and *y*, such that (x, ny) = 1.

LEMMA 2.1. Let *D* be a division ring with $\dim_{Z(D)} D < \infty$ and *n* a natural number. If $GL_n(D)$ is an Engel group, then n = 1 and *D* is a field.

PROOF. See [11, Theorem 1.3].

LEMMA 2.2. Let F be a field of characteristic $p \ge 0$ and G a torsion group. Then $\mathcal{U}(FG)$ is nilpotent if and only if FG is Lie nilpotent, if and only if G is nilpotent and p-abelian.

PROOF. See [6, Corollary 4.2.7] and [15, Theorem V.4.4]. \Box

For any ring R, by J(R) we mean the Jacobson radical of R. We now prove our first result.

PROOF OF THEOREM 1.1. First, assume that $\mathcal{U}(FG)$ is an Engel group. Then, clearly, *G* is an Engel group. But, by a famous result of Zorn, every finite Engel group is nilpotent, so *G* is locally nilpotent. Now let $g \in G'$ and assume that $g = (x_1, y_1)^{n_1} \cdots (x_s, y_s)^{n_s}$, where x_i and y_i are in *G* and $n_i \in \mathbb{Z}$. Let *H* denote the subgroup of *G* generated by all the x_i and y_i , $1 \le i \le s$. Then *H* is a finite group and $\mathcal{U}(FH)$; hence, $\mathcal{U}(FH)/(1 + J(FH))$ is Engel. Now we can apply the Wedderburn–Artin theorem to deduce that

$$\mathcal{U}(FH)/(1 + J(FH)) \simeq \mathcal{U}(FH/J(FH)) \simeq \bigoplus_{i=1}^{r} \operatorname{GL}_{n_i}(D_i),$$

where each $n_i \ge 1$ and each D_i is a division ring. Since each D_i is a finite-dimensional division algebra over F, Lemma 2.1 yields that each $n_i = 1$ and D_i is a field. Consequently, $\mathcal{U}(FH/J(FH))$ is abelian. If p = 0, then J(FH) = 0, so H is abelian and hence g = 1; that is, G is abelian and the result follows. Let p > 0. Then we have $g \in 1 + J(FH)$, so g - 1 is nilpotent. Hence, g is a p-element, so G' is a p-group, as desired.

Conversely, let G' be a *p*-group and G be locally nilpotent. Let $\alpha, \beta \in \mathcal{U}(FG)$, and let H be the subgroup of G generated by the supports of all of the $\alpha, \beta, \alpha^{-1}$ and β^{-1} . Then H is a finite nilpotent group. Thus, $\mathcal{U}(FH)$ is nilpotent by Lemma 2.2. Therefore, $(\alpha, \ n\beta) = 1$ for some positive integer n; that is, $\mathcal{U}(FG)$ is an Engel group, and the proof is completed.

To prove Theorem 1.2, we need several lemmas. If G is a group and $p \ge 0$ a prime number, we let P be the set of all p-elements of G (here, of course, if p = 0, we let P = 1).

LEMMA 2.3. Let G be a group and F a field such that the set of nilpotent elements of FG is finite. Suppose that FG is semiprime and, for all $\alpha, \beta, \gamma \in FG$ with $\alpha^2 = \beta\gamma = 0$, we have $\beta\alpha\gamma = 0$. If $\mathcal{U}(FG)$ is an Engel group, then the set of torsion elements of G forms a normal abelian subgroup T of G.

[3]

PROOF. First we claim that P = 1. To prove this, let p > 0 and $g, h \in P$. Then $(g-1)^{p^i} = 0$ for some $t \ge 0$. Also, $(1-h)\hat{h} = 0$, where $\hat{h} = 1 + h + \dots + h^{o(h)-1}$. Thus, by [6, Lemma 1.2.11], $(1-h)(g-1)\hat{h} = 0$. As $(1-h)\hat{h} = 0$, we have $(1-h)g\hat{h} = 0$, so $g\hat{h} = hg\hat{h}$. Since $g \in \text{supp}(g\hat{h})$, we have $g = hgh^i$ for some *i*. That is, $g^{-1}hg \in \langle h \rangle$ and hence $\langle h \rangle$ is normal in $\langle P \rangle$ and, similarly, so is $\langle g \rangle$. Thus, $gh \in \langle g \rangle \langle h \rangle$, which is a subgroup of order dividing o(g)o(h) and therefore a *p*-group. That is, *P* is a (normal) subgroup of *G*. But, for any $g \in P$, g-1 is nilpotent; thus, *P* is finite since the set of nilpotent elements of *FG* is finite. Consequently, by [9, Theorem 4.2.13], semiprimeness of *FG* implies P = 1 and the claim is established.

Take any $g \in T$. Since $p \nmid o(g)$, we have an idempotent $(1/o(g))\hat{g}$ and, by [6, Lemma 1.2.10], this idempotent is central. That is, $\langle g \rangle$ is normal in *G*, so *T* is a normal subgroup of *G*. By the Dedekind–Baer theorem (see [14, Theorem 5.3.7]), either *T* is abelian or $T \simeq Q_8 \times E \times O$, where Q_8 is the quaternion group of order eight, *E* is an elementary abelian 2-group, and *O* is an abelian group in which every element has odd order. Since *T* is also torsion, in either case, this implies that *T* is locally finite, and then the result follows from Theorem 1.1.

It is easy to see that if $n \ge 2$, then

$$(x, y) = y^{1-n} x^{-1} y \cdots y^{-1} x y^{n},$$

and the number of terms appearing in the right-hand side is $2^{n+1} + 1$.

LEMMA 2.4. Let *F* be a field and *R* an *F*-algebra whose unit group is Engel. If the set of nilpotent elements of *R* is finite, then there exists a nonzero polynomial $f(t) \in F[t]$ such that for every *a* and *b* in *R* satisfying $a^2 = b^2 = 0$, we have f(ab) = 0.

PROOF. First notice that for any integer *z*, $(1 + a)^z = 1 + za$, and similarly for *b*, so, in particular, 1 + a and 1 + b are units. Thus, there exists a natural number $n = n(a, b) \ge 2$ so that

$$1 = (1 + a, {}_{n}1 + b)$$

= $(1 + b)^{1-n}(1 + a)^{-1}(1 + b) \cdots (1 + a)(1 + b)^{n}$
= $(1 + (1 - n)b)(1 - a)(1 + b) \cdots (1 + a)(1 + nb)$.

As *R* has only finite nilpotent elements, we can choose *n* so large such that the above equations hold for all such *a* and *b*. Define a polynomial

$$g(x, y) = (1 + (1 - n)y)(1 - x)(1 + y) \cdots (1 + x)(1 + ny) - 1.$$

Then we can write $g(x, y) = g_1(x, y) + g_2(x, y) + g_3(x, y)$, where g_1 is the sum of all of the monomials in g in which either x^2 or y^2 appears, g_2 is the sum of the other monomials starting with y and ending with x, and g_3 is the sum of the remaining terms. Now g_2 is a linear combination of terms of the form $(yx)^i$ for various *i* (otherwise, an x^2 or a y^2 must appear) and, indeed, the unique term of highest degree in g_2 is $\pm (1 - n)(yx)^{2^n}$.

M. Ramezan-Nassab

Assume that the characteristic of F is such that $\pm (1 - n)(yx)^{2^n} \neq 0$, that is, g_2 is not a zero polynomial. Now $xg_2(x, y)y$ is a polynomial in xy, so let us take f(t) such that $f(xy) = xg_2(x, y)y$. Notice that $g_1(a, b) = 0$, since a^2 or b^2 will appear, and both are zero. Also, $ag_3(a, b)b = 0$, since each monomial in g_3 starts with x or ends with y; hence, we will have a^2 at the beginning or b^2 at the end. Thus, $f(ab) = ag_2(a, b)b = ag(a, b)b = 0$, as required.

Now let the characteristic of *F* be such that $\pm (1 - n)(yx)^{2^n} = 0$; then we surely have $\pm n(yx)^{2^n} \neq 0$. But we also have

$$1 = (1+b)^{-1}(1+a, n^{1}+b)(1+b)$$

= (1-nb)(1-a)(1+b)...(1+a)(1+(n+1)b),

and a similar argument works.

LEMMA 2.5. Let R be an F-algebra, and suppose that R contains a right ideal I such that I satisfies a polynomial identity of degree n, but $I^n \neq 0$. Then R satisfies a nondegenerate multilinear generalized polynomial identity.

PROOF. See [6, Lemma 1.2.16].

For any group G, we write $\Delta(G)$ for the FC center; that is, the subgroup of G consisting of elements with only finitely many conjugates.

LEMMA 2.6. Let G be a torsion group and F a field of characteristic $p \ge 0$ such that FG is semiprime. If the set of nilpotent elements of FG is finite and $\mathcal{U}(FG)$ is an Engel group, then G is abelian.

PROOF. Take $\alpha, \beta, \gamma \in FG$ such that $\alpha^2 = \beta\gamma = 0$. Now $(\gamma\rho\beta)^2 = 0$ for all $\rho \in FG$; thus, by Lemma 2.4, there exists a nonzero polynomial $f(t) \in F[t]$ such that $f(\alpha\gamma\rho\beta) = 0$. Therefore, $\beta f(\alpha\gamma\rho\beta)\alpha\gamma\rho = 0$, and this is a nonzero polynomial in $\beta\alpha\gamma\rho$. That is, the right ideal $I = \beta\alpha\gamma FG$ satisfies a nonzero polynomial of degree *n*. If $I^n = 0$, then semiprimeness of *FG* implies that I = 0; thus, $\beta\alpha\gamma = 0$, and Lemma 2.3 does the jobs. So, assume that $I^n \neq 0$; then, by Lemma 2.5, *FG* satisfies a nonzero multilinear generalized polynomial identity.

Now, by [9, Theorem 5.3.15], $(G : \Delta(G)) < \infty$ and $|\Delta(G)'| < \infty$. Now $\Delta(G)/\Delta(G)'$, as a torsion abelian group, is locally finite. Hence, $\Delta(G)$ and so *G* is locally finite and, by Theorem 1.1, we obtain that *G'* is a *p*-group and, since *FG* has a finite number of nilpotent elements, *G'* is finite. But, then, by [9, Theorem 4.2.13], *G'* = 1 and thus *G* is abelian.

LEMMA 2.7. Let F be a field of characteristic p > 0, G a group, and H a finite normal p-subgroup of G. If the set of nilpotent elements of FG is finite and $\mathcal{U}(FG)$ is an Engel group, then the set of nilpotent elements of F(G/H) is finite and $\mathcal{U}(F(G/H))$ is an Engel group, too.

248

https://doi.org/10.1017/S1446788716000094 Published online by Cambridge University Press

PROOF. Let *I* be the kernel of the natural ring homomorphism $FG \longrightarrow F(G/H)$. By [6, Lemma 1.1.1], *I* is a nilpotent ideal. Therefore, the number of nilpotent elements of F(G/H) is also finite.

On the other hand, let $\bar{\alpha}_i \in \mathcal{U}(FG/I)$ for i = 1, 2. Then, if $\bar{\beta}_i = (\bar{\alpha}_i)^{-1}$, we can lift $\bar{\alpha}_i$ and $\bar{\beta}_i$ up to α_i and β_i in *FG*. If we let $u_i = \alpha_i \beta_i - 1$, then $\bar{u}_i = 0$, so $u_i \in I$ and therefore $1 + u_i = \alpha_i \beta_i \in \mathcal{U}(FG)$. Thus, α_i has a right (and similarly left) inverse; so $\alpha_i \in \mathcal{U}(FG)$. Now there exists a natural number $n = n(\alpha_1, \alpha_2)$ so that $(\alpha_1, \alpha_2) = 1$ and, therefore, $(\bar{\alpha}_1, \alpha_2) = 1$; that is, $\mathcal{U}(F(G/H))$ is Engel.

For any prime p, we write $\Delta^{p}(G)$ for the subgroup generated by the p-elements in $\Delta(G)$.

LEMMA 2.8. Let G be a torsion group and F a field of characteristic p > 0 such that $\Delta^{p}(G)$ is finite. If the set of nilpotent elements of FG is finite and $\mathcal{U}(FG)$ is an Engel group, then G is p-abelian.

PROOF. Letting $H = C_G(\Delta^p(G))$, we first show that H is p-abelian. Since $(G : C_G(a)) < \infty$ for each $a \in \Delta^p(G)$, and $\Delta^p(G)$ is finite, we have $(G : H) < \infty$. Now, if $h \in \Delta^p(H)$ is a p-element, then h has finitely many conjugates in H. As H has finite index in G, there can be only finitely many conjugates in G as well. Thus, $\Delta^p(H) \le \Delta^p(G)$. Also, H centralizes $\Delta^p(H)$, so $\Delta^p(H)$ is abelian and hence a finite p-group.

Now, by Lemma 2.7, the set of nilpotent elements of $F(H/\Delta^p(H))$ is finite and $\mathcal{U}(F(H/\Delta^p(H)))$ is an Engel group. But, $F(H/\Delta^p(H))$ is semiprime. So, $H/\Delta^p(H)$ is abelian by Lemma 2.6; thus, $H' \subseteq \Delta^p(H)$ is a finite *p*-group. This implies that *H* is *p*-abelian, as desired.

Now H/H', being an abelian torsion group, is locally finite. Thus, H is a locally finite group and, since $(G : H) < \infty$, G is also locally finite. Now Theorem 1.1 completes the proof.

For any ring R, let N(R) denote the nilpotent radical of R; that is, the sum of all nilpotent ideals in R.

LEMMA 2.9. Let G be a torsion group and F a field of characteristic $p \ge 0$. If the set of nilpotent elements of FG is finite and $\mathcal{U}(FG)$ is an Engel group, then G is p-abelian.

PROOF. If p = 0, the result follows from Lemma 2.6; so let p > 0. If N(FG) is a nilpotent ideal, then $\Delta^p(G)$ is finite by a result of Passman [9, Theorem 8.1.12]. Thus, by Lemma 2.8, we may assume that N(FG) is not nilpotent. Since for each nilpotent element $a \in FG$, $1 + a \in \mathcal{U}(FG)$ and, since there exists a finite number of such nilpotent elements, we can fix a natural number n such that for each pair of nilpotent elements $a, b \in FG$, we have (1 + a, n1 + b) = 1.

We use similar methods to those used in the proof of [6, Lemma 1.2.26]. Let $F\{x_1, x_2\}$ be the free algebra on noncommuting indeterminates x_1 and x_2 , and let $R = F\{x_1, x_2\}[[z]]$ be its power series ring. Then it is known that $1 + x_1z$ and $1 + x_2z$

generate a free subgroup of $\mathcal{U}(R)$. Thus, $0 \neq (1 + x_1 z, n 1 + x_2 z) - 1$. Expanding this expression,

$$0 \neq (1 + x_1 z, \ _n 1 + x_2 z) - 1 = \sum_{i \ge 1} f_i(x_1, x_2) z^i,$$

where each f_i is a homogeneous polynomial of degree *i*. Let *r* be the smallest integer such that f_r is not the zero polynomial. Since N(FG) is not nilpotent, we can choose a nilpotent ideal *I* of *FG* and $s \ge r$ such that $I^s \ne 0$, but $I^{s+1} = 0$ (see [6, Lemma 1.2.24]). Choose any $\alpha_1, \alpha_2, \alpha_3 \in I$. Then

$$0 = (1 + \alpha_1, \, _n 1 + \alpha_2) - 1 = \sum_{i=r}^s f_i(\alpha_1, \alpha_2)$$

and therefore

$$\sum_{i=r}^{s} f_i(\alpha_1, \alpha_2) \alpha_3^{s-r} = 0.$$

Also, as $I^{s+1} = 0$, the above equation shows that

$$f_r(\alpha_1, \alpha_2)\alpha_3^{s-r} = 0.$$

That is, $f_r(x_1, x_2)x_3^{s-r}$ is a polynomial identity of degree *s* for *I*. But $I^s \neq 0$, so, by Lemma 2.5, *FG* satisfies a nondegenerate multilinear generalized polynomial identity. Now the same argument as in the second paragraph of the proof of Lemma 2.6 completes the proof.

LEMMA 2.10. Every left (right) Artinian Lie Engel ring is Lie nilpotent.

PROOF. See [12, Theorem 6].

Let *R* be a ring and let $x, y \in R$. Define the generalized Lie commutators as follows: $[x, _0y] = x$ and $[x, _ny] = [x, _{n-1}y]y - y[x, _{n-1}y]$, n = 1, 2, ... We are ready to prove Theorem 1.2.

PROOF OF THEOREM 1.2. Let $\mathcal{U}(FG)$ be an Engel group. By Lemma 2.9, *G* is *p*-abelian and, being torsion, *G* is locally finite. Given α and β in *FG*, let *H* be the subgroup of *G* generated by the supports of these elements. Since every finite Engel group is nilpotent, *H* is nilpotent and *p*-abelian. Therefore, *FH* is Lie nilpotent by Lemma 2.2 and, since $\alpha, \beta \in FH$, we have $[\alpha, n\beta] = 0$ for some positive integer *n*. Consequently, *FG* is Lie Engel; thus, (1) implies (2).

Suppose that *G* is *p*-abelian and *FG* is Lie Engel. Then, again, *G* is locally finite. Let $\alpha_1, \ldots, \alpha_n$ be a finite number of elements of $\mathcal{U}(FG)$. We have to show that the subgroup $U = \langle \alpha_1, \ldots, \alpha_n \rangle$ of $\mathcal{U}(FG)$ is nilpotent. Let *H* be the subgroup of *G* generated by the supports of all of the α_i and α_i^{-1} . Since *G* is locally finite, *H* is a finite group and thus *FH* is an Artinian ring. Thus, by Lemma 2.10, *FH* is Lie nilpotent. Thereby, $\mathcal{U}(FH)$ is nilpotent by Lemma 2.2 and thus $U \subseteq \mathcal{U}(FH)$ is also nilpotent. Thus, (2) yields (3) and, clearly, (3) implies (1). We are done.

The proof of Theorem 1.3 relies on the following lemma.

LEMMA 2.11. Let G be a group containing an element of infinite order and F a field. Suppose that FG satisfies a nondegenerate multilinear generalized polynomial identity. Then there exists $\alpha \in FG$ so that $F[\alpha]$ is an infinite central subring of FG containing no zero divisors in FG.

PROOF. See [6, Lemma 1.4.6].

Now our last result can be proved.

PROOF OF THEOREM 1.3. Take $\alpha, \beta, \gamma \in FG$ such that $\alpha^2 = \beta\gamma = 0$. We claim that $\beta\alpha\gamma = 0$. Otherwise, by a similar argument as in the first paragraph of the proof of Lemma 2.6, *FG* satisfies a nondegenerate multilinear generalized polynomial identity and then Lemma 2.11 implies that *FG* is a *D*-algebra, where *D* is an infinite commutative *F*-algebra having no zero divisors in *FG*. In particular, as in the proof of Lemma 2.6, if $\lambda \in D$, then $0 = f(\alpha\gamma\lambda\rho\beta) = f(\lambda\alpha\gamma\rho\beta)$. Since there are infinitely many such λ , we may apply the Vandermonde argument to conclude that $(\alpha\gamma\rho\beta)^n = 0$. Thus, $(\beta\alpha\gamma\rho)^{n+1} = 0$, that is, $\beta\alpha\gamma FG$ is a nil right ideal of bounded exponent. Thus, by a known result of Herstein and Levitzki, *FG* contains a nonzero nilpotent ideal, contracting semiprimeness, and thus $\beta\alpha\gamma FG = 0$, so $\beta\alpha\gamma = 0$, as claimed. Now the result follows from Lemma 2.3.

References

- [1] A. Bovdi, 'Group algebras with an Engel group of units', J. Aust. Math. Soc. 80 (2006), 173–178.
- [2] A. Bovdi and I. I. Khripta, 'The Engel property of the multiplicative group of a group algebra', *Mat. Sb.* **182** (1991), 130–144 (in Russian); English translation in *Math. USSR Sb.* **72** (1992), 121–134.
- [3] A. Giambruno, E. Jespers and A. Valenti, 'Group identities on units of rings', Arch. Math. 63 (1994), 291–296.
- [4] A. Giambruno, S. K. Sehgal and A. Valenti, 'Group algebras whose units satisfy a group identity', Proc. Amer. Math. Soc. 125 (1997), 629–634.
- [5] A. Giambruno, S. K. Sehgal and A. Valenti, 'Group identities on units of group algebras', J. Algebra 226 (2000), 488–504.
- [6] G. T. Lee, *Group Identities on Units and Symmetric Units of Group Rings*, Algebra and Applications, 12 (Springer, London, 2010).
- [7] C.-H. Liu, 'Group algebras with units satisfying a group identity', Proc. Amer. Math. Soc. 127 (1999), 327–336.
- [8] C.-H. Liu and D. S. Passman, 'Group algebras with units satisfying a group identity II', Proc. Amer. Math. Soc. 127 (1999), 337–341.
- [9] D. S. Passman, The Algebraic Structure of Group Rings (Wiley, New York, 1977).
- [10] M. Ramezan-Nassab, 'Group algebras with locally nilpotent unit groups', Comm. Algebra 44 (2016), 604–612.
- [11] M. Ramezan-Nassab and D. Kiani, 'Some skew linear groups with Engel's condition', J. Group Theory 15 (2012), 529–541.
- [12] M. Ramezan-Nassab and D. Kiani, 'Rings satisfying generalized Engel conditions', J. Algebra Appl. 11 1250121 (2012), 8 pages.
- [13] D. M. Riley, 'Group algebras with units satisfying an Engel identity', *Rend. Circ. Mat. Palermo* (2) 49 (2000), 540–544.

M. Ramezan-Nassab

- [14] D. J. S. Robinson, A Course in the Theory of Groups, 2nd edn (Springer, New York, 1996).
- [15] S. K. Sehgal, Topics in Group Rings (Marcel Dekker, New York, 1978).
- [16] A. Shalev, 'On associative algebras satisfying the Engel condition', Israel J. Math. 67 (1989), 287-290.

M. RAMEZAN-NASSAB, Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran

and

School of Mathematics, Institute for Research

in Fundamental Sciences (IPM), PO Box 19395-5746, Tehran, Iran e-mail: ramezann@khu.ac.ir