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Abstract What proportion of integers n � N may be expressed as x2 + dy2 for some d � Δ, with x,y
integers? Writing Δ = (logN)log22α

√
log logN for some α ∈ (−∞,∞), we show that the answer is Φ(α)+

o(1), where Φ is the Gaussian distribution function Φ(α) = 1√
2π

∫ α
−∞ e−x2/2dx.

A consequence of this is a phase transition: Almost none of the integers n � N can be represented
by x2 + dy2 with d � (logN)log2−ε, but almost all of them can be represented by x2 + dy2 with d �
(logN)log2+ε.
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1. Introduction

In this paper, we are interested in how many integers �N are covered by the values taken

by the quadratic forms x2+dy2, d �Δ. Our main result is the following, which gives a

fairly complete answer to this question.

Theorem 1.1 (Main theorem). Let N be large and write, for some real number α,

Δ= (logN)log22α
√
log logN .

Then

#{n�N : n= x2+dy2 for some 1� d�Δ}= (Φ(α)+o(1))N,

where Φ is the Gaussian distribution function Φ(α) = 1√
2π

∫ α

−∞ e−x2/2dx.

The problem of covering integers by this family of binary quadratic forms seems

to have been first considered in the work of Hanson and Vaughan [12]. Using the

circle method, they established that almost all integers n � N may be covered with
Δ= logN(log logN)3+ε for any ε > 0 and that a positive proportion of the integers below

N may be covered using Δ = logN log logN . Diao [7] found a much shorter proof of the

latter result, and in his argument d could be restricted to prime values so that a smaller
set of forms is used.

Landau established that the number of integers below N that are sums of two squares

is ∼BN/(logN)1/2 for a positive constant B. This was extended by Bernays to show that

for any fixed primitive positive definite binary quadratic form f, the number of integers
below N that are represented by f is ∼BfN(logN)−1/2, for a positive constant Bf (which

in fact depends only on the discriminant of f ). More recently, Blomer [1, 2] and Blomer

and Granville [3] consider in detail the number of integers up to N that are represented by
f uniformly in the form f (thus allowing the discriminant to grow with N ). These results,

taken with the union bound, suggest that if Δ is smaller than (logN)1/2−ε, then almost

all n�N cannot be covered by the forms x2+dy2 with d�Δ. However, as Theorem 1.1
reveals, the true threshold for Δ is neither (logN)1/2 nor logN but instead (logN)log2.

We shall in fact prove a more precise version of Theorem 1.1, counting the number of

integers below N with k prime factors that may be represented as x2+dy2 with d�Δ.
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Throughout, let Ω(n) denote the number of prime factors of n counted with multiplicity,

and define

A(N,k) = {n�N : Ω(n) = k}.

Recall that most integers below N have about log logN prime factors, a result first

established by Hardy and Ramanujan. The well-known work of Erdős and Kac established

that Ω(n) has a normal distribution with mean ∼ log logN and variance ∼ log logN , while

Selberg’s work [16] gave still more precise results establishing an asymptotic formula for
A(N,k) uniformly in a wide range of k. To reduce the visual complexity of expressions

involving double logs later on, it is convenient to set (throughout the paper)

k0 := log logN.

The following simplified version of Selberg’s result is an immediate consequence of [17,
Theorem II.6.5].

Lemma 1.2. Let N be large. Uniformly for integers k in the range |k− k0| � 1
2k0, we

have

|A(N,k)|= N

logN

kk0
k!

(
1+O

(1+ |k−k0|
k0

))
.

For a given k in a suitable interval around log logN , we shall show (the ‘upper bound’,
Theorem 1.3 below) that almost none of the integers inA(N,k) are represented by x2+dy2

with d�Δ if Δ is a bit smaller than 2k. This changes when Δ becomes a bit larger than

2k, when almost all the integers in A(N,k) may be so represented. This is the ‘lower
bound’, Theorem 1.4 below. From these results, Theorem 1.1 will follow swiftly.

We turn now to the precise statements.

Theorem 1.3 (Upper bound). Let N be large, and let k be an integer in the range

|k−k0|� k
2/3
0 . (1.1)

Suppose Δ� 2k/k4. The number of integers n ∈ A(N,k) that may be written as x2+dy2

with 1� d�Δ is �N/k0.

An application of Stirling’s formula (see (2.3) below) shows that for k in the range (1.1)

|A(N,k)|= N√
2πk0

exp
(
− (k−k0)

2

2k0

)(
1+O

(
k
−1/5
0

))
.

Thus, Theorem 1.3 is really of interest only when |k−k0|� (k0 logk0)
1/2. This range still

includes most typical integers below N, and Theorem 1.3 may be used to establish the

upper bound for the integers below N of the form x2+dy2 with d�Δ that is implicit in
Theorem 1.1. The corresponding lower bound in Theorem 1.1 is implied by the following

result.

Theorem 1.4 (Lower bound). Let N be large, and let k be an integer in the range given

in (1.1). Suppose Δ� k32k. Let E(N,k) denote the set of integers in A(N,k) that cannot
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be represented as x2+dy2 with d�Δ. Then

|E(N,k)| � |A(N,k)|
logk0

+Nk
−3/4
0 .

Similarly to Theorem 1.3, Theorem 1.4 is really of interest only in the range

|k−k0|� ( 12k0 logk0)
1/2,

but this range includes most typical integers below N. In Section 2, we shall deduce our
main result Theorem 1.1 from Theorems 1.3 and 1.4.

Since our main interest is in establishing Theorem 1.1, we have made no effort to

optimize the error terms and ranges for k in Theorems 1.3 and 1.4. It would be of interest
to establish analogues of these results uniformly in a wide range of k (although when

k is large it may be better to work with ω(n) = k, where ω(n) counts the number of

distinct prime factors of n). One case of particular interest may be k = 1: representing

primes up to N using the quadratic forms x2+dy2 with d�Δ. Here, it would be possible
to establish that a proportion ρ(Δ) of the primes up to N may be so represented with

ρ(1) = 1/2 (by Fermat’s result on representing primes of the form 1 (mod 4) as a sum of

two squares), ρ(Δ) < 1 for all Δ, and ρ(Δ)→ 1 as Δ→∞. Determining ρ(Δ) precisely,
or understanding its precise asymptotic behavior as Δ gets large, seems like a challenging

and delicate problem.

Let us indicate very briefly the ideas behind Theorems 1.3 and 1.4; here and in the rest
of the introduction, we shall be a little informal and also assume that the reader is familiar

with the classical theory of binary quadratic forms (which will be recalled in Section 3).

Recall that a square-free integer n may be represented by some binary quadratic form

of negative discriminant D if and only if χD(p) = 1 for all primes p dividing n (assume
that n is coprime to D). If n has k prime factors, then each condition χD(p) = 1 has a

50% chance of occurring so that n may be represented by some binary quadratic form

of discriminant D with probability 2−k. This suggests that Δ must be about size 2k in
order to have a chance of representing many integers with k prime factors. This is the

idea behind Theorem 1.3, and it can be made precise without too much difficulty (see

Section 4).
The more difficult part of our argument is Theorem 1.4, which constitutes the bulk of the

paper. If Δ is substantially larger than 2k, then the heuristic that we just mentioned would

suggest that for most integers n�N with k prime factors there would be some negative

discriminant D with |D|�Δ such that n is representable by some binary quadratic form
of discriminant D, and indeed, there would be a total of about 2k such representations

of n. The number of inequivalent classes of binary quadratic forms of discriminant D is

the class number, which is of size |D|1/2+o(1). It is therefore likely that some of the 2k

(which is about Δ) representations of n would come from the principal form x2 + dy2

(corresponding to the discriminant D = −4d) and indeed that there should be about

2k/|D|1/2+o(1) representations of n by x2+dy2. We make this heuristic precise by using
class group characters and their associated L-functions, together with a second moment

method. It would be relatively straightforward to obtain a version of Theorem 1.4 where

a positive proportion of the elements in A(N,k) are represented by the forms x2+ dy2
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with d � Δ. However, it is more delicate to obtain almost all integers in A(N,k), and

to achieve this we impose congruence conditions on d for all primes p below a slowly

growing parameter W. A key fact is that when discriminants d are restricted to such
progressions, the value of L(1,χd) remains more or less constant. To simplify genus theory

considerations, we further restrict attention to prime values of d, but this is merely a

matter of convenience.
For k sufficiently close to k0, Theorems 1.3 and 1.4 show that the number of represented

elements in A(N,k) undergoes a rapid phase transition as one goes from Δ=2k/k4 (when

0% of A(N,k) is covered) to Δ= 2kk3 (when 100% of A(N,k) is covered). While there is
some scope to narrow the gap between 2k/k4 and 2kk3, the restriction to prime values of

d in our proof of Theorem 1.4 would prevent us from fully closing this gap. It seems likely

that a more precise cutoff phenomenon occurs: When Δ = β
√
k2k, there is a proportion

p(β) of integers in A(N,k) that are represented, with 0< p(β)< 1 for all 0< β <∞, and
with p(β)→ 0 as β → 0 and p(β)→ 1 as β →∞. Possibly our arguments, together with

additional ideas taking into account genus theory, could be used to establish part of this

cutoff phenomenon, and we hope that an interested reader will take up the challenge.
Our discussion so far has been confined to representing almost all integers below N using

the forms x2+dy2 with d�Δ. It is natural to ask what happens if all integers below N are

to be represented. Taking x= �√n	 and y = 1, we see that Δ = 2
√
N suffices, and going

beyond this trivial bound already seems an interesting problem. Since integers below N

have � logN/ log logN distinct prime factors, extrapolating Theorem 1.4 we may expect

that Δ= exp(C logN/ log logN) is sufficient for some constant C > 0. As evidence towards

this conjecture, we note that progress can be made in two weaker versions.
By a simple application of the pigeonhole principle, one can show that every positive

integer below N may be represented by some nondegenerate binary quadratic form f

with |disc(f)| � exp(C logN/ log logN) with C being any constant larger than log4.
Here, nondegenerate means that the quadratic form does not factor into linear forms

or, equivalently, that the discriminant is not a square. In fact, all elements of A(N,k) can

be represented by some nondegenerate binary quadratic form with absolute discriminant
� 4k (for instance, all primes are of the form x2+y2, x2+2y2 or x2−2y2). The pigeonhole

argument does not allow us to restrict attention to positive definite forms (although one

can restrict attention to indefinite forms), let alone the smaller family of principal positive

definite forms. Assuming GRH for quadratic Dirichlet L-functions it can be shown that
all integers below N may be represented by some positive definite binary quadratic form

with absolute discriminant below exp(C logN/ log logN) for any C > log4 and indeed

that all elements in A(N,k) can be represented by such forms with absolute discriminant
� 4k(logN)4.

In the other direction, we may ask how large must Δ necessarily be if all integers

n � N are represented as x2 + dy2 with d � Δ. Complementing our discussion above,
we can establish here that Δ must be at least Δ0 = exp(c logN/ log logN) for a positive

constant c. In fact, we can establish the stronger result that there exists a square-free

integer n � N such that for any fundamental discriminant d with 1 < |d| � Δ0 there

exists a prime factor p of n with χd(p) =−1. Such an integer n cannot be represented by
any primitive nondegenerate binary quadratic form with absolute discriminant below Δ0.
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This result, which may be viewed as a variant of the least quadratic nonresidue problem,
follows from an application of log-free zero density estimates; details will be supplied

elsewhere.

Lastly, we draw attention to three papers from the literature where related problems
concerning the integers represented by a family of binary quadratic forms are considered:

Blomer’s work on sums of two squareful numbers [1], the work of Bourgain and Fuchs [4]

on Apollonian circle packings and the work of Ghosh and Sarnak [10] on Markoff-type

cubic surfaces.
Notation. For the most part notation will be introduced when it is needed. However,

we remind the reader that k0 will always denote log logN . From Section 5 onwards, W

will denote a quantity which tends to infinity with N sufficiently slowly; we will take
W := log log logN for definiteness.

Plan of the paper. Section 2 is devoted to the proof that the upper and lower bounds

(Theorems 1.3 and 1.4, respectively) imply the main theorem, Theorem 1.1. Section 3
gives some standard background on binary quadratic forms which will be used throughout

the rest of the paper. In Section 4, we prove the relatively straightforward upper bound,

Theorem 1.3.

The remainder of the paper is devoted to the much more involved proof of the
lower bound, Theorem 1.4. First, we formulate a more technical variant of this result,

Theorem 5.1. This result allows us to restrict attention to representing integers not

divisible by 4, using only quadratic forms x2+dy2 with d ranging over primes in certain
congruence classes. The deduction of Theorem 1.4 from Theorem 5.1 is short and is given

immediately after the statement of the latter.

The proof of Theorem 5.1 is via the second moment method. We divide the
computations that arise into four separate technical propositions, Propositions 5.2, 5.3, 5.4

and 5.5. The synthesis of these propositions to give a proof of Theorem 5.1 is accomplished

in Section 6.

The final sections of the main part of the paper are devoted to the proofs of these
four technical propositions. Proposition 5.5 is a statement about averages of certain

L(1,χ), and we handle it first, in Section 7. The remaining three results all require some

background on class group L-functions, and Section 8 provides an overview and references
for the necessary material. Finally, the proofs of Propositions 5.2, 5.3 and 5.4 are given

in Sections 9, 10 and 11, respectively.

Sections 8, 9 and 10 use Selberg’s techniques [16]. There is no particularly convenient
reference for what we require, so we provide full details. The more standard parts of this

may be found in Appendix A.

2. The upper and lower bounds imply the main theorem

In this section, we show how Theorem 1.1 follows from Theorems 1.3 and 1.4.
Suppose, as in the statement of Theorem 1.1, that Δ = (logN)log22α

√
log logN . It is

enough to prove the result for

|α|� (log logN)1/10; (2.1)
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the result for all α follows from this case and the fact that

Φ(−(log logN)1/10) = o(1), Φ((log logN)1/10) = 1−o(1).

Suppose henceforth that (2.1) holds.

Let k− be defined as the solution to Δ = k32k and k+ as the solution to Δ = 2k/k4.

Then, one may check that

k+,k− =
logΔ

log2
+O(log logΔ) = k0+α

√
k0+O(logk0).

In particular, by the assumption (2.1), we see that |k±−k0|� 2k
3/5
0 .

For k in the range k0−2k
3/5
0 � k � k−, Theorem 1.4 shows that the number of integers

in A(N,k) that may be represented as x2+dy2 with d�Δ is

|A(N,k)|
(
1+O

( 1

logk0

))
+O

(
Nk

−3/4
0

)
. (2.2)

Stirling’s formula and the approximation 1−x = exp(−x− x2

2 +O(x3)) with x = 1− k0

k

(=O(k
−2/5
0 )) show in this range of k that

kk0
k!

=
1√
2πk0

exp
(
k0−

(k0−k)2

2k0
+O

(
k
−1/5
0

))
(2.3)

so that using Lemma 1.2, we may see that the quantity in (2.2) is

N√
2πk0

exp
(
− (k−k0)

2

2k0

)(
1+O

( 1

logk0

))
+O

(
Nk

−3/4
0

)
.

Summing over all k in this range, we conclude that the number of integers n � N that

may be written as x2+dy2 with d�Δ is at least

N√
2πk0

∑
k0−2k

3/5
0 �k�k−

exp
(
− (k−k0)

2

2k0

)
+O

( N

logk0

)
= (Φ(α)+o(1))N,

upon approximating the sum by the corresponding integral. This shows the lower bound

implicit in Theorem 1.1.
To obtain the corresponding upper bound, note that for k in the range k+ � k �

k0 +2k
3/5
0 , Theorem 1.3 shows that the number of integers in A(N,k) that cannot be

represented as x2+dy2 with d�Δ is |A(N,k)|+O(N/k0). Using Lemma 1.2 and Stirling’s

formula as above, this is

N√
2πk0

exp
(
− (k−k0)

2

2k0

)(
1+O

(
k
−1/5
0

))
+O

(
Nk−1

0

)
.
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Summing over all k in this range, we conclude the number of integers up to N that cannot
be represented as x2+dy2 with d�Δ is at least

N√
2πk0

∑
k+�k�k0+2k

3/5
0

exp
(
− (k−k0)

2

2k0

)
+O

(
Nk

−1/5
0

)
= (1−Φ(α)+o(1))N.

This implies the upper bound implicit in Theorem 1.1 and completes the proof.

3. Background on quadratic forms

For the theory in the rest of this section, good resources are [5], [6], [13, Chapter 22]

or [19].

3.1. Fundamental discriminants and characters

A fundamental discriminant is an integer D of the following type: either (i) D≡ 1 (mod 4)

and square-free or (ii) D = 4m with m ≡ 2,3 (mod 4) and m square-free. Apart from

D = 1, these are precisely the discriminants of quadratic fields over Q, and indeed the
discriminant of Q(

√
D) is D. Equivalently, if m is square-free, the quadratic field Q(

√
m)

has discriminant 4m if m≡ 2,3 (mod 4) and m if m≡ 1 (mod 4).

Associated to the fundamental discriminant D is the primitive quadratic Dirichlet
character χD(n) = (Dn ), where the symbol here is the Kronecker symbol. This is defined

to be completely multiplicative and specified on the primes by the following:

• If p is an odd prime, χD(p) = (Dp ) is the Legendre symbol;

• χD(2) = 0 if D ≡ 0 (mod 4), 1 if D ≡ 1 (mod 8) and −1 if D ≡ 5 (mod 8);
• χD(−1) = sgn(D).

The Kronecker symbol χD is a primitive character of modulus |D|. It describes the

splitting type of a prime p in the quadratic field K =Q(
√
D): A prime p splits in Q(

√
D)

if (Dp ) = 1, remains inert if (Dp ) = −1 and ramifies when (Dp ) = 0. Thus, the Dedekind

zeta-function of the field K is given by

ζK(s) =
∑
a �=0

(Na)−s = ζ(s)L(s,χD),

and the number of ideals in OK of norm n is

(1∗χD)(n) =
∑
�|n

χD(
).

3.2. Positive definite forms and imaginary quadratic fields

Let D < 0 be a negative fundamental discriminant, and let K = Q(
√
D) denote the

corresponding imaginary quadratic field.
There is a well-known correspondence (going back to Gauss) between ideal classes in K

and equivalence classes of positive definite binary quadratic forms of discriminant D. In

particular, principal ideals in K are in correspondence with the principal binary quadratic

https://doi.org/10.1017/S1474748024000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000513


Covering integers by x2+dy2 855

form given by x2+ |D|
4 y2 (in the case D ≡ 0 (mod 4)) and x2+xy+ 1+|D|

4 y2 (in the case

D ≡ 1 (mod 4) so that |D|=−D ≡ 3 (mod 4)).
A key object of interest for us is

RD(n) = #{a :N(a) = n, a principal}

which counts the number of principal ideals in OK of norm n. If D ≡ 0 (mod 4), then

a principal ideal a of norm n may be written as (a+ b
√

D/4) and corresponds to two

representations of n by the principal form x2+ |D|
4 y2, namely n= (±a)2+ |D|

4 (±b)2 (with

the exception of D =−4, where it corresponds to 4 representations by the principal form
x2 + y2). Similarly, if D ≡ 1 (mod 4), a principal ideal a of norm n may be written as

(a+b 1+
√
D

2 ) and corresponds to two representations of n by the principal form x2+xy+
1+|D|

4 y2 (with the exception of D =−3, where it corresponds to 6 representations by the

principal form x2+xy+y2).

We remark that

RD(n)� (1∗χD)(n), (3.1)

since (1∗χD)(n) counts all ideals with norm n, and that each ideal of norm n corresponds

to two (or 4 when D =−4, or 6 when D =−3) representations of n by some equivalence
class of binary quadratic forms of discriminant D.

To isolate the principal ideals of norm n, we shall use class group characters. Let CK

denote the ideal class group of K, and denote by hK its size which is the class number

of K. A class group character is a homomorphism ψ : CK →C×. We may think of such
class group characters as maps

ψ : { nonzero ideals in OK}→C×,

satisfying ψ(ab) = ψ(a)ψ(b) and ψ((λ)) = 1 for every nonzero principal ideal (λ). We
denote the dual group of class group characters by ĈK .

If ψ ∈ ĈK is a class group character, then we define

r(n,ψ) = r(n,ψ;D) =
∑

N(a)=n

ψ(a). (3.2)

Notice that ĈK always includes the principal character ψ0 given by ψ0(a) = 1 for all ideals

a. In this case,

r(n,ψ0) =
∑

N(a)=n

1 = (1∗χD)(n). (3.3)

The orthogonality relations for characters now allow us to express RD(n) in terms of

r(n,ψ): namely,

RD(n) =
1

hK

∑
ψ∈ĈK

r(n,ψ). (3.4)

With these preliminaries in place, we postpone a more detailed discussion of class group

characters to Section 8.
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3.3. Representation by x2+dy2

We now relate the concepts of the previous section to our specific problem of representing
integers by the quadratic forms x2+dy2. We will restrict attention to square-free integers

d, which is sufficient for our purposes. The problem of representing integers by x2+dy2

is naturally related to arithmetic in the field K =Q(
√
−d) =Q(

√
D), where D denotes

the fundamental discriminant

D =

{
−4d if d≡ 1,2 (mod 4),

−d if d≡ 3 (mod 4).
(3.5)

Henceforth in the paper, we will adopt the following notational conventions. Unless
explicitly stated otherwise, whenever we write d we have in mind a square-free integer,

and corresponding to such d will be the fundamental discriminant D given in (3.5), and

the imaginary quadratic field K = Q(
√
−d) = Q(

√
D). Of course, K and D depend on

d, but we will not indicate this explicitly. Sometimes, we will additionally have a second

positive square-free number d′, and K ′,D′ will be associated to it in the same way.

Lemma 3.1. Let d≥ 1 be square-free, and let D,K be associated to d as above.

1. If d≡ 1 or 2 (mod 4), then the number of representations of n by the quadratic form
x2+dy2 equals 2RD(n), with the exception of the special case d = 1 where it equals

4R−4(n).

2. If d ≡ 3 (mod 4), then the number of representations of n by the quadratic form

x2+dy2 is at most 2RD(n), with the exception of the special case d = 3 where it is
at most 6R−3(n).

3. If d≡ 7 (mod 8) and n is odd, then the number of representations of n by the quadratic

form x2+dy2 equals 2RD(n).

Proof. If d ≡ 1,2 (mod 4), we have D = −4d, and the quadratic form x2 + dy2 is the

principal form of discriminant D. The result (1) now follows from our discussion in

Section 3.2.

If d ≡ 3 (mod 4), then D = −d, and the principal form of discriminant D is x2+xy+
1+d
4 y2. The identity

x2+dy2 = (x−y)2+(x−y)(2y)+
1+d

4
(2y)2

shows that the representations of n as x2 + dy2 are in bijective correspondence with

the representations of n as X2+XY + 1+d
4 Y 2 with Y even. Since the total number of

representations of n as X2+XY + 1+d
4 Y 2 (ignoring whether Y is even or odd) equals

2RD(n) (or 6R−3(n) in the exceptional case d = −3), the upper bound stated in (2)

follows.

Finally, if d ≡ 7 (mod 8) and n is odd, then 1+d
4 is even, and so any representation

of n as X2 +XY + 1+d
4 Y 2 must necessarily have Y being even. Thus, in this case the

representations of n by X2+XY + 1+d
4 Y 2 equal the representations of n by x2+dy2, and

assertion (3) follows.
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4. Proof of the upper bound

In this section, we prove Theorem 1.3. It will follow from the following proposition.

Proposition 4.1. Let N be large and k an integer in the range (1.1). Let d be a square-
free integer with d� logN . Then the number of integers n ∈A(N,k) that are represented

by x2+dy2 is � N
2k
(log logN)3.

Before proving the proposition, let us deduce Theorem 1.3. Note that if d= d1d
2
2 with

d1 square-free, then an integer represented by x2+ dy2 is automatically represented by

x2+d1y
2.

Using Proposition 4.1, it follows that the number of integers in A(N,k) that are

represented by x2+dy2 for some d, 1� d�Δ is

�Δ
N

2k
(log logN)3 �N(log logN)−1

since Δ� 2k/k4. This establishes Theorem 1.3.

To prove Proposition 4.1, we require the following simple lemma.

Lemma 4.2. Let D be any fundamental discriminant apart from D = 1. For all x � 1,

we have
∑

n�x(1∗χD)(n)� x log |D|.

Proof. Suppose first that x � |D|2. Since (1 ∗χD)(n) � τ(n) (the number of divisors of
n), the sum in question is �

∑
n�x τ(n)� x log(x+1)� x log |D|.

Now, suppose that x > |D|2, and note that

(1∗χD)(n) =
∑
ab=n

χD(b) =
∑
ab=n
b�|D|

χD(b)+
∑
ab=n
b>|D|

χD(b).

Therefore, ∑
n�x

(1∗χD)(n) =
∑
b�|D|

χD(b)
∑

a�x/b

1+
∑

a�x/|D|

∑
|D|<b�x/a

χD(b). (4.1)

The first term on the right side of (4.1) contributes∑
b�|D|

χD(b)
(x
b
+O(1)

)
�

∑
b�|D|

(x
b
+1

)
� x log |D|.

Since χD is a nonprincipal character to the modulus |D|, it sums to zero over any interval

of length D, and therefore |
∑

|D|<b�x/aχD(b)|� |D|. It follows that the second term on
the right side of (4.1) contributes � |D|

∑
a�x/|D| 1� x, and the lemma follows.

Proof of Proposition 4.1. Let d be square-free with d � logN , and let D be the

fundamental discriminant associated to it (as given in (3.5)). Write R = R(d) for the
set of all r such that the primes dividing r either divide |D| or appear to exponent

at least 2 in the prime factorization of r. Suppose n ∈ A(N,k) is an integer that can

be expressed as x2+ dy2. Write n uniquely as rs, where (r,s) = 1, s is square-free and
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composed of primes not dividing |D| and r ∈ R. We have that Ω(r) � k and note that

Ω(s) = k−Ω(r).

By Lemma 3.1 and (3.1), we know that if n is representable by x2 + dy2, then (1 ∗
χD)(n) � RD(n) > 0. Since (1 ∗χD) is a nonnegative multiplicative function, it follows

that (1∗χD)(s)> 0 or, equivalently, that every prime p|s satisfies χD(p) = 1 and therefore

(1∗χD)(s) = 2Ω(s). Thus,∑
n∈A(N,k)

n=x2+dy2

1�
∑

rs∈A(N,k)

2−Ω(s)(1∗χD)(s) = 2−k
∑

rs∈A(N,k)

2Ω(r)(1∗χD)(s)

� 2−k
∑
r∈R

Ω(r)�k
r�N

2Ω(r)
∑

s�N/r

(1∗χD)(s),

where in the last step we used the nonnegativity of 1∗χD to take the sum over all s�N/r.

Applying Lemma 4.2 to the sum over s, we obtain

∑
n∈A(N,k)

n=x2+dy2

1� N

2k
log |D|

∑
r∈R

Ω(r)�k

2Ω(r)

r
.

Now,

∑
r∈R

Ω(r)�k

2Ω(r)

r
�

∏
p||D|

(
1+

k∑
j=1

2j

pj

) ∏
p�|D|

(
1+

k∑
j=2

2j

pj

)
� k

∏
p||D|

(
1+

2

p

)
� k(log log |D|)2,

where the factor k above arises from the prime p= 2. Since k� log logN and |D|� logN ,

the proposition follows.

5. Plan of the proof of the lower bound

We now turn to the proof of Theorem 1.4, which constitutes the bulk of the paper. Let
N be large, recall that k is an integer in the range (1.1), and suppose in all that follows

that

k32k �Δ� logN.

We wish to bound the exceptional integers n ∈ A(N,k) that cannot be represented as

x2+dy2 with d below Δ. In fact, we shall consider only representations by such quadratic

forms when d is a prime lying in a suitable residue class and show that most integers can
be represented even with this further constraint.

To state our results more precisely, we distinguish two cases according to whether the 2-

adic valuation v2(n) is 0 or 1 (or in other words whether n≡ 1 (mod 2) or n≡ 2 (mod 4)).
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Results for integers n that are multiples of 4 will be deduced easily from these cases.
Thus, we define, for all j = 0, 1,

Aj(k) = {v2(n) = j, Ω(n) = k},
Aj(N,k) = {n�N, n ∈ Aj(k)}.

Observe that

|A0(N,k)|= |A(N,k)|− |A(N/2,k−1)|,

and

|A1(N,k)|= |A0(N/2,k−1)|= |A(N/2,k−1)|− |A(N/4,k−2)|.

Thus, from Lemma 1.2 we may deduce that for k satisfying |k−k0|� 1
3k0 we have

Aj(N,k) = 2−j−1 N

logN

kk0
k!

(
1+O

(1+ |k−k0|
k0

))
. (5.1)

Here, we recall that k0 denotes log logN .
To each case j=0,1 we associate a setDj of primes. Below, we letW denote a parameter

tending to infinity slowly with N ; for definiteness, we set W = log log logN . With this

choice of W, define

D0 =
{
d ∈

[ Δ

logΔ
,Δ

]
prime, d≡ 7 (mod 8), χD(p) = 1 for p�W

}
, (5.2)

D1 =
{
d ∈

[ Δ

logΔ
,Δ

]
prime, d≡ 1 (mod 4), χD(p) = 1 for odd p�W

}
. (5.3)

Here, as usual, D denotes the fundamental discriminant associated to d as given in (3.5).

Thus, D = −d for d ∈ D0 and since D ≡ 1 (mod 8), we have χD(2) = 1 automatically. If

d is in D1, then D = −4d, and here χD(2) = 0. The primes in D0 lie in
∏

3�p�W
p−1
2

reduced residue classes (mod 8
∏

3�p�W p), while those in D1 lie in
∏

3�p�W
p−1
2 reduced

residue classes (mod 4
∏

3�p�W p). Since W is suitably small, a simple application of the

prime number theorem in arithmetic progressions gives

|D0|= (1+o(1))
1

2π(W )+1

Δ

logΔ
, |D1|= (1+o(1))

1

2π(W )

Δ

logΔ
.

In particular, since W = log log logN , and since

logΔ k = (1+o(1)) log logN,

we have the crude bounds

|D0|, |D1| Δ(logΔ)−1+o(1). (5.4)

We are now ready to state our result on representing integers in Aj(N,k) using the

binary quadratic forms x2+ dy2 with d ∈ Dj . From this result, we shall swiftly deduce

Theorem 1.4.
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Theorem 5.1. Suppose that N is large, k is an integer in the range

|k−k0|� 2k
2/3
0 , (5.5)

where k0 := log logN , and that k32k � Δ � logN . For j = 0,1, let Ej(N,k) denote the

exceptional set of integers in Aj(N,k) that cannot be expressed as x2 + dy2 for some
d ∈ Dj. Then we have

|Ej(N,k)| �ε
|A(N,k)|
logk0

+Nk
ε−5/6
0 .

Deducing Theorem 1.4 from Theorem 5.1. Extracting the largest power of 4, we

see that every n ∈ A(N,k) may be written uniquely as n = 4mr, where r is either in
A0(N/4m,k− 2m) or in A1(N/4m,k− 2m). Further, if r can be represented as x2+dy2

with d�Δ, then plainly so can n= 4mr. Thus,

|E(N,k)|�
∑
m�0

(
|E0(N/4m,k−2m)|+ |E1(N/4m,k−2m)|

)
.

First, let us dispense with the terms m � logk0. Bounding |E0(N/4m,k − 2m)| +
|E1(N/4m,k − 2m)| trivially by N/4m, we see that these terms contribute �∑

m�logk0
N/4m �N/k0, which is better than we need.

For the terms with m � logk0, we wish to use Theorem 5.1 to bound the quantity
|Ej(N/4m,k−2m)| (for j = 0,1). We must check that the required conditions there hold.

The condition on Δ is automatic: Since Δ is assumed to be � k32k it is clearly also

� (k−2m)32k−2m. The main condition to check is the analogue of (5.5) which here reads
|(k−2m)− log log(N/4m)|� 2(log log(N/4m))2/3. To verify this, note that for m� logk0,

one has log log(N/4m) = k0+O(1), and so the left side above is � |k0−k|+2m+O(1)�
k
2/3
0 +2logk0+O(1) since k is in the range (1.1). Thus, we may apply Theorem 5.1, and

conclude that

|E0(N/4m,k−2m)|+ |E1(N/4m,k−2m)| �ε
|A(N/4m,k−2m)|

logk0
+

N

4m
k
ε−5/6
0 .

Now, applying Lemma 1.2 we obtain

|A(N/4m,k−2m)| � N

4m log(N/4m)

(log log(N/4m))k−2m

(k−2m)!

� N

4m logN

(log logN)k−2m

(k−2m)!
� N

4m logN

kk0
k!

( k

k0

)2m

� |A(N,k)|
4m

,

where the final estimate holds since k/k0 = 1 + O(k
−1/3
0 ) and m � logk0 so that

(k/k0)
2m � 1. We conclude that the contribution of the terms with m � logk0 may

be bounded by

�
∑

m�logk0

4−m
( |A(N,k)|

logk0
+Nkε−5/6

)
� |A(N,k)|

logk0
+Nk

−3/4
0 .

Combining this estimate with our bound for the larger range of m, we complete the

deduction of Theorem 1.4.
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Theorem 5.1 will be deduced (in the next section) from the following four propositions

which form the heart of our argument. Before stating these propositions, we introduce

some notation that will be in place for the rest of our work. We shall factorize n as n�n�,
where n� is composed only of primes below W, and n� is composed only of primes above

W. Further, we define

γW =
∏
p�W

(
1−1/p

)
. (5.6)

For each choice of j = 0 or 1, we define

Fj(n) =
1

|Dj |
∑
d∈Dj

|D|1/2
πγW

RD(n)

τ(n�)
. (5.7)

Note that if n cannot be represented as x2 + dy2 with d ∈ Dj , then RD(n) = 0 for all
d ∈ Dj and therefore Fj(n) = 0. The proof is based on showing that for n ∈ Aj(k), the

quantity Fj(n) is usually close to its expected value of 1, which is achieved by showing

that (Fj(n)− 1)2 is small on average over n. The four propositions below facilitate the

calculation of this variance, which will be carried out in the next section.

Proposition 5.2. Let N be large, and let k be an integer in the range (5.5). The following

statements hold for either choice of j = 0 or 1. Let d be an element in Dj, and let D be

the corresponding fundamental discriminant. Then

|D|1/2
πγW

∑
n∈Aj(k)

RD(n)

τ(n�)
e−n/N =

∑
n∈Aj(k)

e−n/N +NOε

(
k
ε−5/6
0 +L(1,χD)−1k−2

0

)
,

where γW is as in (5.6).

Partial summation and (5.1) easily allow us to give an asymptotic for the sum∑
n∈Aj(k)

e−n/N appearing above. Write

∑
n∈Aj(k)

e−n/N =

∫ ∞

0

e−u|Aj(uN,k)|du=

∫ logN

1/ logN

e−u|Aj(uN,k)|du+O
( N

logN

)
,

where we truncated the integral above using the trivial bound |Aj(uN,k)| � uN in the

range u �∈ [1/ logN, logN ]. Now, using (5.1) for u ∈ [1/ logN, logN ] and the estimate
kk
0

k! � k
−1/2
0 logN , which follows from (2.3), we obtain that for k in the range (5.5)∑

n∈Aj(k)

e−n/N = 2−j−1 N

logN

kk0
k!

+O(Nk
−5/6
0 ). (5.8)

Note that there is a small subtlety in the application of (5.1), which is that N must
be replaced by uN not only in the obvious term N

logN , but also k0 must be replaced by

log log(uN). We leave it to the reader to check that these changes have negligible effect

for u in the stated range.
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Our next proposition considers averages of RD(n)RD̃(n) for two different elements d,

d̃ ∈ Dj . The answer will involve the character χdd̃, which we now briefly introduce. Since

d and d̃ are different primes that are congruent to each other (mod 4), it follows that

dd̃ ≡ 1 (mod 4) is a fundamental discriminant, and so the Kronecker symbol χdd̃ is a
primitive character to the modulus dd̃. This character is also closely connected to the

product of characters χDχD̃. Indeed, in the case j = 0 both characters are identical, and

in the case j = 1 the character χDχD̃ is the imprimitive character (mod 4dd̃) induced by
the primitive character χdd̃.

Proposition 5.3. Let N be large, and let k be an integer in the range (5.5). Let j be 0 or
1. Let d and d̃ be two different elements in Dj, and let D and D̃ denote the corresponding

fundamental discriminants. If d≡ d̃ (mod 8) (which is automatic when j = 0), then

|DD̃|1/2
π2γ2

W

∑
n∈Aj(k)

RD(n)RD̃(n)

τ(n�)2
e−n/N =

(
2j +O(W−1)

)
γWL(1,χdd̃)

∑
n∈Aj(k)

e−n/N

+NOε

(
L(1,χdd̃)k

ε−5/6
0 +L(1,χD)−1L(1,χD̃)−1kε−3

0

)
, (5.9)

while if d �≡ d̃ (mod 8) (which can only happen for j = 1), then∑
n∈Aj(k)

RD(n)RD̃(n)

τ(n�)2
e−n/N = 0. (5.10)

The next proposition concerns the case when d= d̃, where an upper bound suffices.

Proposition 5.4. Let N be large, and let k be an integer in the range (5.5). Let j = 0

or 1, and let d be an element of Dj with D denoting the corresponding fundamental

discriminant. Then we have

|D|
π2γ2

W

∑
n∈Aj(k)

RD(n)2

τ(n�)2
e−n/N � 2kN

γWL(1,χD)

(
k
−1/2
0 +L(1,χD)−1k−2

0

)
+ |D|1/2(log |D|)3N.

Finally, to complete our calculation of the average of (Fj(n)− 1)2, we shall need an

asymptotic for the the average of L(1,χdd̃) appearing in Proposition 5.3.

Proposition 5.5. For each j = 0,1, we have

1

|Dj |2
∑

d �=d̃∈Dj

d≡d̃ (mod 8)

L(1,χdd̃) =
1

γW

(
2−j +O(W−1)

)
.

6. Deducing Theorem 5.1 from Propositions 5.2, 5.3, 5.4 and 5.5

We now deduce Theorem 5.1 from the four propositions enunciated in the previous section.

Let j be 0 or 1, and k an integer in the range (5.5). Recall from (5.7) the definition of
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Fj(n), and recall that Fj(n) = 0 if n cannot be represented as x2 + dy2 with d ∈ Dj .

Therefore, writing Ej(N,k) for the exceptional set as in Theorem 5.1,

|Ej(N,k)| �
∑

n∈Aj(k)

(Fj(n)−1)2e−n/N =
∑

n∈Aj(k)

(Fj(n)
2−2Fj(n)+1)e−n/N . (6.1)

We now invoke Propositions 5.2, 5.3, 5.4 and 5.5 to bound the right side above. To handle

some error terms that arise, we require bounds for the average values of L(1,χD)−m with
m = 1 and 2. Although we can be more precise, it suffices to use [11, Theorem 2] and

(5.4) to obtain

1

|Dj |
∑
d∈Dj

L(1,χD)−m � 1

|Dj |
∑
d�Δ
d odd

μ2(d)=1

L(1,χD)−m � Δ

|Dj |
� (logΔ)1+o(1) (6.2)

for j = 0,1 and m= 1,2.
A few further remarks on the application of [11, Theorem 2] may be helpful. First,

since we are dealing with moments where m is bounded (albeit negative) we can exclude

the contribution of exceptional characters, as remarked in the paragraph following the
statement of [11, Theorem 2]. Second, denoting by X the random Euler product featuring

in the statement of [11, Theorem 2] then, as remarked in [11, page 995], P(L(1,X)� 1/t)

decays doubly exponentially as t→∞ so that the moments EL(1,X)−1 and EL(1,X)−2

are bounded.

From Proposition 5.2, (6.2) (with m= 1) and the assumption that Δ� logN , it follows

that ∑
n∈Aj(k)

Fj(n)e
−n/N =

∑
n∈Aj(k)

e−n/N +Oε(Nk
ε−5/6
0 ). (6.3)

It remains to evaluate the terms involving Fj(n)
2 in (6.1). Expanding out the square,

we have∑
n∈Aj(k)

Fj(n)
2e−n/N =

1

π2γ2
W |Dj |2

∑
d,d̃∈Dj

|DD̃|1/2
∑

n∈Aj(k)

RD(n)RD̃(n)

τ(n�)2
e−n/N. (6.4)

Here, we separate the diagonal terms d = d̃ from the off-diagonal terms d �= d̃. By

Proposition 5.4, we see that the contribution of the diagonal terms is bounded by

� N

|Dj |2
∑
d∈Dj

(
2kγ−1

W

(
L(1,χD)−1k

−1/2
0 +L(1,χD)−2k−2

0

)
+ |D|1/2(log |D|)3

)
.

Using (5.4) and (6.2), the Mertens bound γW � 1/ logW = (logΔ)−o(1) and that Δ� k32k,

the above is

� 2kNk
−1/2
0 (logΔ)2+o(1)Δ−1+N(logΔ)5Δ−1/2 �Nk−1

0 . (6.5)
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As for the off-diagonal terms in (6.4), using Proposition 5.3 we see that their contribution

is

1

|Dj |2
∑

d �=d̃∈Dj

d≡d̃ (mod 8)

((
2j +O(W−1)

)
L(1,χdd̃)γW

∑
n∈Aj(k)

e−n/N

+NOε

(
L(1,χdd̃)

−1k
ε−5/6
0 +L(1,χD)−1L(1,χD̃)−1kε−3

0

))
.

Now, using Proposition 5.5, (6.2) and the bound γ−1
W � (logΔ)o(1), the above is(

1+O(W−1)
) ∑
n∈Aj(k)

e−n/N +Oε(Nk
ε−5/6
0 ). (6.6)

Combining (6.5) and (6.6), we conclude that∑
n∈Aj(k)

Fj(n)
2e−n/N =

(
1+O(W−1)

) ∑
n∈Aj(k)

e−n/N +Oε(Nk
ε−5/6
0 ).

Taken together with (6.3), it follows that∑
n∈Aj(k)

(Fj(n)−1)2e−n/N �ε W
−1

∑
n∈Aj(k)

e−n/N +Nk
ε−5/6
0 �W−1|A(N,k)|+Nk

ε−5/6
0 ,

in view of (5.8) and Lemma 1.2. Using this estimate in (6.1) and recalling that W =

log log logN = logk0, Theorem 5.1 follows.

7. Proof of Proposition 5.5

In the proof below, it is convenient to set

K = (logΔ)20, M =Δ3/2.

Suppose d and d̃ are distinct elements in Dj with d ≡ d̃ (mod 8). Then dd̃ is a square-

free integer ≡ 1 (mod 8) and is thus a fundamental discriminant. Since dd̃ �Δ2, partial
summation and the Pólya–Vinogradov inequality give

L(1,χdd̃) =
∑
n�M

χdd̃(n)

n
+

∫ ∞

M

∑
M<n�t

χdd̃(n)
dt

t2
=

∑
n�M

χdd̃(n)

n
+O(Δ−1/4). (7.1)

We first show that (when summed over d and d̃) the terms with n > K contribute a

negligible amount. Here, we extend the sum over dd̃ to all discriminants below Δ2 that

are 1 (mod 8). Recall that a discriminant is an integer 
≡ 0 or 1 (mod 4) and that every
discriminant 
 may be written uniquely as 
0r

2, where 
0 is a fundamental discriminant.

For every discriminant 
, we may define the Kronecker symbol χ� exactly as in Subsection

3.1, and it defines a quadratic character (mod 
), possibly imprimitive and induced from
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the primitive character χ�0. Thus, using Cauchy–Schwarz, we find

∑
d,d̃∈Dj

d �=d̃

d≡d̃ (mod 8)

∣∣∣ ∑
K�n�M

χdd̃(n)

n

∣∣∣� ∑
d�Δ2

d≡1 (mod 8)

∣∣∣ ∑
K�n�M

χd(n)

n

∣∣∣

�Δ

( ∑
d�Δ2

d≡1 (mod 8)

∣∣∣ ∑
K�n�M

χd(n)

n

∣∣∣2)1/2

.

Expanding the square, we obtain

∑
d�Δ2

d≡1 (mod 8)

∣∣∣ ∑
K�n�M

χd(n)

n

∣∣∣2 = ∑
K�n1,n2�M

1

n1n2

∑
d�Δ2

d≡1 (mod 8)

χd(n1n2). (7.2)

Write n1n2 as 2an, where n is odd. Since d ≡ 1 (mod 8), χd(2) = 1, and therefore

χd(n1n2) = χd(n) may also be expressed as the Jacobi symbol ( dn ). Now, the Jacobi

symbol ( ·
n ) is a quadratic character (mod n) and is nonprincipal exactly when n is not a

square, or, in other words, when n1n2 is neither a square nor twice a square. Thus, when

n1n2 is neither a square nor twice a square we find by the Pólya–Vinogradov inequality

∑
d�Δ2

d≡1 (mod 8)

( d

n

)
=

∑
8k+1�Δ2

(8k+1

n

)
=
( 8

n

) ∑
k�(Δ2−1)/8

(k+8

n

)
�

√
n logn,

where 8 denotes the inverse of 8 modulo n. If n1n2 is a square or twice a square, then the

inner sum over d in (7.2) is clearly O(Δ2). Thus, we obtain that the quantity in (7.2) is

�Δ2
∑

K�n1,n2�M
n1n2=�,2�

1

n1n2
+

∑
K�n1,n2�M

√
n1n2 log(n1n2)

n1n2
.

The second term above is easily bounded by � M logM . Now, consider the first term,
where we handle the case n1n2 = m2 with the case n1n2 = 2m2 treated in the same

manner. The terms n1n2 =m2 contribute, with τ(·) denoting the divisor function

�Δ2
∑

K�m�M

τ(m2)

m2
� Δ2

K

∑
m�M

τ(m2)

m
� Δ2

K

∏
p�M

( ∞∑
j=0

τ(p2j)

pj

)
� Δ2

K
(logM)3.

We conclude that the quantity in (7.2) is

� Δ2

K
(logΔ)3+M logM �Δ2(logΔ)−10.
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Combining the above argument with (7.1), we find that∑
d �=d̃∈Dj

d≡d̃ (mod 8)

L(1,χdd̃) =
∑

d �=d̃∈Dj

d≡d̃ (mod 8)

∑
n≤K

χdd̃(n)

n
+O

(
Δ2(logΔ)−5

)
. (7.3)

To analyse the main term above, write n�K uniquely as n= frm2, where f and r are
square-free with all prime factors of f being below W and all prime factors of r being

above W (in particular, r is odd, and note that r could be 1). Note that for all p, 3� p�
W , we have χdd̃(p) = χD(p)χD̃(p) = 1. Since d≡ d̃ (mod 8), we have dd̃≡ 1 (mod 8), and

it follows also that χdd̃(2) = 1. Finally, since d and d̃ are primes in the range [Δ/ logΔ,Δ],

and m2 � n�K = (logΔ)20 we know that (dd̃,m2) = 1 and therefore χdd̃(m
2) = 1. Thus,

χdd̃(n) equals the Jacobi symbol (dd̃r ), which for given r is a quadratic character that is

principal when r = 1 and nonprincipal for r > 1. With this notation, the main term in

(7.3) may be expressed as ∑
n=frm2�K

1

n

∑
d �=d̃∈Dj

d≡d̃ (mod 8)

(dd̃
r

)
. (7.4)

We now show that the asymptotic in Proposition 5.5 arises from the contribution of

r = 1 here, while the terms with r > 1 contribute a negligible amount. When r = 1, note

that (dd̃r ) = 1. Since d and d̃ range over primes in [Δ/ logΔ,Δ] in suitable progressions
modulo 8

∏
3�p�W p, and this modulus is � e(1+o(1))W = (logΔ)1+o(1), by the prime

number theorem in arithmetic progressions it follows that∑
d �=d̃∈Dj

d≡d̃ (mod 8)

1 = 2−j |Dj |2+O(Δ2(logΔ)−10).

When j = 0 the condition d ≡ d̃ (mod 8) is automatic, while when j = 1 we only know

from the definition that d≡ d̃ (mod 4) and the extra constraint (mod 8) accounts for the
factor 2j = 2 above. Now, the unrestricted sum over n satisfies∑

n=fm2≥1

1

n
=

∏
p�W

(
1−p−1

)−1 ∏
p>W

(
1−p−2

)−1
= γ−1

W

(
1+O(W−1)

)
,

while the tail
∑

n=fm2>K 1/n may be bounded by∑
f |

∏
p�W p

1

f

∑
m�

√
K/f

1

m2
� 1√

K

∑
f |

∏
p�W p

1√
f
� log logN√

K
� (logΔ)−9.

We conclude that the terms with r = 1 in (7.4) contribute(
2−j |Dj |2+O(Δ2(logΔ)−10)

)(
γ−1
W

(
1+O(W−1

)
+O((logΔ)−9)

)
.

This is 2−j |Dj |2γ−1
W (1+O(W−1)), matching the expression in the proposition.
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It remains to show that the contribution to (7.4) of terms with r > 1 is negligible. Given

d ∈ Dj , consider the sum over d̃ in (7.4), which is∑
d̃∈Dj

d̃ �=d

d̃≡d (mod 8)

(dd̃
r

)
=
(d
r

) ∑
d̃∈Dj

d̃≡d (mod 8)

( d̃
r

)
+O(1) =

(d
r

) ∑
a (mod r)

(a
r

) ∑
d̃∈Dj

d̃≡d (mod 8)
d≡a (mod r)

1+O(1).

Now, the sum over d̃ above counts primes in [Δ/ logΔ,Δ] lying in a suitable number

of arithmetic progressions modulo 8r
∏

3�p�W p. Since the modulus is �Ke(1+o(1))W �
(logΔ)22, an application of the prime number theorem in arithmetic progressions shows

that the above equals(d
r

) ∑
a (mod r)

(a
r

)( 1

φ(r)

|Dj |
2j

+O
(
Δ(logΔ)−40

))
=O

(
Δ(logΔ)−20

)
,

upon noting that the main terms cancel (since ( ·
r ) is a nonprincipal character) and that

r �K = (logΔ)20. Thus, the contribution of the terms r > 1 to (7.4) is

�
∑
n�K

1

n
|Dj |Δ(logΔ)−20 �Δ2(logΔ)−19.

Combining this with our evaluation of the terms with r = 1, we conclude that the

quantity in (7.4) is 2−jγ−1
W |Dj |2(1 +O(W−1)), and using this in (7.3) the proof of

Proposition 5.5 is complete.

8. Class group L-functions

We begin by recalling properties of class group L-functions over general number fields.

In our work, we will only need the special cases of quadratic and biquadratic extensions.
Let K be a number field of degree m and discriminant DK . Let Ψ be a character of the

class group of K, and let L(s,Ψ) denote the corresponding L-function. Recall that L(s,Ψ)

is defined by

L(s,Ψ) =
∑
a �=0

Ψ(a)N(a)−s =
∏
p

(
1−Ψ(p)N(p)−s

)−1
, (8.1)

where both the Dirichlet series and Euler product above converge absolutely in the half-

plane σ > 1. In the half-plane σ > 1, we define a holomorphic branch of logL(s,Ψ) by
setting

logL(s,Ψ) =
∑
p

log
(
1−Ψ(p)N(p)−s

)−1
=
∑
p

∞∑
j=1

1

j
Ψ(p)jN(p)−js. (8.2)

The Dirichlet series coefficients of L(s,Ψ) are bounded in absolute value by the
corresponding coefficients of the Dedekind zeta-function ζK(s), which in turn are no more

than the coefficients of ζ(s)m (which has coefficients given by the m-divisor function).

Further, the coefficients of logL(s,Ψ) (as defined above) are supported on prime powers
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and bounded in size by the coefficients of logζK(s) (defined as above for the principal

character Ψ0) and thus are no more than m/j on the prime powers pj . In particular, we

note that in the half-plane σ > 1

| logL(s,Ψ)|�m logζ(σ)�m log
( σ

σ−1

)
, (8.3)

with the second bound being a standard bound for ζ (see, for instance, [14, Corollary

1.4]).
We now collect together some classical bounds for L(s,Ψ), along with describing a

zero-free region for L(s,Ψ) and bounds for | logL(s,Ψ)| inside the zero-free region.

Lemma 8.1. Let K, Ψ and L(s,Ψ) be as above. Then the following statements hold.

1. Suppose that Ψ is not the principal character. Then L(s,Ψ) extends to an entire
function and uniformly in the region σ � 0 satisfies the bound

|L(σ+ it,Ψ)| �m

(
(|DK |(1+ |t|)m)(1−σ)/2+1

)
(log(|DK |(1+ |t|)))m. (8.4)

For every ε > 0, there is a constant C = C(m,ε)> 0 such that the region

R0 =R0(ε) = {σ � 1−C|DK |−ε, |t|� |DK |}

is free of zeros of L(s,Ψ). Thus, logL(s,Ψ) extends analytically to the region R0, and
moreover in the subregion

R=R(ε) =
{
σ � 1− 1

2C|DK |−ε, |t|� 1
2 |DK |

}
,

we have the bound

| logL(s,Ψ)|� 6mε log |DK |+Om,ε(1). (8.5)

2. Suppose that Ψ is the principal character so that L(s,Ψ) is the Dedekind zeta-function

ζK(s) of the field K. The Dedekind zeta-function extends to a meromorphic function,

with a single simple pole at s= 1. The convexity bound (8.4) holds provided |t|� 1,
while for |t| � 1 the same bound holds for |(s− 1)ζK(s)|. The region R0 is free of

zeros of ζK(s), and the function log((s−1)ζK(s)) extends analytically to the region

R0. The bound (8.5) holds for | logζ(s)| in the subregion R provided |s−1|� 1, and
for points in R with |s−1|� 1 the same bound holds for | log((s−1)ζK(s))| instead.

Proof. Suppose first that Ψ is nonprincipal. The analytic continuation of L(s,Ψ) to the

entire plane is due to Hecke (for a modern account, see, for example, Chapter 7 of [15]).
The bound in (8.4) is a standard convexity bound and, for instance, may be obtained

from Lemma 4 of Fogels [8]. Fogels’s paper [8] established a classical zero-free region for

L(s,Ψ) of the form σ � 1− c/ log(|D|(1+ |t|)) for a suitable constant c > 0, when the
character Ψ is complex. In the case of a real character Ψ, the same region is free of zeros

of L(s,Ψ) except for the possibility of a simple zero at 1−δ for a real number δ (analogous

to the Siegel zero for Dirichlet L-functions). Analogously to the Brauer–Siegel theorem,
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Fogels [9] shows, by reducing to Brauer’s work, that δ �C(m,ε)|DK |−ε. Thus, the region

R0 is free of zeros of L(s,Ψ).

The bound (8.5) on | logL(s,Ψ)| in the narrower region R follows by an application
of the Borel–Caratheodory lemma using the preliminary bounds (8.3) and (8.4), as we

shall now see. Let z0 = 1+ C
2 |DK |−ε + it with |t| � |DK |/2, and put r = C|DK |−ε and

R= 3
2C|DK |−ε. The function f(z) = logL(z,Ψ) is holomorphic inside the circle of radius

R centered at z0 (since this is contained in the region R0), and for z inside this larger
circle it satisfies the bound

Ref(z) = log |L(z,Ψ)|�m log log |DK |+Om,ε(1)

since by (8.4) we have |L(z,Ψ)| �m,ε (log |DK |)m. Further, by (8.3)

|f(z0)|= | logL(1+ 1
2C|DK |−ε+ it,Ψ)|�mε log |DK |+Om,ε(1).

The Borel–Carathéodory lemma (see, for example, Section 5.5 of [18]) now shows that

for z inside the smaller circle |z− z0|� r one has

|f(z)|� 2r

R− r
sup

|z−z0|�R

Ref(z)+
R+ r

R− r
|f(z0)|

� 4m log log |DK |+5mε log |DK |+Om,ε(1)≤ 6mε log |DK |+Om,ε(1).

This establishes (8.5) for all s = σ+ it with |t| � 1
2 |DK | and 1− 1

2C|DK |ε � σ � 1+
3
2C|DK |−ε. When σ > 1+ 3

2C|DK |−ε (and |t|� 1
2 |DK |) the bound in (8.5) follows at once

from (8.3), and this completes the proof in the case of nonprincipal Ψ.

The case when Ψ is principal follows in the same way. The only difference is that the
Dedekind zeta-function has a pole at s = 1 so that near 1 we deal with (s− 1)ζK(s)

instead.

To prove Propositions 5.2, 5.3 and 5.4, we shall make use of the expression (3.4) of
RD(n) in terms of the coefficients of the class group L-functions r(n,ψ). As consequences

of Lemma 8.1, we now show that in such expressions the contribution of most class group

characters ψ is negligible. The main lemmas we will prove in this section are Lemmas
8.2, 8.4 and 8.5. The analytic details are very similar across all three, so we will only give

complete details in the proof of Lemma 8.2.

Recall the convention introduced in Section 5, namely that for integer n we write
n= n�n�, where n� has only prime factors �W , and n� only prime factors >W .

Lemma 8.2. Let N be large and k be an integer in the range (5.5). Let j be 0 or 1, and

let d be an element of Dj with D denoting the corresponding fundamental discriminant.

Let ψ be a nonprincipal class group character of the quadratic field K =Q(
√
D). Then∑

n∈Aj(k)

r(n,ψ)

τ(n�)
e−n/N �N(logN)−100.
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Proof. The key idea here and in the proofs of Lemmas 8.4 and 8.5 is to follow Selberg
[16] and introduce, for any z ∈C with |z|= 1, the Dirichlet series

F(s;z,j) :=
∑

v2(n)=j

r(n,ψ)

τ(n�)
zΩ(n)n−s.

Later, we will recover the condition Ω(n) = k (which defines the set Aj(k)) by Fourier

inversion.

Since (by (3.2), (3.3)) |r(n,ψ)|� τ(n), we see that F(s,z,j) converges absolutely in the
half plane Re(s) = σ > 1 and further satisfies the bound

|F(s;z,j)|�
∞∑

n=1

τ(n)n−σ = ζ(σ)2 �
( σ

σ−1

)2

, (8.6)

using [14, Corollary 1.4] in the last step. Further, by Mellin inversion we have, setting

c= 1+1/ logN ,

∑
n∈Aj(k)

r(n,ψ)

τ(n�)
zΩ(n)e−n/N =

1

2πi

∫ c+i∞

c−i∞
F(s;z,j)NsΓ(s)ds. (8.7)

By Stirling’s formula |Γ(σ + it)| � (1 + |t|)σ−1/2e−π|t|/2 uniformly for σ in bounded
intervals (see, for instance, (C.19) of [14]). Combining this with the bound (8.6), we

find that the tails of the integral in (8.7) above where |Im(s)|� (log logN)2 contribute

�
∫
|t|>(log logN)2

N c(logN)2(1+ |t|)c−1/2e−π|t|/2dt�N(logN)−100.

Thus, writing T = (log logN)2,

∑
n∈Aj(k)

r(n,ψ)

τ(n�)
zΩ(n)e−n/N =

1

2πi

∫ c+iT

c−iT

F(s;z,j)NsΓ(s)ds+O
(
N(logN)−100

)
. (8.8)

To estimate the truncated integral here, we shall extend F(s;z,j) analytically a little to

the left of the 1-line and shift contours. To extend F(s;z,j) analytically, we shall compare
it with L(s,ψ)z. Note that when Re(s)> 1 we may define L(s,ψ)z by the Euler product∏

p
(1−ψ(p)/N(p)s)−z, and this product converges absolutely when Re(s) > 1. Further,

we may extend L(s,ψ)z analytically to a wider region by writing it as exp(z logL(s,ψ))
and using the analytic continuation described in Lemma 8.1. Thus, define

G(s;z,j) = F(s;z,j)L(s,ψ)−z,

which is, to start with, analytic in the half-plane σ > 1. The definition of F(s;z,j) permits

us (in this region) to write G(s;z,j) as an Euler product
∏

pGp(s;z,j), whose factors we

now describe. For p >W , we have
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Gp(s;z,j) =
( ∞∑

j=0

zjr(pj,ψ)p−js
)∏

p|p

(
1−ψ(p)N(p)−s

)z
=
(
1+ zr(p,ψ)p−s+O(p−2σ)

)(
1− zp−s

∑
N(p)=p

ψ(p)+O(p−2σ)
)

= 1+O(p−2σ).

For p with 3� p�W , we have

Gp(s;z,j) =
( ∞∑

j=0

r(pj,ψ)

(j+1)
zjp−js

)∏
p|p

(
1−ψ(p)N(p)−s

)z
= 1+O(p−σ).

Finally, for p= 2 we have

G2(s;z,j) =

{
z2−s−1r(2,ψ)

∏
p|2

(
1−ψ(p)N(p)−s

)z
if j = 1∏

p|2
(
1−ψ(p)N(p)−s

)z
if j = 0,

and in both cases this is 1+O(2−σ). From these remarks, we see that the Euler product

Gp(s;z,j) converges absolutely in the region Re(s)> 1
2 and defines a holomorphic function

of s in that region. Moreover, in the region σ � 3
4 , we have the bound

|G(s;z,j)| �
∏
p�W

(
1+O(p−3/4)

)
� exp(W 1/4). (8.9)

For the rest of the paper, we fix the domain

W := {s ∈C : 1−2(logN)−1/2 < Res < 2, |Ims|< 2(log logN)2}. (8.10)

Applying Lemma 8.1 with ε = 1
100 (and m = 2), we see that (keeping in mind

(logN)1/2 � |D| � logN) the function logL(s,ψ) is analytic in W and satisfies
| logL(s,ψ)|� 1

8 log |D|+O(1) here. Therefore,

F(s;z,j) = exp(z logL(s,ψ))G(s;z,j)

is also analytic in W and by (8.9) satisfies in this region

|F(s;z,j)| � exp
(

1
8 log |D|+W 1/4

)
� logN.

We now return to the integral in (8.8), and replace the line of integration from
c− iT to c+ iT by integrals along the following three line segments: (i) the horizontal

line segment from c− iT to 1− (logN)−1/2 − iT , (ii) the vertical line segment from

1− (logN)−1/2 − iT to 1− (logN)−1/2 + iT and (iii) the horizontal line segment from

1− (logN)−1/2 + iT to c+ iT . On the horizontal line segment (i), we may bound the
integral by

�
∫ c

1−(logN)−1/2

Nσ(logN)|Γ(σ− iT )|dσ �N(logN)e−T �N(logN)−100,
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upon using |Γ(σ− iT )| � T σ−1/2e−πT/2 � e−T . Naturally, the same estimate applies to
the integral on the horizontal line segment in (iii). As for the vertical line segment (ii),

the integral here is

�N1−(logN)−1/2

(logN)

∫ T

−T

|Γ(1− (logN)−1/2+ it)|dt

�N(logN)exp(−
√

logN)�N(logN)−100.

Putting all this together and recalling (8.1), we conclude that uniformly for |z|= 1∑
v2(n)=j

r(n,ψ)

τ(n�)
zΩ(n)e−n/N �N(logN)−100.

By Fourier inversion,∑
n∈Aj(k)

r(n,ψ)

τ(n�)
=

1

2π

∫ 2π

0

e−ikθdθ
∑

v2(n)=j

r(n,ψ)

τ(n�)
eiθΩ(n)e−n/N �N(logN)−100,

and the proof of Lemma 8.2 is complete.

To state the other two lemmas of this section, we first need to isolate the genus

characters which play a special role. The genus characters for a quadratic field are the

class group characters that take only the real values ±1. We will only need to know what
these are in the case d prime, in which case the classification is as follows.

Proposition 8.3. Let d be an odd prime, and let D be the associated fundamental

discriminant as in (3.5). Let K =Q(
√
D).

1. If d≡ 3 (mod 4), so D =−d, then there is only one genus character in ĈK , namely
the principal character ψ0. The corresponding class group L-function is the Dedekind

zeta-function of K, given by

LK(s,ψ0) = ζK(s) = ζ(s)L(s,χD).

2. If d ≡ 1 (mod 4), so D = −4d, then there are two genus characters in ĈK : the
principal character ψ0, whose L-function is equal to the Dedekind zeta-function of

K as above and a nontrivial genus character ψ1. On prime ideals p, ψ1 is given

by ψ1(p) = χ−4(Np) if p lies above an odd prime, and ψ(p) = χd(2) if p is the
(unique, ramified) prime ideal above 2. The corresponding L-function is given by

LK(s,ψ1) = L(s,χ−4)L(s,χd).

Proof. There is a bijective correspondence between genus characters of imaginary
quadratic fields of discriminant D and factorizations D = D′ ·D′′ into fundamental

discriminants, with the decomposition D = 1 ·D being allowed, and with decompositions

different only in the order of D,D′′ being considered equivalent. See [19, Chapter 12, Satz
2] for a discussion of this, as well as a discussion of how to compute these factorisations

in terms of the factorisation of D into prime discriminants. For us, the factorisations can

easily be computed by hand: If d≡ 3 (mod 4), then there is only the trivial factorisation,
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whilst when d≡ 1 (mod 4), in which case D=−4d, we additionally have the factorisation

in which D′ =−4 and D′′ = d.

In [19, Chapter 12, Satz 2], one may also find the description of a genus character ψ
corresponding to a given factorisation D =D′ ·D′′: It is given on prime ideals by

ψ(p) =

{
χD′(Np) (Np,D′) = 1

χD′′(Np) (Np,D′′) = 1

(That this is well defined is part of the statement.) We have the Kronecker factorisation

of L-functions

LK(s,ψ) = L(s,χD′)L(s,χD′′).

Specialising to the specific case D′ =−4, D′′ = d gives the stated result.

Lemma 8.4. Let N be large and k be an integer in the range (5.5). Let j be 0 or 1,

and let d and d̃ be two distinct elements of Dj with D and D̃ denoting the corresponding

fundamental discriminants. Let ψ and ψ̃ be characters of the class groups of K =Q(
√
D)

and K̃ =Q(
√

D̃) respectively. Then∑
n∈Aj(k)

r(n,ψ)r(n,ψ̃)

τ(n�)2
e−n/N �N(logN)−100

unless (i) ψ and ψ̃ are the principal characters in their respective class groups, or (ii)
both ψ and ψ̃ are the nonprincipal genus character in their respective class groups (and

this possibility occurs only in the case j = 1).

Proof. Given two characters ψ ∈ ĈK and ψ̃ ∈ ĈK̃ , we may find a class group character

Ψ on the biquadratic field L=Q(
√
D,

√
D̃) such that for all unramified primes p∑

P⊂OL

NL/Q(P)=p

Ψ(P) =
( ∑

p⊂OK

NK/Q(p)=p

ψ(p)
)( ∑

p̃⊂O
K̃

N
K̃/Q

(p̃)=p

ψ̃(p̃)
)
= r(p,ψ)r(p,ψ̃).

The character Ψ is defined by setting

Ψ(P) = ψ(NL/K(P))ψ̃(NL/K̃(P)),

where NL/K denotes the ideal norm from L to K (and similarly for K̃), and by Diao

[7, Lemma 6], we may check that Ψ is nonprincipal except in the cases (i) and (ii)

described in the lemma. (Precisely, Lemma 6 of Diao [7] shows that Ψ can be principal
only if ψ and ψ̃ are genus (or real) characters. The last remaining case when one of ψ

or ψ̃ is principal while the other equals a nonprincipal genus character is easily checked

directly.) Therefore, we may write for any complex number z with |z|= 1∑
v2(n)=j

r(n,ψ)r(n,ψ̃)

τ(n�)2
zΩ(n)n−s = L(s,Ψ)zG(s;z,j),
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where G(s;z,j) is given by a suitable Euler product which converges absolutely in Re(s)�
3
4 and satisfies in that region

logG(s;z,j)�W 1/4.

Since the discriminant of L is �Δ4, using Lemma 8.1 and arguing exactly as in our proof

of Lemma 8.2 we establish that∑
v2(n)=j

r(n,ψ)r(n,ψ̃)

τ(n�)2
zΩ(n)e−n/N �N(logN)−100,

and then the bound of the lemma follows by an application of Fourier inversion.

Lemma 8.5. Let N be large and k be an integer in the range (5.5). Let j be 0 or 1, and let

d be an element of Dj with D denoting the corresponding fundamental discriminant. Let

ψ and ψ̃ be two characters of the class group of K =Q(
√
D), and suppose that neither ψ

nor ψ is equal to ψ̃. Then∑
n∈Aj(k)

r(n,ψ)r(n,ψ̃)

τ(n�)2
e−n/N �N(logN)−100.

Proof. For an unramified prime p, we have

r(p,ψ)r(p,ψ̃) = r(p,ψψ̃)+ r(p,ψψ̃).

To see this, note that if p is inert, then r(p,ψ) = r(p,ψ̃) = r(p,ψψ̃) = r(p,ψψ̃) = 0, while if

p splits as pp, then r(p,ψ) = ψ(p)+ψ(p) (and similarly for the other quantities) so that

the stated relation follows with a little algebra. It follows that for any complex number z
with |z|= 1 we may write∑

v2(n)=j

r(n,ψ)r(n,ψ̃)

τ(n�)2
zΩ(n)n−s = L(s,ψψ̃)zL(s,ψψ̃)zG(s;z,j),

where G(s;z,j) is given by a suitable Euler product which converges absolutely in Re(s)�
3
4 and satisfies in that region

logG(s;z,j)�W 1/4.

By hypothesis, both ψψ̃ and ψψ̃ are nonprincipal characters of the class group of K, and

therefore arguing exactly as in Lemma 8.2 and Lemma 8.4, we obtain the lemma.

9. Proof of Proposition 5.2

In this section, we prove Proposition 5.2. Using (3.4), we may write∑
n∈Aj(k)

RD(n)

τ(n�)
e−n/N =

1

hK

∑
ψ∈ĈK

∑
n∈Aj(k)

r(n,ψ)

τ(n�)
e−n/N .
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By Lemma 8.2, the contribution of the nonprincipal characters is �N(logN)−100. Thus,

∑
n∈Aj(k)

RD(n)

τ(n�)
e−n/N =

1

hK

∑
n∈Aj(k)

r(n,ψ0)

τ(n�)
e−n/N +O

(
N(logN)−100

)
, (9.1)

where ψ0 is the trivial character.
To understand the main term on the right-hand side of (9.1), we will again follow

Selberg [16] and introduce for any z ∈C with |z|= 1 the Dirichlet series

F(s;z,j) :=
∑

v2(n)=j

r(n,ψ0)

τ(n�)
zΩ(n)n−s, (9.2)

which to begin with converges absolutely for σ = Re(s) > 1 and defines a holomorphic

function there. As in Selberg’s work, we will find that F can be understood in terms of
the complex powers of ζ and L-functions, thereby obtaining an analytic continuation of

F to a wider region. The sum in (9.1) can be expressed in terms of a contour integral

involving F(s), which can then be evaluated using the analytic continuation of F and an
argument involving a Hankel contour. Since we need to keep track of the uniformity in d,

we give a self-contained account in Appendix A.

Let us turn to the details. We obtain an analytic continuation of F to a wider region
by writing

F(s;z,j) = (ζ(s)L(s,χD))zG(s;z,j). (9.3)

Note that ζ(s)L(s,χD) is the Dedekind zeta-function of the quadratic fieldQ(
√
D), and by

(ζ(s)L(s,χD))z, we mean exp(z log(ζ(s)L(s,χD)), where the logarithm is initially defined
in σ > 1 by an absolutely convergent Dirichlet series as in (8.2). Thus, (9.3) should be

thought of as the definition of the function G(s;z,j), which is holomorphic in the half-

plane σ > 1. We shall shortly see that G(s;z,j) is analytic in σ > 1
2 with suitable bounds

in that region. By part (2) of Lemma 8.1, we may obtain an analytic continuation of
log((s−1)ζ(s)L(s,χD)) to the region R0 with corresponding bounds in the region R. In

this way, we obtain a continuation of F(s;z,j) (essentially) to the region R, except that

we must omit the real line segment to the left of s=1 owing to the logarithmic singularity
at s= 1.

From the multiplicative nature of the definition of F(s;z,j), in the region σ > 1 we

see that G(s;z,j) is given by an Euler product
∏

pG(s;z,j). We now describe these Euler
factors. If p >W , we have

Gp(s;z,j) =

( ∞∑
�=0

r(p�,ψ0)z
�p−�s

)(
1−p−s

)z(
1−χD(p)p−s

)z
, (9.4)

and since r(p,ψ0) = 1+χD(p) and 0� r(p�,ψ0)� (
+1) it follows that

Gp(s;z,j) =
(
1+(1+χD(p))zp−s+O(p−2σ)

)(
1− (1+χD(p))zp−s+O(p−2σ)

)
= 1+O(p−2σ). (9.5)
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For 3 � p �W , from our choice (5.2), (5.3) of d, we have χD(p) = 1 so that r(p�,ψ0) =
(1∗χD)(p�) = 
+1. Thus,

Gp(s;z,j) =
( ∞∑

�=0

r(p�,ψ0)


+1
z�p−�s

)(
1−p−s

)z(
1−p−s

)z
=
(
1− zp−s

)−1(
1−p−s

)2z
.

(9.6)

As we have just seen, for the primes p� 3 there is no dependence on j. By contrast, for

p= 2 the behaviour is different in the two cases j = 0 (where χD(2) = 1) and j = 1 (where
χD(2) = 0). Here, we find

G2(s;z,j) =

{
(1−2−s)2z if j = 0

z2−s−1(1−2−s)z if j = 1.
(9.7)

From (9.6) and (9.7). note that for all p�W (and uniformly for |z|= 1)

Gp(s;z,j) = 1+O(p−σ). (9.8)

From (9.5) and (9.8), we see that the Euler product
∏

pGp(s;z,j), which was known

initially to converge absolutely in Res = σ > 1, in fact converges absolutely for σ > 1
2 .

Moreover, for σ � 3
4 we deduce that

|G(s;z,j)| � exp
( ∑

p�W

O(p−3/4)
)
� exp(W 1/4). (9.9)

Now, we apply Selberg’s method as explained in Appendix A. Specifically, by (A.7) and

(A.8), we obtain∑
v2(n)=j

r(n,ψ0)

τ(n�)
zΩ(n)e−n/N =N

(logN)z−1

Γ(z)
L(1,χD)zG(1;z,j)+Oε

(
N(logN)Rez− 3

2+ε
)
.

(9.10)

Applying the above with z = eiθ for −π � θ � π and applying orthogonality (Fourier

inversion), we deduce that∑
n∈Aj(k)

r(n,ψ0)

τ(n�)
e−n/N =

1

2π

∫ π

−π

∑
v2(n)=j

r(n,ψ0)

τ(n�)
eiθΩ(n)e−n/Ne−ikθdθ

=
N

logN

1

2π

∫ π

−π

(L(1,χD) logN)e
iθ G(1;eiθ,j)

Γ(eiθ)
e−ikθdθ+Oε

(
N(logN)ε−1/2

)
.

(9.11)

We now simplify the main term appearing in (9.11). Since 1/Γ(z) is entire, uniformly

for θ ∈ [−π,π] we have

1

Γ(eiθ)
=

1

Γ(1)
+O(|eiθ−1|) = 1+O(|θ|). (9.12)

https://doi.org/10.1017/S1474748024000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000513


Covering integers by x2+dy2 877

Now, from its definition in (9.4) we may see that for p >W

d

dφ
logGp(1;e

iφ,j) = i

∑∞
�=1 
r(p

�,ψ0)e
i�φp−�∑∞

�=0 r(p
�,ψ0)ei�φp−�

+ ieiφ log
(
(1−p−1)(1−χD(p)p−1)

)
= i

eiφr(p,ψ0)/p+O(1/p2)

1+O(1/p)
− ieiφ

(
(1+χD(p))p−1+O(p−2)

)
=O(p−2).

Integrating this over φ from 0 to θ we obtain that, for θ ∈ [−π,π],

Gp(1;e
iθ,j)

Gp(1;1,j)
= exp

(
O(|θ|p−2)

)
= 1+O

(
|θ|p−2

)
. (9.13)

Similarly, from (9.6) and (9.7) it follows that for all p�W

Gp(1;e
iθ,j)

Gp(1;1,j)
= 1+O

(
|θ|p−1

)
. (9.14)

Multiplying the relations in (9.13) and (9.14) over all primes, we conclude that

G(1;eiθ,j)
G(1;1,j) = exp

(
O
(
|θ|

( ∑
p�W

p−1+
∑
p>W

p−2
)))

= 1+O(|θ|(logW )C), (9.15)

for some constant C (consider the cases |θ| � (log logW )−1 and |θ| > (log logW )−1

separately).

For later use, let us record the value of G(1;1,j). For any prime p>W one may see using

(9.4) and the identity
∑∞

�=0

∑�
j=0x

jy� = (1−xy)−1(1−y)−1 with x= χD(p) and y = p−s

that Gp(s;1,j) = 1, while for 3� p�W it follows from (9.6) that Gp(s;1,j) = 1−1/ps, and
lastly from (9.7) we see that G2(1;1,j) = 2−j−1(1−2−1). Combining these observations,

it follows that

G(1;1,j) = 2−j−1
∏
p�W

(1−1/p) = 2−j−1γW . (9.16)

Using (9.12), (9.15) and (9.16) we obtain

1

2π

∫ π

−π

(L(1,χD) logN)e
iθ G(1;eiθ,j)

Γ(eiθ)
e−ikθdθ = 2−j−1γW

(log(L(1,χD) logN))k

k!

+O
(
(logW )C

∫ π

−π

(L(1,χD) logN)cosθ|θ|dθ
)
, (9.17)

where the main term arises upon noting that, for X > 0,

1

2π

∫ π

−π

Xeiθe−ikθdθ =
1

2π

∫ π

−π

∞∑
�=0

(logX)�


!
ei�θe−ikθdθ =

(logX)k

k!
.

Note that cosθ � 1− θ2/8 for all |θ| � π, and that (by the class number formula (9.22))

L(1,χD)� |D|−1/2 � (logN)−1/2 so that L(1,χD) logN � (logN)1/2. Therefore, (recalling
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that k0 = log logN and that W = log log logN)∫ π

−π

(L(1,χD) logN)cosθ|θ|dθ � (L(1,χD) logN)

∫ π

−π

(logN)−θ2/16|θ|dθ

� k−1
0 L(1,χD) logN

so that the remainder term in (9.17) is seen to be

� k−1
0 L(1,χD)(logN)(logW )C �ε k

ε−1
0 L(1,χD) logN. (9.18)

Using (9.17) and (9.18) in (9.11), we conclude that∑
n∈Aj(k)

r(n,ψ0)

τ(n�)
e−n/N =

N

logN

γW
2j+1

(log(L(1,χD) logN))k

k!
+O

(
Nkε−1

0 L(1,χD)
)
, (9.19)

where we absorbed the error term Oε(N(logN)ε−1/2) in (9.11) into the error term above

using L(1,χD)ε |D|−ε  (logN)−ε.

We now claim that for k in the range (5.5) and all x with (logN)−1/2 � x� k40 we have

(
log(x logN)

k0

)k

=

(
1+

logx

k0

)k

= x
(
1+Oε(k

ε−1/3
0 )

)
+O(k−3

0 ). (9.20)

To verify the claim, consider the following two cases: (i) when k−4
0 � x� k40, and (ii) when

(logN)−1/2 � x� k−4
0 . In case (i) note that | logx|=O(logk0), and so the left-hand side

of (9.20) is

exp
(( logx

k0
+Oε(k

ε−2
0 )

)
(k0+O(k

2/3
0 ))

)
= xexp

(
Oε(k

ε−1/3
0 )

)
,

so that the claim follows here. In case (ii), note that since k � 3k0/4 and we have(
1+

logx

k0

)k

�
(
1+

logx

k0

)3k0/4

� x3/4 � k−3
0 ,

so (9.20) holds in this case also.

Applying (9.20) with x= L(1,χD) (which satisfies (logN)−1/2 � L(1,χD)� log logN),

we see that

(log(L(1,χD) logN))k

k!
=

kk0
k!

(
L(1,χD)+Oε

(
k
ε−1/3
0 L(1,χD)+k−3

0

))
=

kk0
k!

L(1,χD)+Oε

(
k
ε−5/6
0 L(1,χD) logN +k−3

0 logN
)
,

where the last estimate follows using the bound kk0/k! � k
−1/2
0 logN , which is a

consequence of Stirling’s formula. Using this in (9.19), we conclude that∑
n∈Aj(k)

r(n,ψ0)

τ(n�)
e−n/N =

N

logN

γW
2j+1

L(1,χD)
kk0
k!

+Oε

(
k
ε−5/6
0 NL(1,χD)+k−3

0 logN
)
.

(9.21)
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Using (9.21) in (9.1) and invoking the class number formula

hK = |D|1/2L(1,χD)/π (9.22)

we obtain (note also that γW  (logW )−1 ε k
−ε
0 )

|D|1/2
πγW

∑
n∈Aj(k)

RD(n)

τ(n�)
e−n/N =

1

2j+1

N

logN

kk0
k!

+Oε

(
Nk

ε−5/6
0 +NL(1,χD)−1k−2

0

)
.

Finally, recalling (5.8), Proposition 5.2 follows.

10. Proof of Proposition 5.3

We turn now to the proof of Proposition 5.3. We first dispense with the case when
d �≡ d̃ (mod 8) which, recalling the definitions (5.2) and (5.3), can only happen in the

case j = 1. Note that if d ≡ 1 (mod 8), then the integers n with n ≡ 2 (mod 4) that are

represented by x2+dy2 satisfy n≡ 2 (mod 8), while if d≡ 5 (mod 8), then such integers

n must be ≡ 6 (mod 8). Thus, if d �≡ d̃ (mod 8) and if n ∈ A1(k) (which means that
n≡ 2 (mod 4)), then n cannot be represented by both x2+dy2 and x2+ d̃y2. Since both

d,d̃ are 1(mod 4), it follows from Lemma 3.1 (1) that RD(n)RD̃(n) = 0, and so (5.10)

follows.
For the rest of the argument, we assume that d ≡ d̃ (mod 8) with the goal now being

to establish (5.9).

Using (3.4), we see that

∑
n∈Aj(k)

RD(n)RD̃(n)

τ(n�)2
e−n/N =

1

hKhK̃

∑
ψ∈ĈK

ψ̃∈Ĉ
K̃

∑
n∈Aj(k)

r(n,ψ)r(n,ψ̃)

τ(n�)2
e−n/N .

We may now use Lemma 8.4 to estimate the contribution of all the characters ψ and ψ̃

apart from when (i) both ψ and ψ̃ are the principal characters in their respective class

groups, and (ii) both ψ and ψ̃ are the nontrivial genus characters in their class groups.
Note that the second case only arises when j = 1, and since d≡ d̃ (mod 8), we have here

(with notation as in Proposition 8.3)

r(n,ψ1)r(n,ψ̃1) = r(n,ψ0)r(n,ψ̃0)

for all n. To see this, we use Proposition 8.3 and multiplicativity of r(n,ψ) to deduce

that r(n,ψ1) = χ−4(n)r(n,ψ0) and similarly r(n,ψ̃1) = χ−4(n)r(n,ψ̃0) for odd n so that

the stated relation holds for n odd. Further r(2a,ψ1) = χd(2
a)r(2a,ψ0) and r(2a,ψ̃1) =

χd̃(2
a)r(2a,ψ̃0), and since χd(2) =χd̃(2) (because d≡ d̃ (mod 8)) we see the stated relation

for even n as well. Thus,∑
n∈Aj(k)

RD(n)RD̃(n)

τ(n�)2
e−n/N =

2j

hKhK̃

M +O
(
N(logN)−100

)
, (10.1)

https://doi.org/10.1017/S1474748024000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000513


880 B. Green and K. Soundararajan

where

M :=
∑

n∈Aj(k)

r(n,ψ0)r(n,ψ̃0)

τ(n�)2
e−n/N . (10.2)

To evaluate the main term M above, we proceed analogously to the previous section

using Selberg’s method. To highlight the close parallels with the earlier argument, we will
use the same notation for the analogous Dirichlet series that arise here. The first step is

to consider, for |z|= 1, the Dirichlet series

F(s;z,j) :=
∑

v2(n)=j

r(n,ψ0)r(n,ψ̃0)

τ(n�)2
zΩ(n)n−s, (10.3)

which converges absolutely for σ = Re (s)> 1 and defines a holomorphic function there.

As in the previous section, we shall obtain an analytic continuation of F to a wider region
by writing

F(s;z,j) = (ζ(s)L(s,χD)L(s,χD̃)L(s,χdd̃))
zG(s;z,j). (10.4)

Note that ζ(s)L(s,χD)L(s,χD̃)L(s,χdd̃) is the Dedekind zeta-function of the biquadratic

field L=Q(
√
D,

√
D̃), and

(ζ(s)L(s,χD)L(s,χD̃)L(s,χdd̃))
z = exp(z log(ζ(s)L(s,χD)L(s,χD̃)L(s,χdd̃))),

where the logarithm is initially defined in σ > 1 by an absolutely convergent Dirichlet

series as in (8.2). Thus, (10.4) should be thought of as the definition of the function
G(s;z,j), which is holomorphic in the half plane σ > 1. We shall see shortly that G(s;z,j)
is analytic in σ > 1

2 with suitable bounds in that region. By Lemma 8.1 (2), we may

obtain an analytic continuation of log((s−1)ζ(s)L(s,χD)L(s,χD̃)L(s,χdd̃)) to the region
R0 with corresponding bounds in the region R. In this way, we obtain a continuation of

F(s;z,j) essentially to the region R, with the caveat that the real line segment to the left

of s= 1 must be omitted owing to the logarithmic singularity at s= 1.

From the multiplicative definition of F(s;z,j), in the region σ > 1 we see that G(s;z,j)
is given by an Euler product

∏
pGp(s;z,j). We continue as in Section 9 by describing

these Euler factors and showing that the Euler product converges absolutely in σ > 1
2

(and assume below that σ > 1
2 ).

In the case p >W , we have

Gp(s;z,j) =

( ∞∑
�=0

r(p�,ψ0)r(p
�,ψ̃0)z

�p−�s

)(
1−p−s

)z(
1−χD(p)p−s

)z(
1−χD̃(p)p−s

)z
×
(
1−χdd̃(p)p

−s
)z
.

Since 0� r(p�,ψ0)r(p
�,ψ̃0)� (
+1)2, and r(p,ψ0)r(p,ψ̃0) = (1+χD(p))(1+χD̃(p)) = 1+

χD(p)+χD̃(p)+χdd̃(p)(note that for odd p, we have χD(p)χD̃(p) = (Dp )(
D̃
p ) = (DD̃

p ) =

(dd̃p ) = χdd̃(p)), we see that

https://doi.org/10.1017/S1474748024000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000513


Covering integers by x2+dy2 881

Gp(s;z,j) =
(
1+ z(1+χD(p)+χD̃(p)+χdd̃(p))p

−s+O(p−2σ)
)

×
(
1− z(1+χD(p)+χD̃(p)+χdd̃(p))p

−s+O(p−2σ)
)

= 1+O(p−2σ). (10.5)

Turning to the case 3� p�W , recall that n� is the product of all the prime divisors of
n which are �W , and recall also that χD(p) = χD̃(p) = 1 from the definition of D0, D1

(see (5.2) and (5.3)). Thus, (as in the last section) we see that

Gp(s,z,j) =

( ∞∑
�=0

z�p−�s

)(
1−p−s

)4z
=
(
1− zp−s

)−1(
1−p−s

)4z
. (10.6)

As in the last section, for primes p� 3 there is no difference between the cases j = 0 and

j = 1, but at the prime p = 2, there is a distinction in the definition of G2(s;z,j). Here,
we have (compare with (9.7))

G2(s,z,j) =

{
(1−2−s)4z if j = 0

z2−s−2(1−2−s)2z if j = 1,
(10.7)

upon noting that when j = 0 we have χD(2) = χD̃(2) = χdd̃(2) = 1 (since D, D̃ and dd̃
are all 1 (mod 8)), and that when j = 1 we have χD(2) = χD̃(2) = 0 and χdd̃(2) = 1 (since

d≡ d̃ (mod 8) so that dd̃≡ 1 (mod 8)). From (10.6) and (10.7) note that for all p�W

Gp(s;z,j) = 1+O(p−σ). (10.8)

From (10.5) and (10.8), we see that the Euler product
∏

pGp(s;z,j), which was known

initially to converge absolutely for σ > 1, in fact converges absolutely in σ > 1
2 . Moreover,

for σ � 3
4 we deduce that

|G(s;z,j)| � exp

⎛⎝∑
p�W

O(p−3/4)

⎞⎠� exp(W 1/4). (10.9)

By Selberg’s method, specifically by (A.7) and (A.9), we obtain

∑
v2(n)=j

r(n,ψ0)r(n,ψ̃0)

τ(n�)2
zΩ(n)e−n/N =

N

logN

(Ld,d̃ logN)z

Γ(z)
G(1;z,j)

+Oε

(
N(logN)Re z− 3

2+ε
)
, (10.10)

where, here and below,

Ld,d̃ := L(1,χD)L(1,χD̃)L(1,χdd̃).

The main quantity of interest M (see (10.2)) may be recovered by Fourier inversion,

integrating over z = eiθ with −π � θ � π. Thus, analogously to (9.11) we find

https://doi.org/10.1017/S1474748024000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000513


882 B. Green and K. Soundararajan

M =
N

logN

1

2π

∫ π

−π

(Ld,d̃ logN)e
iθ G(1;eiθ,j)

Γ(eiθ)
e−ikθdθ+Oε

(
N(logN)ε−1/2

)
.

Arguing as in (9.12), (9.13), (9.14), we find analogously to (9.15)

G(1;eiθ,j)
Γ(eiθ)

= G(1;1,j)
(
1+O(|θ|(logW )C)

)
,

for a suitable constant C. Using this in our expression for M and arguing as in (9.17) and
(9.18) we arrive at

M =
N

logN

(log(Ld,d̃ logN))k

k!
G(1;1,j)+O

(
kε−1
0 NLd,d̃

)
. (10.11)

Here, the error term Oε(N(logN)−1/2+ε) has been absorbed into the error term above

since the L-values at 1 are all  |D|−ε  (logN)−ε.
Applying (9.20) with x= Ld,d̃ (which satisfies (logN)−ε � Ld,d̃ � k30), we see that for

k in the range (5.5)

(log(Ld,d̃ logN))k

k!
= Ld,d̃

kk0
k!

+ (logN)Oε

(
k
ε−5/6
0 Ld,d̃+k−3

0

)
.

Using this in (10.11), we conclude that

M =
N

logN
G(1;1,j)Ld,d̃

kk0
k!

+NOε

(
k
ε−5/6
0 Ld,d̃+k−3

0

)
. (10.12)

From (10.5), (10.6) and (10.7), we see that

G(1;1,j) = 2−j−1γ3
W

∏
p>W

(
1+O(p−2)

)
= 2−j−1γ3

W

(
1+O(W−1)

)
.

(In fact, rather than use the crude bound (10.5) one may compute Gp(1,1,j) = 1−
χdd̃(p)p

−2 for p >W , but we do not need this.) Using this together with the class number

formula (9.22) and (10.12) in (10.1), (10.2), we obtain∑
n∈Aj(k)

RD(n)RD̃(n)

τ(f)2
e−n/N =

(
1
2 +O(W−1)

)
π2γ3

W |DD̃|−1/2L(1,χdd̃)
N

logN

kk0
k!

+N |DD̃|−1/2Oε

(
k
ε−5/6
0 L(1,χdd̃)+k−3

0 L(1,χD)−1L(1,χD̃)−1
)
,

where we have absorbed the error term O(N(logN)−100) from (10.1) into the much larger

error term above.

To complete the proof of Proposition 5.3, we multiply though by |DD̃|1/2/π2γ2
W (noting

that any extraneous factors of γW may be absorbed by kε0 terms) and, finally, use (5.8).

11. Proof of Proposition 5.4

In this final section of the main paper, we establish Proposition 5.4.
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Using (3.4), we see that∑
n∈Aj(k)

RD(n)2

τ(n�)2
e−n/N =

1

h2
K

∑
ψ,ψ̃∈ĈK

∑
n∈Aj(k)

r(n,ψ)r(n,ψ̃)

τ(n�)2
e−n/N .

Using Lemma 8.5, we may bound the contribution of terms with ψ̃ /∈ {ψ,ψ} by �
N(logN)−100. It remains to treat the cases when ψ̃ = ψ or ψ. Note that if a is an ideal of

norm n, then so is a and moreover (n) = aa. Therefore, ψ(a) = ψ(a) and it follows that

r(n,ψ) = r(n,ψ) is real valued. Thus, when ψ̃ is ψ or ψ we have r(n,ψ)r(n,ψ̃) = r(n,ψ)2,
which is real and nonnegative. Collecting the observations so far, we find∑

n∈Aj(k)

RD(n)2

τ(n�)2
e−n/N � 1

h2
K

∑
ψ∈ĈK

∑
n∈Aj(k)

r(n,ψ)2

τ(n�)2
e−n/N +N(logN)−100. (11.1)

The contribution of the real characters ψ (which are the genus characters, and there

are at most two of them) to (11.1) is

� 1

h2
K

∑
n∈Aj(k)

r(n,ψ0)
2

τ(n�)2
e−n/N � 2k

h2
K

∑
n∈Aj(k)

r(n,ψ0)

τ(n�)
e−n/N

since r(n,ψ0)� 2Ω(n) � 2k. Using (9.1) and Proposition 5.2, the above quantity is bounded

by

�ε
2k

hK

γW
|D|1/2

⎛⎝ ∑
n∈Aj(k)

e−n/N +k
ε−5/6
0 N +k−2

0 L(1,χD)−1N

⎞⎠ .

By (5.8) and Stirling’s formula, this is

�N
2k

hK

γW
|D|1/2

(
k
−1/2
0 +k−2

0 L(1,χD)−1
)
. (11.2)

Now, we bound the contribution of the complex characters ψ in (11.1). For a complex

character ψ, note that∑
n∈Aj(k)

r(n,ψ)2

τ(n�)2
e−n/N �

∑
n

r(n,ψ)2e−n/N =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

r(n,ψ)2

ns
NsΓ(s)ds, (11.3)

where we take c=1+1/ logN . By considering whether p does or does not split in Q(
√
D),

we may check that for any unramified prime p

r(p,ψ)2 = 1+χD(p)+
∑

N(p)=p

ψ2(p).

Since ψ is not real, note that ψ2 is not principal. By comparing Euler products, we may
therefore write

∞∑
n=1

r(n,ψ)2

ns
= ζ(s)L(s,χD)L(s,ψ2)G(s),
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where G(s) is given by an Euler product which converges absolutely in the region Res >
1
2 +δ and is uniformly bounded in that region. Moving the line of integration in (11.3) to

the line Res= 3
4 , we see that this integral equals

NL(1,χD)L(1,ψ2)G(1)+ 1

2πi

∫ 3/4+i∞

3/4−i∞
ζ(s)L(s,χD)L(s,ψ2)G(s)NsΓ(s)ds. (11.4)

To bound the integral above, we use the convexity bound for L-functions (see Chapter 5
of [13], as well as (8.4) in the case of L(s,ψ2)) which gives

|ζ( 34 + it)| �ε (1+ |t|)1/8+ε, |L( 34 + it,χD)| �ε (|D|(1+ |t|))1/8+ε,

and

|L( 34 + it,ψ2)| �ε (|D|(1+ |t|)2)1/8+ε.

Noting further that |G( 34 + it)| � 1, and |Γ( 34 + it)| � (1+ |t|)1/4e−π|t|/2 (see (C.19) of
[14]), we may bound the integral on Res= 3

4 in (11.4) by

�ε N
3/4

∫ ∞

−∞
|D|1/4+ε(1+ |t|)e−π|t|/2dt�N3/4|D|1/2.

With this in mind, and referring back to (11.3), (11.4), it follows that for complex ψ

we have ∑
n∈Aj(k)

r(n,ψ)2

τ(n�)2
e−n/N �NL(1,χD)L(1,ψ2)+N3/4|D|1/2.

Now, L(1,ψ2)� (log |D|)2 by (8.4), and so we conclude that∑
n∈Aj(k)

r(n,ψ)2

τ(n�)2
e−n/N �NL(1,χD)(log |D|)2+N3/4|D|1/2 �NL(1,χD)(log |D|)2,

where the last estimate follows since |D| � logN and L(1,χD) |D|−ε.

Thus, the contribution of the complex characters ψ to (11.1) is

� 1

h2
K

hKNL(1,χD)(log |D|)2 �N |D|−1/2(log |D|)2.

Combining this with the contribution of the real characters given in (11.2), we conclude
that∑

n∈Aj(k)

RD(n)2

τ(n�)2
e−n/N �N

2k

hK

γW
|D|1/2

(
k
−1/2
0 +k−2

0 L(1,χD)−1
)
+N |D|−1/2(log |D|)2.

Proposition 5.4 follows upon multiplying through by |D|/π2γ2
W and using the class

number formula together with the trivial bound γ−2
W � log |D|.
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A. Details of Selberg’s method

In this appendix, we supply proofs of the applications of Selberg’s method as used in
Sections 9 and 10; namely, the asymptotic formulae (9.10) and (10.10). Let F(s;z,j) be

defined either as in (9.2) or (10.3), and correspondingly let G(s;z,j) be defined as in (9.3)

or (10.4). Define f(n) to be r(n,ψ0)/τ(n
�) in the situation of Section 9, and f(n) to be

r(n,ψ0)r(n,ψ̃0)/τ(n
�)2 in the situation of Section 10. Our goal is to obtain the stated

asymptotic formulae for∑
n∈Aj(k)

f(n)zΩ(n)e−n/N =
1

2πi

∫ c+i∞

c−i∞
F(s;z,j)Γ(s)Nsds, (A.1)

where we take c= 1+1/ logN .
We begin by truncating the integral in (A.1) to |Ims|� (log logN)2. Note that in both

situations under consideration f(n) is nonnegative and bounded by τ(n)2 so that

|F(c+ it;z,j)|�
∞∑

n=1

τ(n)2n−c �
∏
p

(
1+4p−c+O(p−2)

)
� (logN)4.

Since |Γ(c+ it)| � (1+ |t|)c−1/2e−π|t|/2 by Stirling’s formula, we deduce that the tails of

the integral in (A.1) contribute∫
|t|�(log logN)2

N c(logN)4(1+ |t|)c−1/2e−π|t|/2dt�N(logN)−100.

Thus,

∑
n∈Aj(k)

f(n)zΩ(n)e−n/N =
1

2πi

∫ c+i(log logN)2

c−i(log logN)2
F(s;z,j)Γ(s)Nsds+O

(
N(logN)−100

)
,

(A.2)

and note that the error term above is negligible compared to the error terms in the

formulae (9.10) and (10.10) that we are seeking to establish.

To proceed further with evaluating the truncated integral in (A.2), we will shift contours
using a Hankel or a keyhole-type contour. As in (8.10), denote by W the region

W := {2> Res > 1−2(logN)−1/2,|Ims|< 2(log logN)2},

and let W∗ denote the domain W with the line segment from 1− 2(logN)−1/2 to 1

excised. In the region W∗, we define log(s−1) to be the principal branch of the logarithm,
taking real values for s ∈ (1,∞] and if s lies just above the cut, then the argument is iπ,

while if s lies just below the cut, then the argument is −iπ. This gives a definition of

(s− 1)w = exp(w log(s− 1)) (for any complex number w), which is holomorphic in W∗.
Now, as in (9.3) or (10.4), we may write F(s;z,j) = ζK(s)zG(s;z,j), where K is either a

quadratic (in the case of Section 9) or a biquadratic (in the case of Section 10) field. Here,

G(s;z,j) extends to a holomorphic function in a region containing W, and throughout
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W it satisfies the bound |G(s;z,j)| � exp(W 1/4) (see (9.9) or (10.9)). From Lemma 8.1
(2), we see that ζ(s)z extends to a holomorphic function on W∗, and for s ∈ W∗ with

|Im(s)|� 1 we have

|ζK(s)z|� exp(| logζK(s)|)� (logN)ε,

where we used (8.5) together with |DK | � Δ4 � (logN)4. Finally, again by the second

part of Lemma 8.1, we see that ((s−1)ζK(s))z extends to a holomorphic function in W,
and satisfies for s ∈W with |Im(s)|� 1

|((s−1)ζK(s))z|� exp(| log((s−1)ζK(s))|)� (logN)ε.

Synthesizing the remarks above, we conclude that F(s;z,j) extends holomorphically to

W∗, and for s ∈W∗ with |Im(s)|� 1 satisfies

|F(s;z,j)| � (logN)ε. (A.3)

Moreover, (s−1)zF(s;z,j) extends holomorphically to W, and for s∈W with |Im(s)|� 1

satisfies

|(s−1)zF(s;z,j)| � (logN)ε. (A.4)

We return now to the truncated integral in (A.2), which we will replace with an integral
over the following Hankel-type contour.

This consists of

• Γ1, the horizontal line segment from c − i(log logN)2 to 1 − (logN)−1/2 −
i(log logN)2;

• Γ2, the vertical line segment from 1−(logN)−1/2−i(log logN)2 to 1−(logN)−1/2;
• Γ3, which consists of a path Γ−

3 going horizontally from 1− (logN)−1/2 to 1− r
staying just below the line Ims= 0, then a circle Γ◦

3 of radius r about s= 1, then a
horizontal path Γ+

3 from 1−r back to 1− (logN)−1/2 but now staying just above
the line Ims = 0 (here r � 1/ logN is a parameter which we later allow to tend
to 0);

• Γ4, the vertical line segment from 1−(logN)−1/2 to 1−(logN)−1/2+i(log logN)2;
• Γ5, the horizontal line segment from 1 − (logN)−1/2 + i(log logN)2 to c +

i(log logN)2.

Since the integrand F(s;z,j)Γ(s)Ns is holomorphic in W∗, we may replace the vertical

contour from c− i(log logN)1/2 to c+ i(log logN)2 by the Hankel-type contour Γ1∪Γ2∪
Γ3∪Γ4∪Γ5.

(Note that a limiting argument, which we suppress, is required to deal with the fact

that Γ±
3 lie on the boundary of W∗ rather than within W∗ itself.) Denote, for 
=1,2,3,4,5,

I� :=
1

2πi

∫
Γ�

F(s;z,j)NsΓ(s)ds.
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To estimate the horizontal integrals I1 and I5, we use (A.3) together with the

exponential decay of |Γ(s)|. Thus, we obtain

I1,I5 �
∫ c

1−(logN)−1/2

Nσ(logN)εe−(log logN)2dσ �N(logN)−100.

The vertical integrals I2 and I4 are likewise easy to handle. If |t| � 1, then (A.3) gives

|F(1− (logN)−1/2+ it;z,j)| � (logN)ε, while if |t|� 1, then from (A.4) we deduce that
|F(1− (logN)−1/2+ it;z,j)| � (logN)1/2+ε (here we take t to be either strictly positive

or strictly negative but avoiding point t= 0). Combining these estimates with the bound

|Γ(1− (logN)−1/2+ it)| � e−|t|, we obtain

I2,I4 �
∫ (log logN)2

0

N1−(logN)−1/2

(logN)1/2+εe−|t|dt�N(logN)−100.

It remains lastly to consider the integral I3 over the Hankel contour Γ3. Set

H(s;z,j) = Γ(s)(s−1)zF(s;z,j).

Consider the circle centered at 1 with radius 2(logN)−1/2. Since |Γ(s)| is bounded in this

region, from (A.4) we see that |H(s;z,j)| � (logN)ε. Therefore, if s is any point within

a circle of radius (logN)−1/2 centered at 1, we see that

H(s;z,j)−H(1;z,j) =
1

2πi

∫
|w−1|=2(logN)−1/2

H(w;z,j)
( 1

w−1
− 1

w−s

)
dw

�
∫
|w−1|=2(logN)−1/2

|H(w;z,j)| |s−1|
|(w−1)(w−s)| |dw|

� (logN)1/2+ε|s−1|,

where we have used Cauchy’s formula and the fact that |w− s| and |w− 1| are 
(logN)−1/2. Thus,

I3 =
1

2πi

∫
Γ3

(s−1)−zNsH(s;z,j)ds

=
1

2πi

∫
Γ3

(s−1)−zNs
(
H(1;z,j)+O

(
|s−1|(logN)1/2+ε

))
ds. (A.5)

Consider first the error term in (A.5). On the two horizontal parts of Γ3, namely

s = σ+0±i (depending whether we are just above or just below the cut), we have |(s−
1)−zNs| � (1−σ)−RezNσ so that these integrals contribute

� (logN)1/2+ε

∫ 1−r

1−(logN)−1/2

(1−σ)1−RezNσdσ �N(logN)Rez−3/2+ε.

Similarly, the (nearly) circular portion of Γ3 contributes

�N1+rr2−Rez(logN)1/2+ε �N(logN)Rez−3/2+ε,

since r � 1/ logN . Thus, the error term in (A.5) is �N(logN)Rez−3/2+ε.
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Turning to the main term in (A.5), we claim that

1

2πi

∫
Γ3

Ns(s−1)−zds=
1

Γ(z)
N(logN)z−1+O(N(logN)−100). (A.6)

To obtain (A.6), denote by H (the Hankel contour) the contour obtained from Γ3 by

extending both horizontal parts out to −∞. The integral in (A.6) extended over H is

equal to 1
Γ(z)N(logN)z−1, as follows from the standard Hankel integral [17, Theorem

II.0.17] and a substitution. Now, note that∫
H\Γ3

|Ns(s−1)−z||ds| �
∫ 1−(logN)−1/2

−∞
Nσ(1−σ)−Rezdσ

�N1−(logN)−1/2

(logN)O(1),

which is much smaller than N(logN)−100, and thus establishes the claim (A.6). Putting
all this together gives

I3 =H(1;z,j)N
(logN)z−1

Γ(z)
+O

(
N(logN)Rez−3/2+ε

)
.

Combining this with our estimates for I1, I2, I4 and I5, from (A.2) we conclude that∑
n∈Aj(k)

f(n)zΩ(n)e−n/N =H(1;z,j)N
(logN)z−1

Γ(z)
+Oε

(
N(logN)Rez−3/2+ε

)
. (A.7)

Finally, in the context of Section 9 note that (using (9.3), and since lims→1(s−1)ζ(s) = 1)

H(1;z,j) = lim
s→1

Γ(s)(s−1)zF(s;z,j) = L(1,χD)zG(1;z,j), (A.8)

while in the context of Section 10 (using (10.4))

H(1;z,j) = (L(1,χD)L(1,χD̃)L(1,χdd̃))
zG(1;z,j). (A.9)

This completes our justification of (9.10) and (10.10).
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Zahlentheorie, Hochschultext. Berlin-New York: Springer-Verlag, viii+144 pp.

https://doi.org/10.1017/S1474748024000513 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000513

	1 Introduction
	2 The upper and lower bounds imply the main theorem
	3 Background on quadratic forms
	3.1 Fundamental discriminants and characters
	3.2 Positive definite forms and imaginary quadratic fields
	3.3 Representation by x2+dy2

	4 Proof of the upper bound
	5 Plan of the proof of the lower bound
	6 Deducing Theorem 5.1 from Propositions 5.2, 5.3, 5.4 and 5.5
	7 Proof of Proposition 5.5
	8 Class group L-functions
	9 Proof of Proposition 5.2
	10 Proof of Proposition 5.3
	11 Proof of Proposition 5.4
	A Details of Selberg's method



